图像识别技术研究综述

图像识别技术研究综述

徐彩云

(武汉生物工程学院计算机信息工程系,湖北武汉430415)

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分

析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识

别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391文献标识码:A 文章编号:1009-3044(2013)10-2446-02

Review of Research on Image Recognition Technology

(Department of Computer and Information Engineering ,Wuhan Institute of Bioengineering, Wuhan 430068,China )

Abstract:With the rapid development of image processing technology, image recognition technology is finding wider and wider ap⁃plication fields. Image recognition is the use of computer image processing, analysis and understanding, because of the image when the image is affected by the external environment, and makes the image has the particularity and complexity. This paper further dis⁃cusses image recognition technology based on image processing technology and application prospects. Key words:image processing; image recognition; image XU Cai-yun

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的

[1]视觉效果并为后期的图像识别大基础。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对

像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1图像处理技术

图像处理(imageprocessing) 利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

收稿日期:2013-03-05

基金项目:湖北省教育厅科学技术研究项目(B20129005)

作者简介:徐彩云(1978-),女,内蒙古乌兰察布盟人,硕士研究生,主要研究方向为数据库技术,图像处理技术。

2446人工智能及识别技术本栏目责任编辑:唐一东

第9卷第10期(2013年04月) Computer Knowledge and Technology 电脑知识与技术

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG ,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

2.1指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

2.2人脸识别

目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外

[4]线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能。

2.3文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神

[5]经网络。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1][2][3][4][5][6]胡爱明, 周孝宽. 车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.胡学龙. 数字图像处理[M].北京:电子工业出版社,2011. 范立南, 韩晓微, 张广渊. 图像处理与模式识别[M].北京:科学出版社,2007. 晓慧,刘志镜. 基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.陈良育, 曾振柄, 张问银. 基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.Sanderson C,Paliwal K K.Information Fusion and Person Verification Using Speech &Face Information[C].IDIAP-RR02-33,Mar⁃tigny,Swizerland,2002. 本栏目责任编辑:唐一东人工智能及识别技术2447

图像识别技术研究综述

徐彩云

(武汉生物工程学院计算机信息工程系,湖北武汉430415)

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分

析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识

别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391文献标识码:A 文章编号:1009-3044(2013)10-2446-02

Review of Research on Image Recognition Technology

(Department of Computer and Information Engineering ,Wuhan Institute of Bioengineering, Wuhan 430068,China )

Abstract:With the rapid development of image processing technology, image recognition technology is finding wider and wider ap⁃plication fields. Image recognition is the use of computer image processing, analysis and understanding, because of the image when the image is affected by the external environment, and makes the image has the particularity and complexity. This paper further dis⁃cusses image recognition technology based on image processing technology and application prospects. Key words:image processing; image recognition; image XU Cai-yun

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的

[1]视觉效果并为后期的图像识别大基础。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对

像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1图像处理技术

图像处理(imageprocessing) 利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

收稿日期:2013-03-05

基金项目:湖北省教育厅科学技术研究项目(B20129005)

作者简介:徐彩云(1978-),女,内蒙古乌兰察布盟人,硕士研究生,主要研究方向为数据库技术,图像处理技术。

2446人工智能及识别技术本栏目责任编辑:唐一东

第9卷第10期(2013年04月) Computer Knowledge and Technology 电脑知识与技术

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG ,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

2.1指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

2.2人脸识别

目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外

[4]线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能。

2.3文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神

[5]经网络。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1][2][3][4][5][6]胡爱明, 周孝宽. 车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.胡学龙. 数字图像处理[M].北京:电子工业出版社,2011. 范立南, 韩晓微, 张广渊. 图像处理与模式识别[M].北京:科学出版社,2007. 晓慧,刘志镜. 基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.陈良育, 曾振柄, 张问银. 基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.Sanderson C,Paliwal K K.Information Fusion and Person Verification Using Speech &Face Information[C].IDIAP-RR02-33,Mar⁃tigny,Swizerland,2002. 本栏目责任编辑:唐一东人工智能及识别技术2447


相关文章

  • 人脸识别研究综述_肖冰
  • 2005年第8期肖 冰等:人脸识别研究综述 1 人脸识别研究综述 肖 冰, 王映辉 * (陕西师范大学计算机科学学院, 陕西西安710062) 摘 要:人脸识别是一种重要的身份鉴别技术, 具有广泛的应用前景.给出了人脸识别发展历程中的技术特 ...查看


  • 数字图像处理文献综述
  • 数字图像处理技术综述 摘 要:随着计算机的普及,数字图像处理技术也获得了迅速发展,逐渐走进社会生产生活的各个方面.本文是对数字图像处理技术的一个总体概述,包括其内涵.优势.主要方法及应用,最后对其发展做了简单的总结. 关键词:数字图像.图像 ...查看


  • 图像分割算法的研究综述_徐彩云
  • 图像分割算法的研究综述 徐彩云 (武汉生物工程学院计算机信息工程系,湖北武汉430415) 摘要:随着计算机网络技术和数字图像处理技术的迅速发展,图像识别技术也被成功地应用于许多领域.而图像识别的前提条件是图像分割技术,整个数字图像处理过程 ...查看


  • 机器视觉文献综述
  • 一.机器视觉与图像采集的研究的意义 "作为一项关键性的自动化技术,机器视觉在发展中国家中对经济的现代化非常重要.为了在世界市场中进行竞争,发展中经济不能无限期的依赖于廉价劳动力." AIA市场分析员Kellett 说.同 ...查看


  • 运动目标跟踪算法研究综述
  • 第26卷第12期2009年12月 计算机应用研究 ApplicationResearchofComputersVol126No112Dec12009 运动目标跟踪算法研究综述 张 娟,毛晓波,陈铁军 (郑州大学电气工程学院,郑州450001 ...查看


  • 码垛机器人技术进展及方案设计
  • 研 究 生 课 程 论 文 封 面 课程名称: 机器人技术及应用 论文题目: 码垛机器人研究进展及方案设计 学生姓名: 任课教师: 注:此表为每个学生的论文封面,请任课教师填写分项分值 摘要:本文先综述了码垛机器人的发展现状和关键技术,在此 ...查看


  • 数字信号处理技术综述
  • 数字信号处理综述 摘要: 数字信号处理在许多领域都有广泛的应用,本文主要阐述了基本的数字信号处理技术(傅立叶变换.小波变换,时频分析的基本方法),分析了各自在信号处理中的优缺点,以及周期平稳性是信号进行频谱相关性分析的基本依据.最后介绍了数 ...查看


  • 国外星载合成孔径雷达发展综述
  • 国外星载合成孔径雷达发展综述 孙佳 (中国人民解放军61646部队,北京100080) 摘要合成孔径雷达(SAR)卫星能克服云雾雨雪和夜暗条件的限制对地面目标成像,可全天 时.全天候.高分辨率.大幅面对地观测,这对于观测长年受云覆盖的地区尤 ...查看


  • 安防机器人综述
  • 安防机器人综述 学生:江国来 摘要:本文在介绍安防机器人的背景.市场与研究现状的基础上,探讨了安防机器人的关键技术,最后,对安防机器人的发展方向进行了展望. 一.安防机器人的研究背景 1.1 什么是安防机器人 服务机器人是一种半自主或者全自 ...查看


热门内容