九年级数学二次根式全章教案人教版

第二十一章 二次根式(全章教案)

教材内容

1.本单元教学的主要内容:

二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式. 2.本单元在教材中的地位和作用:

二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础. (约需11课时) 教学目标

1.知识与技能

(1)理解二次根式的概念.

(2

a≥0)是一个非负数,

2=a(a≥0)

(a≥0). (3

a≥0,b≥0)

(a≥0,b>0)

(a≥0,b>0).

(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.

教学重点

1

a≥0

a≥0)是一个非负数;

)=a(a≥0)

(a≥0)

2

•及其运用. 2.二次根式乘除法的规定及其运用. 3.最简二次根式的概念. 4.二次根式的加减运算. 教学难点

1

a≥0

=a(a≥0

(a≥0)的理解及应用.

2

2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式. 教学关键

1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.

2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.

21.1 二次根式

第一课时

教学内容

二次根式的概念及其运用 教学目标

a≥0)的意义解答具体题目. 提出问题,根据问题给出概念,应用概念解决实际问题. 教学重难点关键

1

a≥0)的式子叫做二次根式的概念; 2

a≥0)”解决具体问题. 教学过程

一、复习引入

(学生活动)请同学们独立完成下列三个问题:

问题1:已知反比例函数y=

3

,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________. x

A

问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.

C

问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________. 老师点评:

问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以

,所以所求点的坐标

. 问题2:由勾股定理得

问题3:由方差的概念得

二、探索新知

. ,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们

(a≥0)•的式子叫做二次根式,

号.

(学生活动)议一议:

1.-1有算术平方根吗? 2.0的算术平方根是多少? 3.当a

有意义吗? 例1

1

(x>0)

x

1

(x≥0,y•≥0). x

y

;第二,被开方数是正数或0.

分析

x>0)

x≥0,y≥0)

11、.

xyx

例2.当x

分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,

解:由3x-1≥0,得:x≥ 当x≥

1

3

1

3

三、巩固练习

教材P5练习1、2、3. 四、应用拓展

例3.当x

分析:

1

在实数范围内有意义? x1

11在实数范围内有意义,

0和中的x+1≠0. x1x1

2x30

解:依题意,得

x10

3

由②得:x≠-1 231

当x≥-且x≠-1

在实数范围内有意义.

2x1

由①得:x≥-例4(1)已知

,求

x

的值.(答案:2) y

(2)

,求a2004+b2004的值.(答案:

五、归纳小结(学生活动,老师点评) 本节课要掌握:

1

(a≥0)的式子叫做二次根式,

2

) 5

2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.

第一课时作业设计 一、选择题

1.下列式子中,是二次根式的是( ) A.

B

C

D.x 2.下列式子中,不是二次根式的是( ) A

B

. 3.已知正方形的面积是5,那么它的边长是( ) A.5 B

1 x

1

D.以上皆不对 5

二、填空题

1.形如______的式子叫做二次根式. 2.面积为a的正方形的边长为_____. 3.负数__ __平方根. 三、综合提高题

1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少? 2.当x

2+x在实数范围内有意义? 3.

有意义,

. x

4.

x有( )个. A.0 B.1 C.2 D.无数

5.已知a、b

=b+4,求a、b的值.

21.1 二次根式(2)

第二课时

教学内容

1

a≥0)是一个非负数; 2.

=a(a≥0). 教学目标

a≥0

=a(a≥0),并利用它们进行计算和化简.

a≥0)是一个非负数,用具体数据结合算术

=a(a≥0);最后运用结论严谨解题. 教学重难点关键

1

a≥0)是一个非负数;

=a(a≥0)及其运用.

2

2

2

2

2

a≥0)是一个非负数;•

=a

2

(a≥0). 教学过程

一、复习引入

1.什么叫二次根式? 2.当a≥0

a

二、探究新知 议一议:(学生分组讨论,提问解答)

a≥0)是一个什么数呢?

老师点评:根据学生讨论和上面的练习,我们可以得出

做一做:根据算术平方根的意义填空:

=_______;

=_______;=______

;=_______;

2

2

2

2

222

)=______

;)=_______

;)

=_______.

4是一个平方等于4的非负数,因此

=4.

2

同理可得:)

=2,=9,)=3,

2

2

2

21272

)=,

)=,)=0,所以

32

例1 计算 1.

)2 2.(

2

3.

22 4.

) 分析

2

=a(a≥0)的结论解题.

解:

)2 =32

,(

2 =32²

2=32

²5=45,

22=56

(2

72)=224.

三、巩固练习

计算下列各式的值:

2

)2

(4

)2

)2

2 )

22

四、应用拓展

例2 计算

1.

2

(x≥0) 2.

2

3.

)2

4.

2

分析:(1)因为x≥0,所以x+1>0;(2)a2

≥0;(3)a2

+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2²2x²3+32=(2x-3)2

≥0.

所以上面的4

2

=a(a≥0)的重要结论解题.

解:(1)因为x≥0,所以x+1>0

2

=x+1

(2)∵a2

≥0

2

=a

2

(3)∵a2+2a+1=(a+1)

2

又∵(a+1)2≥0,∴a2+2a+1≥0

2

+2a+1

(4)∵4x2-12x+9=(2x)2-2²2x²3+32=(2x-3)

2

又∵(2x-3)2

≥0

∴4x2-12x+9≥0

2=4x2

-12x+9

例3在实数范围内分解下列因式:

(1)x2-3 (2)x4-4 (3) 2x2

-3

分析:(略) 五、归纳小结 本节课应掌握:

1

a≥0)是一个非负数;

2.

=a(a≥0);反之:a=

(a≥0). 六、布置作业

1.教材P8 复习巩固2.(1)、(2) P9 7.

2.选用课时作业设计. 第二课时作业设计 一、选择题

1

). A.4 B.3 C.2 D.1

2.数a没有算术平方根,则a的取值范围是( ). A.a>0 B.a≥0 C.a

1.(

=________. 2

_______数.

22

2

三、综合提高题

1.计算(1)

(2)-

) (3)(

2

2

1

2

)2 (4)(

2

) (5)

2.把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3)

3

=0,求x的值.

y

1

(4)x(x≥0) 6

4.在实数范围内分解下列因式: (1)x-2 (2)x-9 3x-5

242

21.1 二次根式(3)

第三课时

教学内容:

a(a≥0)

教学目标:

(a≥0)并利用它进行计算和化简.

(a≥0),并利用这个结论解决具体问题. 教学重难点关键

1

a(a≥0). 2.难点:探究结论. 3.关键:讲清a≥0

a才成立. 教学过程

一、复习引入

1

(a≥0)的式子叫做二次根式; 2

(a≥0)是一个非负数;

3.

=a(a≥0).

2

那么,我们猜想当a≥0

是否也成立呢?下面我们就来探究这个问题. 二、探究新知

(学生活动)填空:

. (老师点评):根据算术平方根的意义,我们可以得到:

123=

=. 10

3

7

1 化简 (1

(2(3(4分析:因为(1)9=-3,(2)(-4)=4,

(3)25=5,

(4)(-3)=3(a

≥0)•去化简.

2

2

2222

解:(1

(2

(3

(4 三、巩固练习 教材P

7练习2. 四、应用拓展

例2

填空:当a≥0;当a

,•并根据这一性质回答下列问题. (

1,则a可以是什么数? (2

,则a可以是什么数? (3

,则a可以是什么数?

分析:(a≥

0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“

( )

2

”中的数是正数,因为,当a≤0-a≥0.

(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2│a│,而│a│要大于a,只有什么时候才能保证呢?a

解:(1

,所以a≥0; (2

,所以a≤0;

3)因为当a≥0,

,即使

a>a所以a不存在;当a

,即使-a>a,a

a

例3当x>2

五、归纳小结

(a≥0)及其运用,同时理解当a

1.教材P8习题21.1 3、4、6、8. 2.选作课时作业设计.

第三课时作业设计 一、选择题

1

). A.0 B.

22

C.4 D.以上都不对 33

2.a≥0

). A

C

二、填空题

1.

2

m的最小值是________. 三、综合提高题

1.先化简再求值:当a=9时,求

甲的解答为:原式

(1-a)=1;

乙的解答为:原式

(a-1)=2a-1=17.

两种解答中,_______的解答是错误的,错误的原因是__________. 2.若│1995-a│

,求a-1995的值.

2

(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值) 3. 若-3≤x≤2时,试化简│x-2│

21.2 二次根式的乘除

第一课时

教学内容

a≥0,b≥0)

(a≥0,b≥0)及其运用. 教学目标

a≥0,b≥0)

(a≥0,b≥0),并利用它们进行计算和化简

a≥0,b≥0)并运用它进行计算;•利用逆向思维,

(a≥0,b≥0)并运用它进行解题和化简.

教学重难点关键

a≥0,b≥0)

(a≥0,b≥0)及它们的运用.

a≥0,b≥0). 关键:要讲

(a

=,

如=3

教学过程

一、复习引入

(学生活动)请同学们完成下列各题. 1.填空

(1

; (2

=________.

(3

. 参考上面的结果,用“>

2.利用计算器计算填空

(1

,(2

(3

(4

(5

二、探索新知

(学生活动)让3、4个同学上台总结规律. 老师点评:(1)被开方数都是正数; (2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数. 一般地,对二次根式的乘法规定为

反过来

例1.计算

(1

(2

(3

(4

分析:

a≥

0,b≥0)计算即可.

解:(1

(2

(3

(4

例2 化简

(1(2(3(4(5

(a≥0,b≥0)直接化简即可.

解:(1

³4=12 (2

³9=36 (3

³10=90 (4

(5

三、巩固练习

(1)计算(学生练习,老师点评)

³

(2) 化简

教材P11练习全部 四、应用拓展

例3.判断下列各式是否正确,不正确的请予以改正: (1

(2

解:(1)不正确.

³3=6

(2)不正确.

五、归纳小结

本节课应掌握:(1

(a≥0,b≥0)

a≥0,b≥0)及其运用. 六、布置作业

1.课本P15 1,4,5,6.(1)(2). 2.选用课时作业设计. 第一课时作业设计 一、选择题

1

,•那么此直角三角形斜边长是( ). A.

cm B.

.9cm D.27cm

2.化简

). A

3

A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1 4.下列各等式成立的是( ).

A.

C.

³

二、填空题

1

. 2.自由落体的公式为S=

122

gt(g为重力加速度,它的值为10m/s),若物体下落的高度为720m,则2

下落的时间是_________. 三、综合提高题

1.一个底面为30cm³30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米? 2.探究过程:观察下列各式及其验证过程. (1)

验证:

(2)

验证:

同理可得:

,„„ (a>0),并验证你的结论.

通过上述探究你能猜测出:

21.2 二次根式的乘除(2)

第二课时

教学内容

(a≥0,b>0)

(a≥0,b>0)及利用它们进行计算和化简.

教学目标

a≥0,b>0

(a≥0,b>0)及利用它们进行运算.

利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用

它们进行计算和化简. 教学重难点关键 1

a≥0,b>0)

(a≥0,b>0)及利用它们进行计算和化简.

2.难点关键:发现规律,归纳出二次根式的除法规定.

教学过程

一、复习引入

(学生活动)请同学们完成下列各题: 1.写出二次根式的乘法规定及逆向等式. 2.填空 (1

; (2

; (4

=_________,(2

=_________,(3

=______,(4

=________. (3

3.利用计算器计算填空: (1

每组推荐一名学生上台阐述运算结果.

(老师点评) 二、探索新知

刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到: 一般地,对二次根式的除法规定:

下面我们利用这个规定来计算和化简一些题目. 例1.计算:(1

(2

(3

(4

分析:上面4

(a≥0,b>0)便可直接得出答案. 解:(1

=2 (2



(3

=2 (4

例2.化简:

(1

(2

(3

(4

(a≥0,b>0)就可以达到化简之目的. 解:(1

 (2

8b3a (3

(4

 三、巩固练习 教材P14 练习1.

四、应用拓展

例3.

,且x为偶数,求(1+x

分析:

,只有a≥0,b>0时才能成立. 因此得到9-x≥0且x-6>0,即6

,即

x60

x96 ∴6

x ∴原式=(1+x

(1+x

(1+x

∴当x=8时,原式的值

. 五、归纳小结

a≥0,b>0

(a≥0,b>0)及其运用.

六、布置作业

1.教材P15 习题21.2 2、7、8、9. 2.选用课时作业设计. 第二课时作业设计 一、选择题 1

的结果是( ). A.

2

7

2

C

77

2.阅读下列运算过程:



35

数学上将这种把分母的根号去掉的过程称作“分母有理化”

). A.2 B.6 C. 二、填空题 1.分母有理化

1

3

D

2.已知x=3,y=4,z=5

三、综合提高题

_______.

1

1,•现用直径为

的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?

2.计算

(1

²(

m>0,n>0)

(2)

(a>0)

答案: 一、1.A 2.C

二、1.

(1)

;(2) 2

26

6

32

2

2

三、1.设:矩形房梁的宽为x(cm)

,依题意,得:

)+x=(

, 4x=9³15,x=

2

3

2

2

cm),

²

=

135

4

cm2).

2.(1)原式=

nn

2

2mm

(2)原式

a

21.2 二次根式的乘除(3)

第三课时

教学内容

最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算. 教学目标

理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.

通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求. 重难点关键

1.重点:最简二次根式的运用. 2.难点关键:会判断这个二次根式是否是最简二次根式. 教学过程

一、复习引入

(学生活动)请同学们完成下列各题(请三位同学上台板书) 1.计算(1

,(2

(3

2.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,•那么它们的传播半径

的比是_________.

二、探索新知

观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点: 1.被开方数不含分母; 2.被开方数中不含能开得尽方的因数或因式. 我们把满足上述两个条件的二次根式,叫做最简二次根式.

那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式. 学生分组讨论,推荐3~4个人到黑板上板书.

老师点评:不是.

2

例1.

(1)

例2.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.

A

解:因为AB=AC+BC

2

2

2

C

所以

13

=6.5(cm) 2 因此AB的长为6.5cm.

三、巩固练习

教材P14 练习2、3 四、应用拓展

例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:

1,

21

从计算结果中找出规律,并利用这一规律计算

+

+1)的值.

分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目

的.

解:原式=

„„

+1) =

-1)

+1) =2002-1=2001

五、归纳小结

本节课应掌握:最简二次根式的概念及其运用. 六、布置作业

1.教材P15 习题21.2 3、7、10. 2.选用课时作业设计.

第三课时作业设计 一、选择题 1

(y>0)是二次根式,那么,化为最简二次根式是( ). A

(y>0) B

y>0) C

y>0) D.以上都不对

2.把(a-1

中根号外的(a-1)移入根号内得( ). A

3.在下列各式中,化简正确的是( )

A

1

2

2

D.

4

的结果是( ) A.

- B.

C.

- D.

33 二、填空题

1

.(x≥0) 2.

_________. 三、综合提高题

1.已知a

写出正确的解答过程:

•请1

²a

(a-1

1

2.若x、y为实数,且

y=

x

2

答案:

一、1.C 2.D 3.C 4.C 二、1.

三、1.不正确,正确解答:

a30因为1,所以a

0a

2

1x402.∵ ∴x-4=0,∴x=±2,但∵x+2≠0,∴x=2,y= 2

44x0



21.3 二次根式的加减(1)

第一课时

教学内容 二次根式的加减

教学目标 理解和掌握二次根式加减的方法.

先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简. 重难点关键

1.重点:二次根式化简为最简根式. 2.难点关键:会判定是否是最简二次根式. 教学过程

一、复习引入

学生活动:计算下列各式.

222223

(1)2x+3x; (2)2x-3x+5x; (3)x+2x+3y; (4)3a-2a+a

教师点评:上面题目的结果,实际上是我们以前所学的同类项合并.同类项合并就是字母不变,系数相加减.

二、探索新知

学生活动:计算下列各式.

(1)

(2)

(3

(4)

老师点评:

(1

当成x,不就转化为上面的问题吗?

=(2+3

(2

y;

=(2-3+5

(3

当成z;

=(1+2+3

(4

x

看为y.

=(3-2

因此,二次根式的被开方数相同是可以合并的,如

表面上看是不相同的,但它们可以合并吗?可以的.

(板书)

所以,二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.

例1.计算

(1

(2

分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.

解:(1

=(2+3

(2

(4+8

例2.计算 (1)

(2)

+

=(12-3+6

解:(1)

(2)

+

三、巩固练习

教材P19 练习1、2. 四、应用拓展

例3.已知4x+y-4x-6y+10=0

,求(

2

2

2

3-(x

)的值.

2

2

分析:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)+(y-3)=0,即x=

1

,y=3.其21

,y=3 2

次,根据二次根式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值. 解:∵4x+y-4x-6y+10=0 ∵4x-4x+1+y-6y+9=0 ∴(2x-1)+(y-3)=0 ∴x=

2

2

2

2

2

2

原式

=

2

3

当x=

11

,y=3时, 原式==

4

22

五、归纳小结

本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并. 六、布置作业

1.教材P21 习题21.3 1、2、3、5. 2.选作课时作业设计.

第一课时作业设计 一、选择题

1

).

A.①和② B.②和③ C.①和④ D.③和④ 2.下列各式:①

;②

1

7

=1

,其中错误的

有( ). A.3个 B.2个 C.1个 D.0个 二、填空题 1

________.

是同类二次根式的有

2.计算二次根式

的最后结果是________. 三、综合提高题

1

2.236

-

(结果精确到0.01)

2.先化简,再求值. (

答案:

一、1.C 2.A 二、1

三、1.原式

2.原式

3+,其中x=,y=27. -(

2

3

5

4

12

1

1³2.236≈0.45

5555

=(6+3-4-6

当x=

39

,y=27时,原式

22

21.3 二次根式的加减(2)

第二课时

教学内容 利用二次根式化简的数学思想解应用题. 教学目标 运用二次根式、化简解应用题.

通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题.

重难点关键 讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点. 教学过程

一、复习引入

上节课,我们已经讲了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,下面我们讲三道例题以做巩固.

二、探索新知

例1.如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/•秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)

CQ

分析:设x秒后△PBQ的面积为35平方厘米,那么PB=x,BQ=2x,•根据三角形面积公式就可以求出x的值.

解:设x 后△PBQ的面积为35平方厘米. 则有PB=x,BQ=2x 依题意,得:

P

12

x²2x=35 x2

PBQ的面积为35平方厘米.



PBQ的面积为35平方厘米,PQ的距离为

厘米.

例2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?

分析:此框架是由AB、BC、BD、AC组成,所以要求钢架的钢材,•只需知道这四段的长度.

B

2m

4m

www.czsx.com.cn

D

1m

C

解:由勾股定理,得



所需钢材长度为

≈3³2.24+7≈13.7(m) 答:要焊接一个如图所示的钢架,大约需要13.7m的钢材. 三、巩固练习 教材P19 练习3 四、应用拓展

例3.

若最简根式3a

a、b的值.(•同类二次根式就是被开方数相同的最简二次根式)

分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;•

事实上,根式

|b|

根式的定义得3a-•b=•2,2a-b+6=4a+3b.

由题意得

4a3b2ab62a4b6

∴ ∴a=1,b=1

3ab23ab2

五、归纳小结

本节课应掌握运用最简二次根式的合并原理解决实际问题. 六、布置作业

1.教材P21 习题21.3 7. 2.选用课时作业设计. 作业设计 一、选择题

1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为( ).(•结果用最简二次根式)

A.

B

.以上都不对

2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为( )米.(结果同最简二次根式表示) A.

二、填空题

2

1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m,•鱼塘的宽是_______m.(结

果用最简二次根式) 2.

,•那么这个等腰直角三角形的周长是________.(结果用最简二次根式) 三、综合提高题 1

n是同类二次根式,求m、n的值. 2.同学们,我们以前学过完全平方公式a±2ab+b=(a±b),你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=

),5=

2

2

222

你知道是谁的二次根式呢?下面我们观察:

)=

)-2²1

2

2

2

2

反之,

) ∴

=

-1)

-1

2

求:(1

; (2

; (3

吗?

(4

,则m、n与a、b的关系是什么?并说明理由.

答案:一、1.A 2.C 二、1.

2.

222

3m24m10m8m三、1.依题意,得2 ,2

,

n12n3n所以

m

n

mn

或

mn

或

mn

2.(1

+1 (2

(3

(4)

mnaamn 理由:两边平方得a±

=m+n±

所以

mnbbmn

21.3 二次根式的加减(3)

第三课时

教学内容

含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用. 教学目标

含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用. 复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算. 重难点关键

重点:二次根式的乘除、乘方等运算规律; 难点关键:由整式运算知识迁移到含二次根式的运算. 教学过程

一、复习引入

学生活动:请同学们完成下列各题:

22

1.计算 (1)(2x+y)²zx (2)(2xy+3xy)÷xy

22

2.计算 (1)(2x+3y)(2x-3y) (2)(2x+1)+(2x-1)

老师点评:这些内容是对八年级上册整式运算的再现.它主要有(1)•单项式³单项式;(2)单项式³多项式;(3)多项式÷单项式;(4)完全平方公式;(5)平方差公式的运用. 二、探索新知

如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?•仍成立.

整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,•当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.

例1.计算: (1)

(2)(

)÷

分析:刚才已经分析,二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律. 解:(1)

解:(

)÷

÷

-

3

2

例2.计算 (1)

)(

(2)

) 分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立. 解:(1)

)(

2

(2)

)=

-

=10-7=3

2

2

三、巩固练习

课本P20练习1、2. 四、应用拓展

例3.已知

xaxb=2-,其中a、b是实数,且a+b≠0,

ba

分析

)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可.

解:原式

=(x+1)

=4x+2

xaxb2222

=2- ∴b(x-b)=2ab-a(x-a) ∴bx-b=2ab-ax+a ∴(a+b)x=a+2ab+bba

2

∴(a+b)x=(a+b)

∵a+b≠0 ∴x=a+b ∴原式=4x+2=4(a+b)+2 五、归纳小结

本节课应掌握二次根式的乘、除、乘方等运算. 六、布置作业

1.教材P21 习题21.3 1、8、9. 2.选用课时作业设计.

作业设计 一、选择题

1.

A.

的值是( ).

20

3

2

3

2

3

D.

20

3

2

). A.2 B.3 C.4 D.1 二、填空题 1.(-

21

+)的计算结果(用最简根式表示)是________. 2

2

2

2.(

-(

-1)的计算结果(用最简二次根式表示)是_______. 3.若

,则x+2x+1=________.

2

4.已知

ab-ab=_________.

2

2

三、综合提高题 1

2.当

的值.(结果用最简二次根式表示)

课外知识

1.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,•这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式. 练习:下列各组二次根式中,是同类二次根式的是( ).

A

2.互为有理化因式:•互为有理化因式是指两个二次根式的乘积可以运用平方差公式(a+b)(a-b)=a-b,同时它们的积是有理数,不含有二次根式:如

2

2

也是互为有理化因式. 的有理化因式是_________.

练习

的有理化因式是________;

_______.

3.分母有理化是指把分母中的根号化去,通常在分子、•分母上同乘以一个二次根式,达到化去分母中的根号的目的.

练习:把下列各式的分母有理化 (1

(2

; (3

; (4

4.其它材料:如果n

答案:

一、1.A 2.D 二、1.

1-

=_______.

2.

.2 4.

2

三、1

=-

2

2(x1)2(x2x)22(x1)(x1x)

=== 2(2x+1)

x1x1

原式=2(

+3)

+6.

第二十一章 二次根式(全章教案)

教材内容

1.本单元教学的主要内容:

二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式. 2.本单元在教材中的地位和作用:

二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础. (约需11课时) 教学目标

1.知识与技能

(1)理解二次根式的概念.

(2

a≥0)是一个非负数,

2=a(a≥0)

(a≥0). (3

a≥0,b≥0)

(a≥0,b>0)

(a≥0,b>0).

(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.

教学重点

1

a≥0

a≥0)是一个非负数;

)=a(a≥0)

(a≥0)

2

•及其运用. 2.二次根式乘除法的规定及其运用. 3.最简二次根式的概念. 4.二次根式的加减运算. 教学难点

1

a≥0

=a(a≥0

(a≥0)的理解及应用.

2

2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式. 教学关键

1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.

2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.

21.1 二次根式

第一课时

教学内容

二次根式的概念及其运用 教学目标

a≥0)的意义解答具体题目. 提出问题,根据问题给出概念,应用概念解决实际问题. 教学重难点关键

1

a≥0)的式子叫做二次根式的概念; 2

a≥0)”解决具体问题. 教学过程

一、复习引入

(学生活动)请同学们独立完成下列三个问题:

问题1:已知反比例函数y=

3

,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________. x

A

问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.

C

问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________. 老师点评:

问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以

,所以所求点的坐标

. 问题2:由勾股定理得

问题3:由方差的概念得

二、探索新知

. ,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们

(a≥0)•的式子叫做二次根式,

号.

(学生活动)议一议:

1.-1有算术平方根吗? 2.0的算术平方根是多少? 3.当a

有意义吗? 例1

1

(x>0)

x

1

(x≥0,y•≥0). x

y

;第二,被开方数是正数或0.

分析

x>0)

x≥0,y≥0)

11、.

xyx

例2.当x

分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,

解:由3x-1≥0,得:x≥ 当x≥

1

3

1

3

三、巩固练习

教材P5练习1、2、3. 四、应用拓展

例3.当x

分析:

1

在实数范围内有意义? x1

11在实数范围内有意义,

0和中的x+1≠0. x1x1

2x30

解:依题意,得

x10

3

由②得:x≠-1 231

当x≥-且x≠-1

在实数范围内有意义.

2x1

由①得:x≥-例4(1)已知

,求

x

的值.(答案:2) y

(2)

,求a2004+b2004的值.(答案:

五、归纳小结(学生活动,老师点评) 本节课要掌握:

1

(a≥0)的式子叫做二次根式,

2

) 5

2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.

第一课时作业设计 一、选择题

1.下列式子中,是二次根式的是( ) A.

B

C

D.x 2.下列式子中,不是二次根式的是( ) A

B

. 3.已知正方形的面积是5,那么它的边长是( ) A.5 B

1 x

1

D.以上皆不对 5

二、填空题

1.形如______的式子叫做二次根式. 2.面积为a的正方形的边长为_____. 3.负数__ __平方根. 三、综合提高题

1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少? 2.当x

2+x在实数范围内有意义? 3.

有意义,

. x

4.

x有( )个. A.0 B.1 C.2 D.无数

5.已知a、b

=b+4,求a、b的值.

21.1 二次根式(2)

第二课时

教学内容

1

a≥0)是一个非负数; 2.

=a(a≥0). 教学目标

a≥0

=a(a≥0),并利用它们进行计算和化简.

a≥0)是一个非负数,用具体数据结合算术

=a(a≥0);最后运用结论严谨解题. 教学重难点关键

1

a≥0)是一个非负数;

=a(a≥0)及其运用.

2

2

2

2

2

a≥0)是一个非负数;•

=a

2

(a≥0). 教学过程

一、复习引入

1.什么叫二次根式? 2.当a≥0

a

二、探究新知 议一议:(学生分组讨论,提问解答)

a≥0)是一个什么数呢?

老师点评:根据学生讨论和上面的练习,我们可以得出

做一做:根据算术平方根的意义填空:

=_______;

=_______;=______

;=_______;

2

2

2

2

222

)=______

;)=_______

;)

=_______.

4是一个平方等于4的非负数,因此

=4.

2

同理可得:)

=2,=9,)=3,

2

2

2

21272

)=,

)=,)=0,所以

32

例1 计算 1.

)2 2.(

2

3.

22 4.

) 分析

2

=a(a≥0)的结论解题.

解:

)2 =32

,(

2 =32²

2=32

²5=45,

22=56

(2

72)=224.

三、巩固练习

计算下列各式的值:

2

)2

(4

)2

)2

2 )

22

四、应用拓展

例2 计算

1.

2

(x≥0) 2.

2

3.

)2

4.

2

分析:(1)因为x≥0,所以x+1>0;(2)a2

≥0;(3)a2

+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2²2x²3+32=(2x-3)2

≥0.

所以上面的4

2

=a(a≥0)的重要结论解题.

解:(1)因为x≥0,所以x+1>0

2

=x+1

(2)∵a2

≥0

2

=a

2

(3)∵a2+2a+1=(a+1)

2

又∵(a+1)2≥0,∴a2+2a+1≥0

2

+2a+1

(4)∵4x2-12x+9=(2x)2-2²2x²3+32=(2x-3)

2

又∵(2x-3)2

≥0

∴4x2-12x+9≥0

2=4x2

-12x+9

例3在实数范围内分解下列因式:

(1)x2-3 (2)x4-4 (3) 2x2

-3

分析:(略) 五、归纳小结 本节课应掌握:

1

a≥0)是一个非负数;

2.

=a(a≥0);反之:a=

(a≥0). 六、布置作业

1.教材P8 复习巩固2.(1)、(2) P9 7.

2.选用课时作业设计. 第二课时作业设计 一、选择题

1

). A.4 B.3 C.2 D.1

2.数a没有算术平方根,则a的取值范围是( ). A.a>0 B.a≥0 C.a

1.(

=________. 2

_______数.

22

2

三、综合提高题

1.计算(1)

(2)-

) (3)(

2

2

1

2

)2 (4)(

2

) (5)

2.把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3)

3

=0,求x的值.

y

1

(4)x(x≥0) 6

4.在实数范围内分解下列因式: (1)x-2 (2)x-9 3x-5

242

21.1 二次根式(3)

第三课时

教学内容:

a(a≥0)

教学目标:

(a≥0)并利用它进行计算和化简.

(a≥0),并利用这个结论解决具体问题. 教学重难点关键

1

a(a≥0). 2.难点:探究结论. 3.关键:讲清a≥0

a才成立. 教学过程

一、复习引入

1

(a≥0)的式子叫做二次根式; 2

(a≥0)是一个非负数;

3.

=a(a≥0).

2

那么,我们猜想当a≥0

是否也成立呢?下面我们就来探究这个问题. 二、探究新知

(学生活动)填空:

. (老师点评):根据算术平方根的意义,我们可以得到:

123=

=. 10

3

7

1 化简 (1

(2(3(4分析:因为(1)9=-3,(2)(-4)=4,

(3)25=5,

(4)(-3)=3(a

≥0)•去化简.

2

2

2222

解:(1

(2

(3

(4 三、巩固练习 教材P

7练习2. 四、应用拓展

例2

填空:当a≥0;当a

,•并根据这一性质回答下列问题. (

1,则a可以是什么数? (2

,则a可以是什么数? (3

,则a可以是什么数?

分析:(a≥

0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“

( )

2

”中的数是正数,因为,当a≤0-a≥0.

(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2│a│,而│a│要大于a,只有什么时候才能保证呢?a

解:(1

,所以a≥0; (2

,所以a≤0;

3)因为当a≥0,

,即使

a>a所以a不存在;当a

,即使-a>a,a

a

例3当x>2

五、归纳小结

(a≥0)及其运用,同时理解当a

1.教材P8习题21.1 3、4、6、8. 2.选作课时作业设计.

第三课时作业设计 一、选择题

1

). A.0 B.

22

C.4 D.以上都不对 33

2.a≥0

). A

C

二、填空题

1.

2

m的最小值是________. 三、综合提高题

1.先化简再求值:当a=9时,求

甲的解答为:原式

(1-a)=1;

乙的解答为:原式

(a-1)=2a-1=17.

两种解答中,_______的解答是错误的,错误的原因是__________. 2.若│1995-a│

,求a-1995的值.

2

(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值) 3. 若-3≤x≤2时,试化简│x-2│

21.2 二次根式的乘除

第一课时

教学内容

a≥0,b≥0)

(a≥0,b≥0)及其运用. 教学目标

a≥0,b≥0)

(a≥0,b≥0),并利用它们进行计算和化简

a≥0,b≥0)并运用它进行计算;•利用逆向思维,

(a≥0,b≥0)并运用它进行解题和化简.

教学重难点关键

a≥0,b≥0)

(a≥0,b≥0)及它们的运用.

a≥0,b≥0). 关键:要讲

(a

=,

如=3

教学过程

一、复习引入

(学生活动)请同学们完成下列各题. 1.填空

(1

; (2

=________.

(3

. 参考上面的结果,用“>

2.利用计算器计算填空

(1

,(2

(3

(4

(5

二、探索新知

(学生活动)让3、4个同学上台总结规律. 老师点评:(1)被开方数都是正数; (2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数. 一般地,对二次根式的乘法规定为

反过来

例1.计算

(1

(2

(3

(4

分析:

a≥

0,b≥0)计算即可.

解:(1

(2

(3

(4

例2 化简

(1(2(3(4(5

(a≥0,b≥0)直接化简即可.

解:(1

³4=12 (2

³9=36 (3

³10=90 (4

(5

三、巩固练习

(1)计算(学生练习,老师点评)

³

(2) 化简

教材P11练习全部 四、应用拓展

例3.判断下列各式是否正确,不正确的请予以改正: (1

(2

解:(1)不正确.

³3=6

(2)不正确.

五、归纳小结

本节课应掌握:(1

(a≥0,b≥0)

a≥0,b≥0)及其运用. 六、布置作业

1.课本P15 1,4,5,6.(1)(2). 2.选用课时作业设计. 第一课时作业设计 一、选择题

1

,•那么此直角三角形斜边长是( ). A.

cm B.

.9cm D.27cm

2.化简

). A

3

A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1 4.下列各等式成立的是( ).

A.

C.

³

二、填空题

1

. 2.自由落体的公式为S=

122

gt(g为重力加速度,它的值为10m/s),若物体下落的高度为720m,则2

下落的时间是_________. 三、综合提高题

1.一个底面为30cm³30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米? 2.探究过程:观察下列各式及其验证过程. (1)

验证:

(2)

验证:

同理可得:

,„„ (a>0),并验证你的结论.

通过上述探究你能猜测出:

21.2 二次根式的乘除(2)

第二课时

教学内容

(a≥0,b>0)

(a≥0,b>0)及利用它们进行计算和化简.

教学目标

a≥0,b>0

(a≥0,b>0)及利用它们进行运算.

利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用

它们进行计算和化简. 教学重难点关键 1

a≥0,b>0)

(a≥0,b>0)及利用它们进行计算和化简.

2.难点关键:发现规律,归纳出二次根式的除法规定.

教学过程

一、复习引入

(学生活动)请同学们完成下列各题: 1.写出二次根式的乘法规定及逆向等式. 2.填空 (1

; (2

; (4

=_________,(2

=_________,(3

=______,(4

=________. (3

3.利用计算器计算填空: (1

每组推荐一名学生上台阐述运算结果.

(老师点评) 二、探索新知

刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到: 一般地,对二次根式的除法规定:

下面我们利用这个规定来计算和化简一些题目. 例1.计算:(1

(2

(3

(4

分析:上面4

(a≥0,b>0)便可直接得出答案. 解:(1

=2 (2



(3

=2 (4

例2.化简:

(1

(2

(3

(4

(a≥0,b>0)就可以达到化简之目的. 解:(1

 (2

8b3a (3

(4

 三、巩固练习 教材P14 练习1.

四、应用拓展

例3.

,且x为偶数,求(1+x

分析:

,只有a≥0,b>0时才能成立. 因此得到9-x≥0且x-6>0,即6

,即

x60

x96 ∴6

x ∴原式=(1+x

(1+x

(1+x

∴当x=8时,原式的值

. 五、归纳小结

a≥0,b>0

(a≥0,b>0)及其运用.

六、布置作业

1.教材P15 习题21.2 2、7、8、9. 2.选用课时作业设计. 第二课时作业设计 一、选择题 1

的结果是( ). A.

2

7

2

C

77

2.阅读下列运算过程:



35

数学上将这种把分母的根号去掉的过程称作“分母有理化”

). A.2 B.6 C. 二、填空题 1.分母有理化

1

3

D

2.已知x=3,y=4,z=5

三、综合提高题

_______.

1

1,•现用直径为

的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?

2.计算

(1

²(

m>0,n>0)

(2)

(a>0)

答案: 一、1.A 2.C

二、1.

(1)

;(2) 2

26

6

32

2

2

三、1.设:矩形房梁的宽为x(cm)

,依题意,得:

)+x=(

, 4x=9³15,x=

2

3

2

2

cm),

²

=

135

4

cm2).

2.(1)原式=

nn

2

2mm

(2)原式

a

21.2 二次根式的乘除(3)

第三课时

教学内容

最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算. 教学目标

理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.

通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求. 重难点关键

1.重点:最简二次根式的运用. 2.难点关键:会判断这个二次根式是否是最简二次根式. 教学过程

一、复习引入

(学生活动)请同学们完成下列各题(请三位同学上台板书) 1.计算(1

,(2

(3

2.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,•那么它们的传播半径

的比是_________.

二、探索新知

观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点: 1.被开方数不含分母; 2.被开方数中不含能开得尽方的因数或因式. 我们把满足上述两个条件的二次根式,叫做最简二次根式.

那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式. 学生分组讨论,推荐3~4个人到黑板上板书.

老师点评:不是.

2

例1.

(1)

例2.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.

A

解:因为AB=AC+BC

2

2

2

C

所以

13

=6.5(cm) 2 因此AB的长为6.5cm.

三、巩固练习

教材P14 练习2、3 四、应用拓展

例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:

1,

21

从计算结果中找出规律,并利用这一规律计算

+

+1)的值.

分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目

的.

解:原式=

„„

+1) =

-1)

+1) =2002-1=2001

五、归纳小结

本节课应掌握:最简二次根式的概念及其运用. 六、布置作业

1.教材P15 习题21.2 3、7、10. 2.选用课时作业设计.

第三课时作业设计 一、选择题 1

(y>0)是二次根式,那么,化为最简二次根式是( ). A

(y>0) B

y>0) C

y>0) D.以上都不对

2.把(a-1

中根号外的(a-1)移入根号内得( ). A

3.在下列各式中,化简正确的是( )

A

1

2

2

D.

4

的结果是( ) A.

- B.

C.

- D.

33 二、填空题

1

.(x≥0) 2.

_________. 三、综合提高题

1.已知a

写出正确的解答过程:

•请1

²a

(a-1

1

2.若x、y为实数,且

y=

x

2

答案:

一、1.C 2.D 3.C 4.C 二、1.

三、1.不正确,正确解答:

a30因为1,所以a

0a

2

1x402.∵ ∴x-4=0,∴x=±2,但∵x+2≠0,∴x=2,y= 2

44x0



21.3 二次根式的加减(1)

第一课时

教学内容 二次根式的加减

教学目标 理解和掌握二次根式加减的方法.

先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简. 重难点关键

1.重点:二次根式化简为最简根式. 2.难点关键:会判定是否是最简二次根式. 教学过程

一、复习引入

学生活动:计算下列各式.

222223

(1)2x+3x; (2)2x-3x+5x; (3)x+2x+3y; (4)3a-2a+a

教师点评:上面题目的结果,实际上是我们以前所学的同类项合并.同类项合并就是字母不变,系数相加减.

二、探索新知

学生活动:计算下列各式.

(1)

(2)

(3

(4)

老师点评:

(1

当成x,不就转化为上面的问题吗?

=(2+3

(2

y;

=(2-3+5

(3

当成z;

=(1+2+3

(4

x

看为y.

=(3-2

因此,二次根式的被开方数相同是可以合并的,如

表面上看是不相同的,但它们可以合并吗?可以的.

(板书)

所以,二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.

例1.计算

(1

(2

分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.

解:(1

=(2+3

(2

(4+8

例2.计算 (1)

(2)

+

=(12-3+6

解:(1)

(2)

+

三、巩固练习

教材P19 练习1、2. 四、应用拓展

例3.已知4x+y-4x-6y+10=0

,求(

2

2

2

3-(x

)的值.

2

2

分析:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)+(y-3)=0,即x=

1

,y=3.其21

,y=3 2

次,根据二次根式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值. 解:∵4x+y-4x-6y+10=0 ∵4x-4x+1+y-6y+9=0 ∴(2x-1)+(y-3)=0 ∴x=

2

2

2

2

2

2

原式

=

2

3

当x=

11

,y=3时, 原式==

4

22

五、归纳小结

本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并. 六、布置作业

1.教材P21 习题21.3 1、2、3、5. 2.选作课时作业设计.

第一课时作业设计 一、选择题

1

).

A.①和② B.②和③ C.①和④ D.③和④ 2.下列各式:①

;②

1

7

=1

,其中错误的

有( ). A.3个 B.2个 C.1个 D.0个 二、填空题 1

________.

是同类二次根式的有

2.计算二次根式

的最后结果是________. 三、综合提高题

1

2.236

-

(结果精确到0.01)

2.先化简,再求值. (

答案:

一、1.C 2.A 二、1

三、1.原式

2.原式

3+,其中x=,y=27. -(

2

3

5

4

12

1

1³2.236≈0.45

5555

=(6+3-4-6

当x=

39

,y=27时,原式

22

21.3 二次根式的加减(2)

第二课时

教学内容 利用二次根式化简的数学思想解应用题. 教学目标 运用二次根式、化简解应用题.

通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题.

重难点关键 讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点. 教学过程

一、复习引入

上节课,我们已经讲了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,下面我们讲三道例题以做巩固.

二、探索新知

例1.如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/•秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)

CQ

分析:设x秒后△PBQ的面积为35平方厘米,那么PB=x,BQ=2x,•根据三角形面积公式就可以求出x的值.

解:设x 后△PBQ的面积为35平方厘米. 则有PB=x,BQ=2x 依题意,得:

P

12

x²2x=35 x2

PBQ的面积为35平方厘米.



PBQ的面积为35平方厘米,PQ的距离为

厘米.

例2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?

分析:此框架是由AB、BC、BD、AC组成,所以要求钢架的钢材,•只需知道这四段的长度.

B

2m

4m

www.czsx.com.cn

D

1m

C

解:由勾股定理,得



所需钢材长度为

≈3³2.24+7≈13.7(m) 答:要焊接一个如图所示的钢架,大约需要13.7m的钢材. 三、巩固练习 教材P19 练习3 四、应用拓展

例3.

若最简根式3a

a、b的值.(•同类二次根式就是被开方数相同的最简二次根式)

分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;•

事实上,根式

|b|

根式的定义得3a-•b=•2,2a-b+6=4a+3b.

由题意得

4a3b2ab62a4b6

∴ ∴a=1,b=1

3ab23ab2

五、归纳小结

本节课应掌握运用最简二次根式的合并原理解决实际问题. 六、布置作业

1.教材P21 习题21.3 7. 2.选用课时作业设计. 作业设计 一、选择题

1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为( ).(•结果用最简二次根式)

A.

B

.以上都不对

2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为( )米.(结果同最简二次根式表示) A.

二、填空题

2

1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m,•鱼塘的宽是_______m.(结

果用最简二次根式) 2.

,•那么这个等腰直角三角形的周长是________.(结果用最简二次根式) 三、综合提高题 1

n是同类二次根式,求m、n的值. 2.同学们,我们以前学过完全平方公式a±2ab+b=(a±b),你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=

),5=

2

2

222

你知道是谁的二次根式呢?下面我们观察:

)=

)-2²1

2

2

2

2

反之,

) ∴

=

-1)

-1

2

求:(1

; (2

; (3

吗?

(4

,则m、n与a、b的关系是什么?并说明理由.

答案:一、1.A 2.C 二、1.

2.

222

3m24m10m8m三、1.依题意,得2 ,2

,

n12n3n所以

m

n

mn

或

mn

或

mn

2.(1

+1 (2

(3

(4)

mnaamn 理由:两边平方得a±

=m+n±

所以

mnbbmn

21.3 二次根式的加减(3)

第三课时

教学内容

含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用. 教学目标

含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用. 复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算. 重难点关键

重点:二次根式的乘除、乘方等运算规律; 难点关键:由整式运算知识迁移到含二次根式的运算. 教学过程

一、复习引入

学生活动:请同学们完成下列各题:

22

1.计算 (1)(2x+y)²zx (2)(2xy+3xy)÷xy

22

2.计算 (1)(2x+3y)(2x-3y) (2)(2x+1)+(2x-1)

老师点评:这些内容是对八年级上册整式运算的再现.它主要有(1)•单项式³单项式;(2)单项式³多项式;(3)多项式÷单项式;(4)完全平方公式;(5)平方差公式的运用. 二、探索新知

如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?•仍成立.

整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,•当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.

例1.计算: (1)

(2)(

)÷

分析:刚才已经分析,二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律. 解:(1)

解:(

)÷

÷

-

3

2

例2.计算 (1)

)(

(2)

) 分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立. 解:(1)

)(

2

(2)

)=

-

=10-7=3

2

2

三、巩固练习

课本P20练习1、2. 四、应用拓展

例3.已知

xaxb=2-,其中a、b是实数,且a+b≠0,

ba

分析

)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可.

解:原式

=(x+1)

=4x+2

xaxb2222

=2- ∴b(x-b)=2ab-a(x-a) ∴bx-b=2ab-ax+a ∴(a+b)x=a+2ab+bba

2

∴(a+b)x=(a+b)

∵a+b≠0 ∴x=a+b ∴原式=4x+2=4(a+b)+2 五、归纳小结

本节课应掌握二次根式的乘、除、乘方等运算. 六、布置作业

1.教材P21 习题21.3 1、8、9. 2.选用课时作业设计.

作业设计 一、选择题

1.

A.

的值是( ).

20

3

2

3

2

3

D.

20

3

2

). A.2 B.3 C.4 D.1 二、填空题 1.(-

21

+)的计算结果(用最简根式表示)是________. 2

2

2

2.(

-(

-1)的计算结果(用最简二次根式表示)是_______. 3.若

,则x+2x+1=________.

2

4.已知

ab-ab=_________.

2

2

三、综合提高题 1

2.当

的值.(结果用最简二次根式表示)

课外知识

1.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,•这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式. 练习:下列各组二次根式中,是同类二次根式的是( ).

A

2.互为有理化因式:•互为有理化因式是指两个二次根式的乘积可以运用平方差公式(a+b)(a-b)=a-b,同时它们的积是有理数,不含有二次根式:如

2

2

也是互为有理化因式. 的有理化因式是_________.

练习

的有理化因式是________;

_______.

3.分母有理化是指把分母中的根号化去,通常在分子、•分母上同乘以一个二次根式,达到化去分母中的根号的目的.

练习:把下列各式的分母有理化 (1

(2

; (3

; (4

4.其它材料:如果n

答案:

一、1.A 2.D 二、1.

1-

=_______.

2.

.2 4.

2

三、1

=-

2

2(x1)2(x2x)22(x1)(x1x)

=== 2(2x+1)

x1x1

原式=2(

+3)

+6.


相关文章

  • 人教版初中语文,数学教学视频集
  • 人教版初中语文, 数学教学视频集 七年级语文上册 教学视频全集 (点击题目即可观看) 七年级语文下册 教学视频全集 (点击题目即可观看) 八年级语文上册 教学视频全集 (点击题目即可观看) 八年级语文下册 教学视频全集 (点击题目即可观看) ...查看


  • 八年级下册数学试卷(人教版)--第一章
  • 八年级下册数学试卷(人教版)--第一章 二次根式 一.选择题 1.要使二次根式 x -2 有意义,那么x 的取值范围是-------( ) A. x>2 B. x<2 C. x≥2 D. x≤2 2.计算6的结果是------- ...查看


  • 最新人教版初中数学目录(详细)
  • 七年级上册 第一章 有理数 1.1 正数和负数 1.2 有理数 1.3 有理数的加减法 实验与探究 填幻方 阅读与思考 中国人最先使用负数 1.4 有理数的乘除法 观察与猜想 翻牌游戏中的数学道理 1.5 有理数的乘方 数学活动 小结 复习 ...查看


  • 人教版初中数学主要内容(目录)
  • 初中数学各章节主要内容 七年级(上)册 第一章 有理数 1.1 正数和负数 1.2 有理数 1.3 有理数的加减法 1.4 有理数的乘除法 1.5 有理数的乘方 第二章 整式的加减 2.1 整式 2.2 整式的加减 第三章 一元一次方程 3 ...查看


  • 八年级数学下册教材说明书
  • 新人教版八年级<数学>下册课程说明书 课程名称:新人教版八年级<数学>下册 课程类型:必修课程 教学材料:义务教育教科书八年级数学下册(人民教育出版社2013年12月第1版) 授课时间:约88课时 授课教师:三江中学 ...查看


  • 最新冀教版八年级数学上册[二次根式]教案(优质课一等奖教学设计)
  • <二次根式>教案 教学目的 1.了解二次根式的概念: 2.了解二次根式的基本性质: 3.通过二次根式原概念和性质的探究,提高数学探究能力和归纳表达能力. 4.理解二次根式的性质: (1)(a ≥0) 5.会运用其进行相关计算. ...查看


  • (人教版九年级上册数学)概念定义公式归纳
  • 九年级上册数学概念.定义.公式归纳 一.二次根式 1. 2. 二次根式的被开方数为非负数.所有二次根式都是非负数. 3. 4. 二次根式乘法法则: 反过来也适用. 5. 二次根式除法法则:,反过来也适用. 6. 被开方数不含分母.不含能开得 ...查看


  • 2015最新初中数学人教版目录
  • 用心做教育 用爱筑未来 八年级(上) 第11章 三角形(8) 11.1 与三角形有关的线段(2) 11.1.1 三角形的边 11.1.2三角形的高.中线与角平分线 11.1.3 三角形的稳定性 信息技术应用 画图找规律 11.2 与三角形有 ...查看


  • 二次根式练习及答案
  • <人教版九年级上册全书教案> 第二十一章 二次根式 21.1 二次根式 第一课时作业设计 一.选择题 1.下列式子中,是二次根式的是( ) A . - B C D .x 2.下列式子中,不是二次根式的是( ) A B . C D ...查看


热门内容