实验四 选区电子衍射与晶体取向分析

实验四 选区电子衍射与晶体取向分析

一、实验内容及实验目的

1.通过选区电子衍射的实际操作演示,加深对选区电子衍射原理的了解。

2.选择合适的薄晶体样品,利用双倾台进行样品取向的调整,使学生掌握利用电子衍射花样测定晶体取向的基本方法。

二、选区电子衍射的原理和操作

1.选区电子衍射的原理

简单地说,选区电子衍射借助设置在物镜像平面的选区光栏,可以对产生衍射的样品区域进行选择,并对选区范围的大小加以限制,从而实现形貌观察和电子衍射的微观对应。选区电子衍射的基本原理见图4-1。选区光栏用于挡住光栏孔以外的电子束,只允许光栏孔以内视场所对应的样品微区的成像电子束通过。使得在荧光屏上观察到的电子衍射花样,它仅来自于选区范围内晶体的贡献。实际上,选区形貌观察和电子衍射花样不能完全对应,也就是说选区衍射存在一定误差,所选区域以外样品晶体对衍射花样也有贡献。选区范围不宜太小,否则将带来太大的误差。对于100kV 的透射电镜,最小的选区衍射范围约0.5μm;加速电压为1000kV 时,最小的选区范围可达0.1μm。

图-1 选区电子衍射原理示意图

1-物镜 2-背焦面 3-选区光栏 4-中间镜 5-中间镜像平面 6-物镜像平面

2.选区衍射电子的操作

为了确保得到的衍射花样来自所选的区域,应当遵循如下操作步骤:

(1) 在成像的操作方式下,使物镜精确聚焦,获得清晰的形貌像。

(2) 插人并选用尺寸合适的选区光栏围住被选择的视场。

(3) 减小中间镜电流,使其物平面与物镜背焦面重合,转入衍射操作方式。近代的电镜此步操作可按“衍射”按钮自动完成。

(4) 移出物镜光栏,在荧光屏显示电子衍射花样可供观察。

(5) 需要拍照记录时,可适当减小第二聚光镜电流,获得更趋近平行的电子束,使衍射斑点尺寸变小。

三、选区电子衍射的应用

单晶电子衍射花样可以直观地反映晶体二维倒易平面上阵点的排列,而且选区衍射和形貌观察在微区上具有对应性,因此选区电子衍射一般有以下几个方面的应用。

(1) 根据电子衍射花样斑点分布的几何特征,可以确定衍射物质的晶体结构;再利用电子衍射基本公式Rd =Lλ,可以进行物相鉴定。

(2) 确定晶体相对于入射束的取向。

(3) 在某些情况下,利用两相的电子衍射花样可以直接确定两相的取向关系。

(4) 利用选区电子衍射花样提供的晶体学信息,并与选区形貌像对照,可以进行第二相和晶体缺陷的有关晶体学分析,如测定第二相在基体中的生长惯习面、位错的布氏矢量等。

以下仅介绍其中两个方面的应用。

1.特征平面的取向分析

特征平面是指片状第二相、惯习面、层错面、滑移面、孪晶面等平面。特征平面的取向分析(即测定特征平面的指数) 是透射电镜分析工作中经常遇到的一项工作。利用透射电镜测定特征平面的指数,其根据是选区衍射花样与选区内组织形貌的微区对应性。这里特介绍一种最基本、较简便的方法。该方法的基本要点为,使用双倾台或旋转台倾转样品,使特征平面平行于入射束方向,在此位向下获得的衍射花样中将出现该特征平面的衍射斑点。把这个位向下拍照的形貌像和相应的选区衍射花样对照,经磁转角校正后,即可确定特征平面的指数。其具体操作步骤如下:

(1) 利用双倾台倾转样品,使特征平面处于与入射束平行的方向。

(2) 拍照包含有特征平面的形貌像,以及该视场的选区电子衍射花样。

(3) 标定选区电子衍射花样,经磁转角校正后,将特征平面在形貌像中的迹线画在衍射花样中。

(4) 由透射斑点作迹线的垂线,该垂线所通过的衍射斑点的指数,即为特征平面的指数。 镍基合金中的片状δ-Ni 3Nb 相常沿着基体(面心立方结构) 的某些特定平面生长。当片状δ相表面相对入射束倾斜一定角度时,在形貌像中片状相的投影宽度较大(见图4-2a) ;如果倾斜样品使片状相表面逐渐趋近平行于入射束,其在形貌像中的投影宽度将不断减小;当入射束方向与片状相表面平行时,片状相在形貌像中显示最小的宽度(图4-2b) 。图4-2c 是入射电子束与片状δ相表面平行时,拍照的基体衍射花样。由图4-2c 所示的衍射花样的标定结

果,可以确定片状δ相的生长惯习面为基体的(111)面,通常习惯用基体的晶面表示第二相的惯习面。

图4-2 镍基合金中片状δ相的分布形态及选区衍射花样

a) δ相在基体中的分布形态 b) δ相表面平行入射束时的形态

c) 基体[110]晶带衍射花样

图4-3是镍基合金基体中孪晶的形貌像及相应的选区衍射花样。图4-3中的形貌像和衍射花样是在孪晶面处于平行入射束的位向下拍照的。将孪晶的形貌像与选区衍射花样相对照,很容易确定孪晶面为(111)。

图4-4a 是镍基合金基体和γ″相的电子衍射花样,图4-4b 是γ″相(002)衍射成的暗场像。由图可见,暗场像可以清晰地显示析出相的形貌及其在基体中的分布,用暗场像显示析出相的形态是一种常用的技术。对照图4-4所示的暗场形貌像和选区衍射花样,不难得出析出相γ″相的生长惯习面为基体的(100)面。在有些情况下,利用两相合成的电子衍射花样的标定结果,可以直接确定两相间的取向关系。具体的分析方法是,在衍射花样中找出两相平行的倒易矢量,即两相的这两个衍射斑点的连线通过透射斑点,其所对应的晶面互相平行,由此可获得两相间一对晶面的平行关系;另外,由两相衍射花样的晶带轴方向互相平行,可以得到两相间一对晶向的平行关系。由图4-4a 给出的两相合成电子衍射花样的标定结果,可确定两相的取向关系:(200)M // (002)γ″,[011]M // [10]γ″。

图4-3 镍基合金中孪晶的形貌像及选区衍射花样

a) 孪晶的形貌像 b) [10]M 、[01]T 晶带衍射花样

图4-4 镍基合金中γ″相在基体中的分布及选区电子衍射花样

a) 基体[011]M 和γ″相[10]γ″晶带衍射花样 b) γ″相的暗场像

2.利用选区电子衍射花样测定晶体取向

在透射电镜分析工作中,把入射电子束的反方向-B 作为晶体相对于入射束的取向,简称晶体取向,常用符号B 表示。在一般取向情况下,选区衍射花样的晶带轴就是此时的晶体取向。在入射束垂直于样品薄膜表面时,这种特殊情况下的晶体取向又称其为膜面法线方向。膜面法线方向是衍射衍衬分析中常用的数据,晶体取向分析中较经常遇到的就是测定膜面法线方向。测定薄晶体膜面法线方向通常采用三菊池极法,其优点是分析精度较高。但是,这种方法在具体应用时往往存在一些困难,一是由于膜面取向的影响,有时不能获得同时存在三个菊池极的衍射图;二是因为分析区域样品的厚度不合适,菊池线不够清晰甚至不出现菊池线。即便可以获得清晰的三菊池极衍射图,分析时还需标定三对菊池线的指数,而且三个菊池极的晶带轴指数一般也比较高,因此分析过程繁琐且计算也比较麻烦。

本实验将根据三菊池极法测定膜面法线方向的原理,给出一个比较简便适用的方法。具体的分析过程为,利用双倾台倾转样品,将样品依次转至膜面法线方向附近的三个低指数晶带Z i = [ui v i w i ],记录双倾台两个倾转轴的转角读数(αi ,βi ) 。根据两晶向间夹角公式,膜面法线方向B =[uvw]与三个晶带轴方向Z i 间的夹角(Φi ) 余弦为:

(i = 1, 2, 3) (4-1)

式4-1中,Z i 和B 是各自矢量的长度。为计算方便,不妨可假定B 是这个方向上的单位矢量,所以有B =1。将式4 -l 中的三个矩阵式合并,再经过处理可得到计算膜面法线方向指数的公式如下:

(4-2)

对于双倾台操作,cosΦi = cosαi cosβi ;式中的矩阵[G]和[G]-1是正倒点阵指数变换矩阵,在表4-1中列出了四个晶系的[G]和[G]-1的具体表达式。

表4-1 四个晶系的变换矩阵[G]和[G]-1

下面举一个实例来进一步说明这一实验方法的具体应用过程。样品为面心立方晶体薄膜,在透射电镜中利用双倾台倾转样品,将其取向依次调整至[101]、[112]和[001],这三个晶带的选区衍射花样见图4-5。样品调整至每一取向时,双倾台转角的读数分别为:

(18.5˚, -2.0˚)、 (-3.0˚,18.6˚)、 (-25.0˚, -10.5˚)

于是有

将其与 cosΦ1 = cos18.5˚ cos(-2˚)

cosΦ2 = cos(-3.0˚)cos18.6˚

cosΦ3 = cos(-25.0˚)cos(-10.5˚)

及、、,一并代入式(5-2)经计算得,

这是个单位矢量,其矢量长度为1.0017,误差小于千分之二。实际上我们关心的仅仅是膜面的法线方向,并不是其大小,习惯上用这个方向上指数[uvw]均为最小整数的矢量。因此可将求出的单位矢量指数同乘以一个系数,变为最小的整数。通过这样的处理,可得到膜面法线方向的指数为[u v w] ≈ [5 1 10],更接近准确的结果是[62 12 123],二者仅相差0.004˚。因此把[5 1 10]作为膜面法线方向精度已经足够。

图4-5 面心立方晶体的选区电子衍射花样

a) [101] b) [112] c) [001]

四、实验报告要求

1. 绘图说明选区电子衍射的基本原理 2. 举例说明利用选区衍射进行取向分析的方法及其应用

实验四 选区电子衍射与晶体取向分析

一、实验内容及实验目的

1.通过选区电子衍射的实际操作演示,加深对选区电子衍射原理的了解。

2.选择合适的薄晶体样品,利用双倾台进行样品取向的调整,使学生掌握利用电子衍射花样测定晶体取向的基本方法。

二、选区电子衍射的原理和操作

1.选区电子衍射的原理

简单地说,选区电子衍射借助设置在物镜像平面的选区光栏,可以对产生衍射的样品区域进行选择,并对选区范围的大小加以限制,从而实现形貌观察和电子衍射的微观对应。选区电子衍射的基本原理见图4-1。选区光栏用于挡住光栏孔以外的电子束,只允许光栏孔以内视场所对应的样品微区的成像电子束通过。使得在荧光屏上观察到的电子衍射花样,它仅来自于选区范围内晶体的贡献。实际上,选区形貌观察和电子衍射花样不能完全对应,也就是说选区衍射存在一定误差,所选区域以外样品晶体对衍射花样也有贡献。选区范围不宜太小,否则将带来太大的误差。对于100kV 的透射电镜,最小的选区衍射范围约0.5μm;加速电压为1000kV 时,最小的选区范围可达0.1μm。

图-1 选区电子衍射原理示意图

1-物镜 2-背焦面 3-选区光栏 4-中间镜 5-中间镜像平面 6-物镜像平面

2.选区衍射电子的操作

为了确保得到的衍射花样来自所选的区域,应当遵循如下操作步骤:

(1) 在成像的操作方式下,使物镜精确聚焦,获得清晰的形貌像。

(2) 插人并选用尺寸合适的选区光栏围住被选择的视场。

(3) 减小中间镜电流,使其物平面与物镜背焦面重合,转入衍射操作方式。近代的电镜此步操作可按“衍射”按钮自动完成。

(4) 移出物镜光栏,在荧光屏显示电子衍射花样可供观察。

(5) 需要拍照记录时,可适当减小第二聚光镜电流,获得更趋近平行的电子束,使衍射斑点尺寸变小。

三、选区电子衍射的应用

单晶电子衍射花样可以直观地反映晶体二维倒易平面上阵点的排列,而且选区衍射和形貌观察在微区上具有对应性,因此选区电子衍射一般有以下几个方面的应用。

(1) 根据电子衍射花样斑点分布的几何特征,可以确定衍射物质的晶体结构;再利用电子衍射基本公式Rd =Lλ,可以进行物相鉴定。

(2) 确定晶体相对于入射束的取向。

(3) 在某些情况下,利用两相的电子衍射花样可以直接确定两相的取向关系。

(4) 利用选区电子衍射花样提供的晶体学信息,并与选区形貌像对照,可以进行第二相和晶体缺陷的有关晶体学分析,如测定第二相在基体中的生长惯习面、位错的布氏矢量等。

以下仅介绍其中两个方面的应用。

1.特征平面的取向分析

特征平面是指片状第二相、惯习面、层错面、滑移面、孪晶面等平面。特征平面的取向分析(即测定特征平面的指数) 是透射电镜分析工作中经常遇到的一项工作。利用透射电镜测定特征平面的指数,其根据是选区衍射花样与选区内组织形貌的微区对应性。这里特介绍一种最基本、较简便的方法。该方法的基本要点为,使用双倾台或旋转台倾转样品,使特征平面平行于入射束方向,在此位向下获得的衍射花样中将出现该特征平面的衍射斑点。把这个位向下拍照的形貌像和相应的选区衍射花样对照,经磁转角校正后,即可确定特征平面的指数。其具体操作步骤如下:

(1) 利用双倾台倾转样品,使特征平面处于与入射束平行的方向。

(2) 拍照包含有特征平面的形貌像,以及该视场的选区电子衍射花样。

(3) 标定选区电子衍射花样,经磁转角校正后,将特征平面在形貌像中的迹线画在衍射花样中。

(4) 由透射斑点作迹线的垂线,该垂线所通过的衍射斑点的指数,即为特征平面的指数。 镍基合金中的片状δ-Ni 3Nb 相常沿着基体(面心立方结构) 的某些特定平面生长。当片状δ相表面相对入射束倾斜一定角度时,在形貌像中片状相的投影宽度较大(见图4-2a) ;如果倾斜样品使片状相表面逐渐趋近平行于入射束,其在形貌像中的投影宽度将不断减小;当入射束方向与片状相表面平行时,片状相在形貌像中显示最小的宽度(图4-2b) 。图4-2c 是入射电子束与片状δ相表面平行时,拍照的基体衍射花样。由图4-2c 所示的衍射花样的标定结

果,可以确定片状δ相的生长惯习面为基体的(111)面,通常习惯用基体的晶面表示第二相的惯习面。

图4-2 镍基合金中片状δ相的分布形态及选区衍射花样

a) δ相在基体中的分布形态 b) δ相表面平行入射束时的形态

c) 基体[110]晶带衍射花样

图4-3是镍基合金基体中孪晶的形貌像及相应的选区衍射花样。图4-3中的形貌像和衍射花样是在孪晶面处于平行入射束的位向下拍照的。将孪晶的形貌像与选区衍射花样相对照,很容易确定孪晶面为(111)。

图4-4a 是镍基合金基体和γ″相的电子衍射花样,图4-4b 是γ″相(002)衍射成的暗场像。由图可见,暗场像可以清晰地显示析出相的形貌及其在基体中的分布,用暗场像显示析出相的形态是一种常用的技术。对照图4-4所示的暗场形貌像和选区衍射花样,不难得出析出相γ″相的生长惯习面为基体的(100)面。在有些情况下,利用两相合成的电子衍射花样的标定结果,可以直接确定两相间的取向关系。具体的分析方法是,在衍射花样中找出两相平行的倒易矢量,即两相的这两个衍射斑点的连线通过透射斑点,其所对应的晶面互相平行,由此可获得两相间一对晶面的平行关系;另外,由两相衍射花样的晶带轴方向互相平行,可以得到两相间一对晶向的平行关系。由图4-4a 给出的两相合成电子衍射花样的标定结果,可确定两相的取向关系:(200)M // (002)γ″,[011]M // [10]γ″。

图4-3 镍基合金中孪晶的形貌像及选区衍射花样

a) 孪晶的形貌像 b) [10]M 、[01]T 晶带衍射花样

图4-4 镍基合金中γ″相在基体中的分布及选区电子衍射花样

a) 基体[011]M 和γ″相[10]γ″晶带衍射花样 b) γ″相的暗场像

2.利用选区电子衍射花样测定晶体取向

在透射电镜分析工作中,把入射电子束的反方向-B 作为晶体相对于入射束的取向,简称晶体取向,常用符号B 表示。在一般取向情况下,选区衍射花样的晶带轴就是此时的晶体取向。在入射束垂直于样品薄膜表面时,这种特殊情况下的晶体取向又称其为膜面法线方向。膜面法线方向是衍射衍衬分析中常用的数据,晶体取向分析中较经常遇到的就是测定膜面法线方向。测定薄晶体膜面法线方向通常采用三菊池极法,其优点是分析精度较高。但是,这种方法在具体应用时往往存在一些困难,一是由于膜面取向的影响,有时不能获得同时存在三个菊池极的衍射图;二是因为分析区域样品的厚度不合适,菊池线不够清晰甚至不出现菊池线。即便可以获得清晰的三菊池极衍射图,分析时还需标定三对菊池线的指数,而且三个菊池极的晶带轴指数一般也比较高,因此分析过程繁琐且计算也比较麻烦。

本实验将根据三菊池极法测定膜面法线方向的原理,给出一个比较简便适用的方法。具体的分析过程为,利用双倾台倾转样品,将样品依次转至膜面法线方向附近的三个低指数晶带Z i = [ui v i w i ],记录双倾台两个倾转轴的转角读数(αi ,βi ) 。根据两晶向间夹角公式,膜面法线方向B =[uvw]与三个晶带轴方向Z i 间的夹角(Φi ) 余弦为:

(i = 1, 2, 3) (4-1)

式4-1中,Z i 和B 是各自矢量的长度。为计算方便,不妨可假定B 是这个方向上的单位矢量,所以有B =1。将式4 -l 中的三个矩阵式合并,再经过处理可得到计算膜面法线方向指数的公式如下:

(4-2)

对于双倾台操作,cosΦi = cosαi cosβi ;式中的矩阵[G]和[G]-1是正倒点阵指数变换矩阵,在表4-1中列出了四个晶系的[G]和[G]-1的具体表达式。

表4-1 四个晶系的变换矩阵[G]和[G]-1

下面举一个实例来进一步说明这一实验方法的具体应用过程。样品为面心立方晶体薄膜,在透射电镜中利用双倾台倾转样品,将其取向依次调整至[101]、[112]和[001],这三个晶带的选区衍射花样见图4-5。样品调整至每一取向时,双倾台转角的读数分别为:

(18.5˚, -2.0˚)、 (-3.0˚,18.6˚)、 (-25.0˚, -10.5˚)

于是有

将其与 cosΦ1 = cos18.5˚ cos(-2˚)

cosΦ2 = cos(-3.0˚)cos18.6˚

cosΦ3 = cos(-25.0˚)cos(-10.5˚)

及、、,一并代入式(5-2)经计算得,

这是个单位矢量,其矢量长度为1.0017,误差小于千分之二。实际上我们关心的仅仅是膜面的法线方向,并不是其大小,习惯上用这个方向上指数[uvw]均为最小整数的矢量。因此可将求出的单位矢量指数同乘以一个系数,变为最小的整数。通过这样的处理,可得到膜面法线方向的指数为[u v w] ≈ [5 1 10],更接近准确的结果是[62 12 123],二者仅相差0.004˚。因此把[5 1 10]作为膜面法线方向精度已经足够。

图4-5 面心立方晶体的选区电子衍射花样

a) [101] b) [112] c) [001]

四、实验报告要求

1. 绘图说明选区电子衍射的基本原理 2. 举例说明利用选区衍射进行取向分析的方法及其应用


相关文章

  • 电子衍射谱的形成原理与标定方法
  • <高分辨电子显微学>读书报告 题 目:电子衍射谱的形成原理与标定方法 学 院: 专 业:姓 名: 学 号: 简单电子衍射花样的形成与标定方法 现代科学技术的迅速发展,要求材料科学工作者能够及时提供具有良好力学性能的结构材料及具有 ...查看


  • 材料分析化学
  • A 一. 名词解释(共20分,每小题2分.) 1. 辐射的发射 2.俄歇电子 3.背散射电子 4.溅射 5.物相鉴定 6.电子透镜7. 质厚衬度 8.蓝移 9. 伸缩振动 10.差热分析 二.填空题(共20分,每小题2分.) 1. 2. 电 ...查看


  • 材料分析测试技术思考题及答案
  • 第一章 X射线的性质 1.X射线的本质――电磁波.高能粒子.物质 2.X射线谱――管电压.电流对谱的影响.短波限的意义等 连续谱短波限只与管电压有关,当固定管电压,增加管电流或改变靶时短波限不变.随管电压增高,连续谱各波长的强度都相应增高, ...查看


  • 现代材料分析方法期末考试要点总结
  • 1.X射线与物质的相互作用?光电效应?莫塞莱定律? 作用:(1)宏观效应----X射线强度衰减 (2)微观机制----X射线被散射,吸收.1散射---相干散射,康谱顿散射2吸收---产生光电子,二次荧光,俄歇电子 光电效应:原子中的电子处在 ...查看


  • 材料近代分析测试方法课程教学大纲
  • 材料近代分析测试方法课程教学大纲 课程名称:材料近代分析分析测试方法课程编号:02100060 英文名称:Methods of Analysis and Measurement for Materials 学时:64学时 学分:4学分 开课 ...查看


  • 晶体与非晶体的区别
  • JISHOU UNIVERSITY <固体物理>期末 考核报告 晶体与非晶体的区别 摘要:自然界中的固体物质可以分为晶体和非晶体两大类.其中,晶体是指那些内部质点(原子.离子或分子)在三维空间周期性地重复排列构成的固体物质. 与 ...查看


  • 材料微观分析总结
  • 作业 1.电子波有何特征?与可见光有何异同? 答: ·电子波特征:电子波属于物质波.电子波的波长取决于电子运动的速度和质量,λ=h 若 mv 电子速度较低,则它的质量和静止质量相似:若电子速度具有极高,则必须经过相对论校正. ·电子波和光波 ...查看


  • 翻译的文献
  • 用水热法ZnO–SnO2空心球与层状纳米片及其生长机理与光催化性能 Wei-Wei Wang, Ying-Jie Zhu,* and Li-Xia Yang 摘要 我们以含ZnO棒,SnCl4与NaOH的水溶液,通过水热法成功合成了ZnO– ...查看


  • x射线衍射仪原理
  • x 射线衍射仪原理及应用 课程名称 材料分析测试技术 系 别 金属材料工程系 专 业 金属材料工程 班 级 材料**** 姓 名 ______ * *_ 学 号 ******** 化学工程与现代材料学院 制 x 射线衍射仪原理及应用 基本原 ...查看


热门内容