眼科病床合理安排--排队论的应用--不错(2)

第23卷 第1期 湖南理工学院学报(自然科学版) Vol.23 No.12010年3月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Mar. 2010

医院床位安排排队系统研究

程望斌1, 周海燕2

(1.湖南理工学院 信息与通信工程学院, 湖南 岳阳 414006; 2.岳阳职业技术学院 临床医学系, 湖南 岳阳 414000) 摘 要: 应用排队论理论, 对医院病床排队系统进行分析, 研究合理利用医院床位的组织方法. 设计相关排队算法, 提出了自适应排队模型, 分析在一定病床资源条件下, 通过对床位进行合理安排, 可提高病床的有效利用率和公平度, 并以一个实例进行了验证.

关键词: 排队论; 病床安排; 队列长度; 病床利用率

中图分类号: O226 文献标识码: A 文章编号: 1672-5298(2010)01-0024-04

Research on the Queuing System of Hospital Beds

CHENG Wang-bin1, ZHOU Hai-yan2

(1. College of Information and Communication Engineering, Hunan Institute of science and Technology, Yueyang 414006, China;

2. Department of Clinical Medicine, Yueyang Vocational Technical College, Yueyang 414000, China)

Abstract: Queuing theory was used to make research on the queuing system of hospital beds, exploring how to arrange hospital beds and make best use of medical resources. Some queuing algorithm and self-adapting queuing model were proposed. The bed utilization and equitable degree, under certain bed conditions, were effectively improved with reasonable bed arrangements , and the method is validated by a case study.

Key words: queuing theory; bed arrangement; queue lengths; bed utilization

引言

医院就医排队是大家都非常熟悉的现象. 患者到门诊就诊、到收费处划价、到药房取药、到注射室打针、等待住院进行手术治疗等等, 往往需要排队等待. 病人到达时间和服务时间是随机的, 常会引起拥塞和病人长时间等待的现象, 从而降低了病人的满意度. 医院床位管理水平的高低, 是衡量和评价医院总体管理水平的重要内容之一. 通常情况下, 医院的病床资源与手术条件及相关服务是对应的, 在考虑病床安排时可不考虑手术条件的限制, 因此也不能单纯通过增加病床来达到减小等待住院病人队长的目的. 合理分析床位利用情况, 可以发现医院床位安排的不足和缺陷; 合理安排病床, 对于医院提高经济效益[1]、改善病房管理、挖掘内部潜力、增强服务能力具有重要意义.

为分析问题的方便, 以医院眼科病床安排为例进行研究.

1 病床安排系统模型

医院眼科手术主要分四大类: 白内障、视网膜疾病、青光眼和外伤. 其中, 白内障分为单眼和双眼, 若为双眼, 每次手术只能做一只, 两次手术时间间隔至少为1天, 白内障眼疾特点是住院治疗时间较短; 视网膜疾病和青光眼病理基本相同, 其共同特点是住院治疗时间较长; 外伤为急诊, 需优先安排入院和手术治疗. 这四类主要眼科疾病都需要进行住院治疗. 因此, 医院床位安排是否到位成为病人能否及早接受手术治疗的关键.

1.1 模型概述

以医院眼科住院系统为研究对象, 它有如下特征:

(1) 输入过程: 眼科患者的到达是相互独立的, 相继到达的时间间隔是随机的; 一定时间到达的概率收稿日期: 2009-12-16

作者简介: 程望斌(1979− ), 男, 湖北崇阳人, 硕士, 湖南理工学院信息与通信工程学院讲师. 主要研究方向: 光电子学、数学建模

第1期 程望斌等: 医院床位安排排队系统研究 25 分布服从泊松(Poisson)分布[2].

(2) 排队规则: 住院部对全体非急症病人采用FCFS(First come, First serve: 先到先服务)规则安排入院, 且为等待制.

(3)服务时间: 各类眼疾患者住院时间是相互独立的, 且服从负指数分布.

(4)服务窗口: 多服务等待制排队问题, 眼科医院所有病床对应的是多个服务台, 这些病床并联排列且各病床独立提供服务.

1.2 模型假设与建立

假设眼科患者平均到达率为λ, 眼科医院有m个病床, 单个病床的平均服务率(表示单位时间内被服务完的患者数)为μ, 则整个医院病床的平均服务率为mμ; 系统的服务强度ρ=λ/mμ

⎡m−1k⎤P0(m)=⎢∑+(m⎥, −⎦⎣k=0⎧(nP(m),n=1,2,

Pn(m)=⎨ n⎪P0(m),n>m.mm!⎩

当系统达到平衡状态时, 每个患者在系统中等待时间W的均值为[3]

E(W)=

排队逗留的人数为 −1Pn(m)nμ=(np0(m), mμ(1−ρ)n!(nμ−λ)(mρ)mρP0+. L系=L队+mρ=m!(1−ρ)

1.3 排队系统的优化特点

作为一个优化设计的系统, 应使患者损失费用和医院服务成本之和达到最小. 因此, 优化系统具有以下特点:

(1) 队长(排队系统中的病人数): 队长越短, 说明等待的病人越少, 排队系统设计越科学.

(2) 逗留时间(等待病床的平均逗留时间): 逗留时间越短, 给患者带来的损失就越小.

(3) 忙期(病床提供服务的平均时间): 忙期越短, 表明病床利用率就越高.

(4) 病床的利用率[4]: 病床利用率越高, 则病床安排的人数越多, 反映医院的效益就越好.

(5) 稳定状态概率(系统的服务强度): 稳定状态概率ρ>1时, 等待的队列会越来越长; 反之队列会越来越短, 优化系统必定满足ρ

1.4 排队算法设计

排队算法设计的原理[5]: 病人安排病床的先后顺序由病人到达的先后顺序、住院治疗时间的长短以及病人所属类型的优先级别等综合确定. 眼科手术的四大疾病中, 外伤作为急诊, 优先级摆在第一位, 这是不容置疑的; 白内障需分为单眼和双眼病人, 其中双眼病人需分两次做手术, 每次一只, 且要间隔一天, 因此白内障单眼和双眼眼疾病人应区分对待; 视网膜疾病和青光眼病理差别不是很大, 其共同特点是住院治疗时间较长. 考虑到白内障病人比视网膜疾病、青光眼病人的住院治疗时间短, 因此需优先考虑白内障病人特别是白内障双眼病人; 同时, 也要考虑病人已经等待了的时间和各类病人所占比例. 综合上述因素, 得眼科病人就诊优先级计算公式是

fi=α1ti+α2βi+α3si. (1)

式(1)中, fi由相应的影响因子和权重确定: α1ti表示病人住院的优先与等待时间有关. 其中ti为某病人当前已经等待病床(入院)的时间; α1为该病人等待时间的优先权重, 等待时间长的病人应该适当考虑; α2βi

26 湖南理工学院学报(自然科学版) 第23 表示病人住院的优先与该类等待住院的病人占总病人数的比例βi有关. 对同一类型的病人, 若其在总病人数中所占比例较大, 则应该适当考虑(β1+β2+β3+β4+β5=1, βi(i=1,2,3,4,5)分别表示外伤、白内障(单眼)、白内障(双眼)、视网膜疾病及青光眼五类眼科病人); α2为对队列长度的权重. α3si表示病人住院的优先与病人类型优先级有关, si表示不同类型病人优先级(外伤>白内障双眼>白内障单眼>视网膜疾病和青光眼), 对优先级高的病人, 在服务上给予优先照顾; α3为病人类型的权重.

1.5 权重的确定

公式(1)中权重的大小直接决定了病人在队列中的相对位置, 对病人的满意度产生重要影响, 权

重值的不同会导致不同的结果.

(1) 绝对优先: 病人的优先级占绝对重要因素, 比如作为眼科急诊的外伤, 此时α1=0,α2=0,

α3=1.

(2) 无优先: 不考虑其它因素, 只按照FCFS规则输出住院序列, 此时α1=1,α2=0,α3=0.

(3) 有限度优先: 既考虑优先级又考虑等待时间和队列比例关系, 需分三种情况进行相关设置;

权重采用层次分析法(AHP)获得.

2 实例分析

某医院眼科门诊每天开放, 住院部共有病床79张. 该医院眼科手术主要分四大类: 白内障、视网膜疾病、青光眼和外伤. 白内障手术较简单, 而且没有急症, 该院是每周一、三做白内障手术, 此类病人的术前准备时间只需1、2天, 做两只眼的病人比做一只眼的要多一些, 大约占到60%(如果要做双眼是周一先做一只, 周三再做另一只); 外伤疾病通常属于急症, 病床有空时立即安排住院, 住院后第二天便会安排手术; 其他眼科疾病比较复杂, 有各种不同情况, 但大致住院以后2~3天内就可以接受手术, 主要是术后的观察时间较长(这类疾病手术时间可根据需要安排, 一般不安排在周一、周三; 由于急症数量较少, 这些眼科疾病可不考虑急症). 该医院眼科手术条件比较充分, 在考虑病床安排时可不考虑手术条件的限制, 但考虑到手术医生的安排问题, 通常情况下白内障手术与其他眼科手术(急症除外)不安排在同一天做.

2.1 排队系统改进前

当前该住院部对全体非急症病人是按照FCFS规则安排住院, 但等待住院病人队列却越来越长, 医院方面希望能通过合理模型来帮助解决该住院部的病床合理安排问题, 以提高对医院资源的有效利用. 该医院2008年7月13日至2008年9月11日这段时间里各类病人的相关信息如表1所示.

表1 各类眼科病人就医信息表

眼病类型

白内障(单眼) (20.6%)

白内障(双眼)( 23.5%)

青光眼( 11.2%)

视网膜疾病(28.9%)

外伤(15.8%) 等待病床 平均时间 需用病床 最短时间 实际用床 平均时间 病床有效 利用率 11.83 3.96 5.31 0.746 11.51 5.96 8.56 0.696 11.36 10.49 11.87 0.884 11.51 10.64 12.02 0.882 0 7.036 7.036 1.000

2.2 排队系统改进后

根据前面所建的排队模型, 我们编制了相关程序, 充分考虑了影响眼科病人住院优先级的各个因素, 结合层次分析方法计算出各影响因子的相关权重, 最终计算出比较高效的病床安排. 利用新模型改进床位安排后的住院信息如表2所示.

第1期 程望斌等: 医院床位安排排队系统研究 27

表2 改进病床安排后的住院信息表

眼病类型

白内障(单眼) (20.6%)

白内障(双眼)( 23.5%)

青光眼( 11.2%)

视网膜疾病(28.9%)

外伤(15.8%) 等待病床 需用病床 实际用床 病床有效 平均时间 最短时间 平均时间 利用率 1.83 3.96 4.18 0.947 1.51 5.96 6.26 0.952 2.06 10.49 10.87 0.965 2.07 10.64 11.02 0.950 0 7.036 7.036 1.000

2.3 系统改进前后结果对比

改进病床安排方案后, 排队系统优势明显, 主要表现在: (1)队长变小, 排队系统中的人数越来越少, 理论上队长可达到0; (2)逗留时间缩短, 降低了患者的危险和损失; (3)忙期减小, 病床使用更高效; (4)病床的利用率提高, 医院的经济效益得到了提升; (5)稳定状态概率ρ由大于1变成小于1, 即系统的服务强度和服务质量大大改善了.

2.4 系统模型的优化

从便于管理的角度提出建议, 在一般情形下, 医院病床安排可采取使各类病人占用病床的比例大致固定的方案, 为此需建立使得所有病人在系统内的平均逗留时间(含等待入院及住院时间)最短的病床比例分配模型, 即服务强度平衡模型. 该模型的基本思想是: 当各类眼科病人构成的排队系统的服务强度相同时, 总的系统服务效率达到最佳.

五类眼科病人排队系统的参数分别记为: 眼科患者平均到达率为λi, 单个病床的平均服务率为μi, 病床数为mi, i = 1, 2, 3, 4, 5. 则有

5λi系统的服务强度: ρi=, 总床位数: m=∑mi; 各系统服务强度相等时 iii=1

λmi=i=iiλiμi−1∑λμj

j=15⋅m. −1j

其中λi 和μi(i=1,2,3,4,5)可以由统计数据得到. 按上述比例得到的各类病人床位比例即为最佳比例. 实际操作时, 急诊病人床位数可以根据需要作变动.

3 结束语

本文提出了一种自适应排队模型, 设计了排队算法, 并通过实例验证了该方法的有效性和可行性. 在有限的资源配置下, 利用上述排队模型理论和处理方法, 结合患者的服务记录获得相关数据, 对其作出定性和定量的评价. 通过对系统进行设计, 找出患者与医院之间的平衡点, 以提高医院现有病床资源的利用效率; 系统改进后, 不仅可提升医院的服务质量和服务水平, 改善医患关系, 而且, 还能降低患者的损失, 最大程度地获得经济效益和社会效益, 实现互利和双赢的目的.

参考文献

[1] 吴小青. 医院病床利用与需求分析[J]. 中国医院统计, 1996, 3(2): 93

[2] 寿纪麟. 数学建模——方法与范例[M]. 西安: 西安交通大学出版社, 1993, 160~170

[3] 韩新焕, 朱萌纾, 吴 静. 医院管理系统中排队模型的优化决策分析[J]. 数理医药学杂志, 2008, 21(1): 17~18

[4] 王若瑾, 张慧芳. 应用“归一分析法”分析床位工作效率[J]. 医学信息学, 2008, 21(3): 25~26

[5] 张国通, 杜 刚, 江志斌, 等. 一种动态自适应医院门诊排队模型[J]. 上海交通大学学报, 2007, 41(1): 1546~1550

医院床位安排排队系统研究

作者:

作者单位:

刊名:

英文刊名:

年,卷(期):

被引用次数:程望斌, 周海燕, CHENG Wang-bin, ZHOU Hai-yan程望斌,CHENG Wang-bin(湖南理工学院,信息与通信工程学院,湖南,岳阳,414006), 周海燕,ZHOU Hai-yan(岳阳职业技术学院,临床医学系,湖南,岳阳,414000)湖南理工学院学报(自然科学版)JOURNAL OF HUNAN INSTITUTE OF SCIENCE AND TECHNOLOGY(NATURAL SCIENCES)2010,23(1)0次

参考文献(5条)

1.吴小青 医院病床利用与需求分析 1996(2)

2.寿纪麟 数学建模--方法与范例 1993

3.韩新焕.朱萌纾.吴静 医院管理系统中排队模型的优化决策分析 2008(1)

4.王若瑾.张慧芳 应用

5.张国通.杜刚.江志斌 一种动态自适应医院门诊排队模型 2007(1)

相似文献(7条)

1.期刊论文 贵凤娟.王明君.杨琳.GUI Feng-juan.WANG Ming-jun.YANG Lin 多排队多服务台的服务系统病床安排优化研究 -计算机与现代化2010,

采用运筹学排队论原理对某眼科医院门诊病人的排队系统进行研究,本文提出各种眼科疾病病床设置的最佳值,并与医院现在的住院安排做时比,为医院的管理提供改进建议和科学的理论依据.该方法可以应用于其他疾病的病床安排.将该论理论应用于医院的病床安排是科学、有效的方法.

2.期刊论文 贵凤娟.闫爱芳.田真真.GUI Feng-juan.YAN Ai-fang.TIAN Zhen-zhen 基于优先级的排队系统改进病床安排 -电脑知识与技术2010,6(12)

该文主要采用运筹学的排队论原理以及统计学,考虑医院手术的特殊安排,将患有不同眼科疾病的病人按不同优先级安排入院,得到系统运营指标,对病床安排模型改进前后进行评价,为医院的管理提供了改进建议和科学有力的理论依据,可以应用于其他疾病的病床安排工作.

3.期刊论文 顿毅杰.马明 医院病床安排的数学模型及算法分析 -中国新技术新产品2010,

医院病床的合理安排是病人和医院共同关注的问题.理论上这一问题有排队论和规划论的特点.考虑到病人、病床和手术之间的流程关系,确定出使用平均等待时间、平均住院时间、平均逗留时间、平均等待队长和住院率来作为评价指标,这些指标可以充分反映医院病床安排的优劣.

4.期刊论文 潘淑平.黄炎.许冰冰.程建业.方圆.PAN Shu-ping.HUANG Yan.XU Bing-bing.CHENG Jian-ye.FANG Yuan 眼科病床的合理安排 -吉林化工学院学报2010,27(2)

对医院FCFS(First come,First serve)住院规则下的M/M/S/∞模型进行了研究.提取病床使用情况的相关指标,利用TOPSIS法确立合理的评价指标体系.将病床安排转化为平行机排序问题,结合SPT算法,建立新的病床安排模型.建立动态平衡排队模型,给出病人门诊后的大致入院时间区间.运用优化理论建立使病人在医院停留时间最短的病床比例分配模型.

5.期刊论文 汪琴.岑璐局.张渊娴.马新生.WANG Qin.CEN Luju.ZHANG Yuanxian.MA Xinsheng 基于排队论的眼科病床合理安排的数学模型 -浙江教育学院学报2010,

以排队论理论为基础,建立了医院眼科病人排队系统的数学模型.首先,建立了对医院病床安排系统进行综合评价的指标体系,并对现有FCFS规则和改进规则进行了评价;然后,建立了区间估计模型,使得病人在门诊时就被告知大致入住时间.最后,建立了多指标床位分配模型,得出了床位的最佳设置值.

6.期刊论文 马霄.朱留铭.魏婧.郭麟 基于排队论的病床安排模型的研究 -福建电脑2010,26(1)

通过建立基于排队论的病床安排模型,得到系统运营指标如各类病人的平均队长及平均逗留时间,对病床安排模型进行评价.进而根据所有病人的住院时间长短的规律,将病床分为短期、中期、长期三类,构造优化病床分配模型,提高了病床利用率,并用实例进行验证.

7.期刊论文 赵营峰 医院眼科病床合理安排的优化模型 -科教导刊2010,

本文考虑了医院病床的使用情况和病人看病心理的实际情况,分析影响医院病床安排和病人心理承受的因素,并根据题目要求提出最优化模型.建立一个合理分配病人、安排床位,同时保证医院病库使用率,周转率的全局优化模型.

本文链接:http://d.g.wanfangdata.com.cn/Periodical_yysfxyxb201001007.aspx

授权使用:洛阳工学院(河南科技大学)(wflskd),授权号:e3485926-aefa-47d2-8838-9ddc00bad655

下载时间:2010年8月24日

第23卷 第1期 湖南理工学院学报(自然科学版) Vol.23 No.12010年3月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Mar. 2010

医院床位安排排队系统研究

程望斌1, 周海燕2

(1.湖南理工学院 信息与通信工程学院, 湖南 岳阳 414006; 2.岳阳职业技术学院 临床医学系, 湖南 岳阳 414000) 摘 要: 应用排队论理论, 对医院病床排队系统进行分析, 研究合理利用医院床位的组织方法. 设计相关排队算法, 提出了自适应排队模型, 分析在一定病床资源条件下, 通过对床位进行合理安排, 可提高病床的有效利用率和公平度, 并以一个实例进行了验证.

关键词: 排队论; 病床安排; 队列长度; 病床利用率

中图分类号: O226 文献标识码: A 文章编号: 1672-5298(2010)01-0024-04

Research on the Queuing System of Hospital Beds

CHENG Wang-bin1, ZHOU Hai-yan2

(1. College of Information and Communication Engineering, Hunan Institute of science and Technology, Yueyang 414006, China;

2. Department of Clinical Medicine, Yueyang Vocational Technical College, Yueyang 414000, China)

Abstract: Queuing theory was used to make research on the queuing system of hospital beds, exploring how to arrange hospital beds and make best use of medical resources. Some queuing algorithm and self-adapting queuing model were proposed. The bed utilization and equitable degree, under certain bed conditions, were effectively improved with reasonable bed arrangements , and the method is validated by a case study.

Key words: queuing theory; bed arrangement; queue lengths; bed utilization

引言

医院就医排队是大家都非常熟悉的现象. 患者到门诊就诊、到收费处划价、到药房取药、到注射室打针、等待住院进行手术治疗等等, 往往需要排队等待. 病人到达时间和服务时间是随机的, 常会引起拥塞和病人长时间等待的现象, 从而降低了病人的满意度. 医院床位管理水平的高低, 是衡量和评价医院总体管理水平的重要内容之一. 通常情况下, 医院的病床资源与手术条件及相关服务是对应的, 在考虑病床安排时可不考虑手术条件的限制, 因此也不能单纯通过增加病床来达到减小等待住院病人队长的目的. 合理分析床位利用情况, 可以发现医院床位安排的不足和缺陷; 合理安排病床, 对于医院提高经济效益[1]、改善病房管理、挖掘内部潜力、增强服务能力具有重要意义.

为分析问题的方便, 以医院眼科病床安排为例进行研究.

1 病床安排系统模型

医院眼科手术主要分四大类: 白内障、视网膜疾病、青光眼和外伤. 其中, 白内障分为单眼和双眼, 若为双眼, 每次手术只能做一只, 两次手术时间间隔至少为1天, 白内障眼疾特点是住院治疗时间较短; 视网膜疾病和青光眼病理基本相同, 其共同特点是住院治疗时间较长; 外伤为急诊, 需优先安排入院和手术治疗. 这四类主要眼科疾病都需要进行住院治疗. 因此, 医院床位安排是否到位成为病人能否及早接受手术治疗的关键.

1.1 模型概述

以医院眼科住院系统为研究对象, 它有如下特征:

(1) 输入过程: 眼科患者的到达是相互独立的, 相继到达的时间间隔是随机的; 一定时间到达的概率收稿日期: 2009-12-16

作者简介: 程望斌(1979− ), 男, 湖北崇阳人, 硕士, 湖南理工学院信息与通信工程学院讲师. 主要研究方向: 光电子学、数学建模

第1期 程望斌等: 医院床位安排排队系统研究 25 分布服从泊松(Poisson)分布[2].

(2) 排队规则: 住院部对全体非急症病人采用FCFS(First come, First serve: 先到先服务)规则安排入院, 且为等待制.

(3)服务时间: 各类眼疾患者住院时间是相互独立的, 且服从负指数分布.

(4)服务窗口: 多服务等待制排队问题, 眼科医院所有病床对应的是多个服务台, 这些病床并联排列且各病床独立提供服务.

1.2 模型假设与建立

假设眼科患者平均到达率为λ, 眼科医院有m个病床, 单个病床的平均服务率(表示单位时间内被服务完的患者数)为μ, 则整个医院病床的平均服务率为mμ; 系统的服务强度ρ=λ/mμ

⎡m−1k⎤P0(m)=⎢∑+(m⎥, −⎦⎣k=0⎧(nP(m),n=1,2,

Pn(m)=⎨ n⎪P0(m),n>m.mm!⎩

当系统达到平衡状态时, 每个患者在系统中等待时间W的均值为[3]

E(W)=

排队逗留的人数为 −1Pn(m)nμ=(np0(m), mμ(1−ρ)n!(nμ−λ)(mρ)mρP0+. L系=L队+mρ=m!(1−ρ)

1.3 排队系统的优化特点

作为一个优化设计的系统, 应使患者损失费用和医院服务成本之和达到最小. 因此, 优化系统具有以下特点:

(1) 队长(排队系统中的病人数): 队长越短, 说明等待的病人越少, 排队系统设计越科学.

(2) 逗留时间(等待病床的平均逗留时间): 逗留时间越短, 给患者带来的损失就越小.

(3) 忙期(病床提供服务的平均时间): 忙期越短, 表明病床利用率就越高.

(4) 病床的利用率[4]: 病床利用率越高, 则病床安排的人数越多, 反映医院的效益就越好.

(5) 稳定状态概率(系统的服务强度): 稳定状态概率ρ>1时, 等待的队列会越来越长; 反之队列会越来越短, 优化系统必定满足ρ

1.4 排队算法设计

排队算法设计的原理[5]: 病人安排病床的先后顺序由病人到达的先后顺序、住院治疗时间的长短以及病人所属类型的优先级别等综合确定. 眼科手术的四大疾病中, 外伤作为急诊, 优先级摆在第一位, 这是不容置疑的; 白内障需分为单眼和双眼病人, 其中双眼病人需分两次做手术, 每次一只, 且要间隔一天, 因此白内障单眼和双眼眼疾病人应区分对待; 视网膜疾病和青光眼病理差别不是很大, 其共同特点是住院治疗时间较长. 考虑到白内障病人比视网膜疾病、青光眼病人的住院治疗时间短, 因此需优先考虑白内障病人特别是白内障双眼病人; 同时, 也要考虑病人已经等待了的时间和各类病人所占比例. 综合上述因素, 得眼科病人就诊优先级计算公式是

fi=α1ti+α2βi+α3si. (1)

式(1)中, fi由相应的影响因子和权重确定: α1ti表示病人住院的优先与等待时间有关. 其中ti为某病人当前已经等待病床(入院)的时间; α1为该病人等待时间的优先权重, 等待时间长的病人应该适当考虑; α2βi

26 湖南理工学院学报(自然科学版) 第23 表示病人住院的优先与该类等待住院的病人占总病人数的比例βi有关. 对同一类型的病人, 若其在总病人数中所占比例较大, 则应该适当考虑(β1+β2+β3+β4+β5=1, βi(i=1,2,3,4,5)分别表示外伤、白内障(单眼)、白内障(双眼)、视网膜疾病及青光眼五类眼科病人); α2为对队列长度的权重. α3si表示病人住院的优先与病人类型优先级有关, si表示不同类型病人优先级(外伤>白内障双眼>白内障单眼>视网膜疾病和青光眼), 对优先级高的病人, 在服务上给予优先照顾; α3为病人类型的权重.

1.5 权重的确定

公式(1)中权重的大小直接决定了病人在队列中的相对位置, 对病人的满意度产生重要影响, 权

重值的不同会导致不同的结果.

(1) 绝对优先: 病人的优先级占绝对重要因素, 比如作为眼科急诊的外伤, 此时α1=0,α2=0,

α3=1.

(2) 无优先: 不考虑其它因素, 只按照FCFS规则输出住院序列, 此时α1=1,α2=0,α3=0.

(3) 有限度优先: 既考虑优先级又考虑等待时间和队列比例关系, 需分三种情况进行相关设置;

权重采用层次分析法(AHP)获得.

2 实例分析

某医院眼科门诊每天开放, 住院部共有病床79张. 该医院眼科手术主要分四大类: 白内障、视网膜疾病、青光眼和外伤. 白内障手术较简单, 而且没有急症, 该院是每周一、三做白内障手术, 此类病人的术前准备时间只需1、2天, 做两只眼的病人比做一只眼的要多一些, 大约占到60%(如果要做双眼是周一先做一只, 周三再做另一只); 外伤疾病通常属于急症, 病床有空时立即安排住院, 住院后第二天便会安排手术; 其他眼科疾病比较复杂, 有各种不同情况, 但大致住院以后2~3天内就可以接受手术, 主要是术后的观察时间较长(这类疾病手术时间可根据需要安排, 一般不安排在周一、周三; 由于急症数量较少, 这些眼科疾病可不考虑急症). 该医院眼科手术条件比较充分, 在考虑病床安排时可不考虑手术条件的限制, 但考虑到手术医生的安排问题, 通常情况下白内障手术与其他眼科手术(急症除外)不安排在同一天做.

2.1 排队系统改进前

当前该住院部对全体非急症病人是按照FCFS规则安排住院, 但等待住院病人队列却越来越长, 医院方面希望能通过合理模型来帮助解决该住院部的病床合理安排问题, 以提高对医院资源的有效利用. 该医院2008年7月13日至2008年9月11日这段时间里各类病人的相关信息如表1所示.

表1 各类眼科病人就医信息表

眼病类型

白内障(单眼) (20.6%)

白内障(双眼)( 23.5%)

青光眼( 11.2%)

视网膜疾病(28.9%)

外伤(15.8%) 等待病床 平均时间 需用病床 最短时间 实际用床 平均时间 病床有效 利用率 11.83 3.96 5.31 0.746 11.51 5.96 8.56 0.696 11.36 10.49 11.87 0.884 11.51 10.64 12.02 0.882 0 7.036 7.036 1.000

2.2 排队系统改进后

根据前面所建的排队模型, 我们编制了相关程序, 充分考虑了影响眼科病人住院优先级的各个因素, 结合层次分析方法计算出各影响因子的相关权重, 最终计算出比较高效的病床安排. 利用新模型改进床位安排后的住院信息如表2所示.

第1期 程望斌等: 医院床位安排排队系统研究 27

表2 改进病床安排后的住院信息表

眼病类型

白内障(单眼) (20.6%)

白内障(双眼)( 23.5%)

青光眼( 11.2%)

视网膜疾病(28.9%)

外伤(15.8%) 等待病床 需用病床 实际用床 病床有效 平均时间 最短时间 平均时间 利用率 1.83 3.96 4.18 0.947 1.51 5.96 6.26 0.952 2.06 10.49 10.87 0.965 2.07 10.64 11.02 0.950 0 7.036 7.036 1.000

2.3 系统改进前后结果对比

改进病床安排方案后, 排队系统优势明显, 主要表现在: (1)队长变小, 排队系统中的人数越来越少, 理论上队长可达到0; (2)逗留时间缩短, 降低了患者的危险和损失; (3)忙期减小, 病床使用更高效; (4)病床的利用率提高, 医院的经济效益得到了提升; (5)稳定状态概率ρ由大于1变成小于1, 即系统的服务强度和服务质量大大改善了.

2.4 系统模型的优化

从便于管理的角度提出建议, 在一般情形下, 医院病床安排可采取使各类病人占用病床的比例大致固定的方案, 为此需建立使得所有病人在系统内的平均逗留时间(含等待入院及住院时间)最短的病床比例分配模型, 即服务强度平衡模型. 该模型的基本思想是: 当各类眼科病人构成的排队系统的服务强度相同时, 总的系统服务效率达到最佳.

五类眼科病人排队系统的参数分别记为: 眼科患者平均到达率为λi, 单个病床的平均服务率为μi, 病床数为mi, i = 1, 2, 3, 4, 5. 则有

5λi系统的服务强度: ρi=, 总床位数: m=∑mi; 各系统服务强度相等时 iii=1

λmi=i=iiλiμi−1∑λμj

j=15⋅m. −1j

其中λi 和μi(i=1,2,3,4,5)可以由统计数据得到. 按上述比例得到的各类病人床位比例即为最佳比例. 实际操作时, 急诊病人床位数可以根据需要作变动.

3 结束语

本文提出了一种自适应排队模型, 设计了排队算法, 并通过实例验证了该方法的有效性和可行性. 在有限的资源配置下, 利用上述排队模型理论和处理方法, 结合患者的服务记录获得相关数据, 对其作出定性和定量的评价. 通过对系统进行设计, 找出患者与医院之间的平衡点, 以提高医院现有病床资源的利用效率; 系统改进后, 不仅可提升医院的服务质量和服务水平, 改善医患关系, 而且, 还能降低患者的损失, 最大程度地获得经济效益和社会效益, 实现互利和双赢的目的.

参考文献

[1] 吴小青. 医院病床利用与需求分析[J]. 中国医院统计, 1996, 3(2): 93

[2] 寿纪麟. 数学建模——方法与范例[M]. 西安: 西安交通大学出版社, 1993, 160~170

[3] 韩新焕, 朱萌纾, 吴 静. 医院管理系统中排队模型的优化决策分析[J]. 数理医药学杂志, 2008, 21(1): 17~18

[4] 王若瑾, 张慧芳. 应用“归一分析法”分析床位工作效率[J]. 医学信息学, 2008, 21(3): 25~26

[5] 张国通, 杜 刚, 江志斌, 等. 一种动态自适应医院门诊排队模型[J]. 上海交通大学学报, 2007, 41(1): 1546~1550

医院床位安排排队系统研究

作者:

作者单位:

刊名:

英文刊名:

年,卷(期):

被引用次数:程望斌, 周海燕, CHENG Wang-bin, ZHOU Hai-yan程望斌,CHENG Wang-bin(湖南理工学院,信息与通信工程学院,湖南,岳阳,414006), 周海燕,ZHOU Hai-yan(岳阳职业技术学院,临床医学系,湖南,岳阳,414000)湖南理工学院学报(自然科学版)JOURNAL OF HUNAN INSTITUTE OF SCIENCE AND TECHNOLOGY(NATURAL SCIENCES)2010,23(1)0次

参考文献(5条)

1.吴小青 医院病床利用与需求分析 1996(2)

2.寿纪麟 数学建模--方法与范例 1993

3.韩新焕.朱萌纾.吴静 医院管理系统中排队模型的优化决策分析 2008(1)

4.王若瑾.张慧芳 应用

5.张国通.杜刚.江志斌 一种动态自适应医院门诊排队模型 2007(1)

相似文献(7条)

1.期刊论文 贵凤娟.王明君.杨琳.GUI Feng-juan.WANG Ming-jun.YANG Lin 多排队多服务台的服务系统病床安排优化研究 -计算机与现代化2010,

采用运筹学排队论原理对某眼科医院门诊病人的排队系统进行研究,本文提出各种眼科疾病病床设置的最佳值,并与医院现在的住院安排做时比,为医院的管理提供改进建议和科学的理论依据.该方法可以应用于其他疾病的病床安排.将该论理论应用于医院的病床安排是科学、有效的方法.

2.期刊论文 贵凤娟.闫爱芳.田真真.GUI Feng-juan.YAN Ai-fang.TIAN Zhen-zhen 基于优先级的排队系统改进病床安排 -电脑知识与技术2010,6(12)

该文主要采用运筹学的排队论原理以及统计学,考虑医院手术的特殊安排,将患有不同眼科疾病的病人按不同优先级安排入院,得到系统运营指标,对病床安排模型改进前后进行评价,为医院的管理提供了改进建议和科学有力的理论依据,可以应用于其他疾病的病床安排工作.

3.期刊论文 顿毅杰.马明 医院病床安排的数学模型及算法分析 -中国新技术新产品2010,

医院病床的合理安排是病人和医院共同关注的问题.理论上这一问题有排队论和规划论的特点.考虑到病人、病床和手术之间的流程关系,确定出使用平均等待时间、平均住院时间、平均逗留时间、平均等待队长和住院率来作为评价指标,这些指标可以充分反映医院病床安排的优劣.

4.期刊论文 潘淑平.黄炎.许冰冰.程建业.方圆.PAN Shu-ping.HUANG Yan.XU Bing-bing.CHENG Jian-ye.FANG Yuan 眼科病床的合理安排 -吉林化工学院学报2010,27(2)

对医院FCFS(First come,First serve)住院规则下的M/M/S/∞模型进行了研究.提取病床使用情况的相关指标,利用TOPSIS法确立合理的评价指标体系.将病床安排转化为平行机排序问题,结合SPT算法,建立新的病床安排模型.建立动态平衡排队模型,给出病人门诊后的大致入院时间区间.运用优化理论建立使病人在医院停留时间最短的病床比例分配模型.

5.期刊论文 汪琴.岑璐局.张渊娴.马新生.WANG Qin.CEN Luju.ZHANG Yuanxian.MA Xinsheng 基于排队论的眼科病床合理安排的数学模型 -浙江教育学院学报2010,

以排队论理论为基础,建立了医院眼科病人排队系统的数学模型.首先,建立了对医院病床安排系统进行综合评价的指标体系,并对现有FCFS规则和改进规则进行了评价;然后,建立了区间估计模型,使得病人在门诊时就被告知大致入住时间.最后,建立了多指标床位分配模型,得出了床位的最佳设置值.

6.期刊论文 马霄.朱留铭.魏婧.郭麟 基于排队论的病床安排模型的研究 -福建电脑2010,26(1)

通过建立基于排队论的病床安排模型,得到系统运营指标如各类病人的平均队长及平均逗留时间,对病床安排模型进行评价.进而根据所有病人的住院时间长短的规律,将病床分为短期、中期、长期三类,构造优化病床分配模型,提高了病床利用率,并用实例进行验证.

7.期刊论文 赵营峰 医院眼科病床合理安排的优化模型 -科教导刊2010,

本文考虑了医院病床的使用情况和病人看病心理的实际情况,分析影响医院病床安排和病人心理承受的因素,并根据题目要求提出最优化模型.建立一个合理分配病人、安排床位,同时保证医院病库使用率,周转率的全局优化模型.

本文链接:http://d.g.wanfangdata.com.cn/Periodical_yysfxyxb201001007.aspx

授权使用:洛阳工学院(河南科技大学)(wflskd),授权号:e3485926-aefa-47d2-8838-9ddc00bad655

下载时间:2010年8月24日


相关文章

  • 数学模型之眼科病床的合理安排
  • [摘要]为解决某医院眼科病床按照FCFS安排时存在队列越来越长的问题,提出了一种基于FCFS和优先权服务的局部插队算法.该算法建立了以急症病人享有优先权服务,并且首先将在同一天到达的非急症病人按白内障(单眼).白内障(双眼).青光眼.视网膜 ...查看


  • 眼科病床的合理安排
  • Vol.25No.1Mar.2011JOURNALOFNANTONGVOCATIONALCOLLEGE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 南通职业大学学报 ...查看


  • 论文3:眼科病床的合理安排
  • 眼科病床的合理安排 摘要 某医院眼科门诊每天开放,对眼疾病患者进行诊断并实施住院安排,安排方案的合理性对医院和病人的利益都会产生影响,因此我们针对病床的安排问题建立了相关数学模型,并进行了分析和讨论. 对于问题一,要实现合理的住院安排,需要 ...查看


  • 医院床位问题
  • 眼科病床的合理安排 摘要 本文主要是考虑如何对医院病床进行合理性安排. 对于问题一,制定出三个指标作为合理性评价的指标体系:病人平均等待入院天数.平均等待手术天数和平均排队长度.并对选取这三个指标作为评价体系的合理性做出解释.在此基础上,从 ...查看


  • 河北省眼科医院概况及其历史沿革
  • 据<邢台卫生志>记载,1886年(清?光绪12年),在顺德府(现河北省邢台市)进行传教活动的法国籍传教士包儒略(JulesBruguière)在顺德府北长街北头路东建起了五间经堂.同时,利用他们掌握的眼科技术,为当地老百姓治疗一 ...查看


  • 医院制度牌
  • 外科医师职责 (一).在科主任领导和上级医师的指导下,分管病床,具体负责病员的诊断.治疗和抢救工作,执行24小时负责制. (二).及时完成检诊.查房.抢救.手术.病历书写和出院准备工作,参加值班.门诊.会诊和出诊工作. (三).遇重危.疑难 ...查看


  • 医院功能任务
  • 第一章 医院功能任务 第一节 医院设置.功能和任务符合区域卫生规划和医疗机构设置规划的定位和要求. 1.1.1 医院的功能.任务和定位明确,保持适度规模. 资料目录 1.执业许可证(执业三年以上) 2.****人民医院人员编制情况说明 3. ...查看


  • 中国最佳医院排名
  • 全国最佳医院排名 神经外科 肿瘤科 眼科 心血管病专科 耳鼻喉科 骨科 神经内科 妇产科 烧伤科 皮肤科 口腔医院 消化内科 呼吸内科 内分泌科 儿科 泌尿外科 排名标准: 1. 评比原测:以某一专科领域为基础 2. 科室级别.床位数 3. ...查看


  • 麻醉学硕士专业学位研究生培养方案1
  • 麻醉学硕士专业学位研究生培养方案 一.培养目标 通过全面.正规.严格的培训,培养坚持四项基本原则,热爱祖国,热爱集体,品德端正,有良好医德医风并具有丰富临床经验.有独立和创造性的科研能力.较强教学能力的高级临床专业人才.具体要求如下: 1. ...查看


热门内容