1
计量经济学复习重点
第一章
1. 计量经济学的性质
计量经济学是以经济理论和经济数据的事实为依据运用数学和统计学的方法
通过建立数学模型来研究经济数量关系和规律的一门经济学科。
研究的主体出发点、归宿、核心经济现象及数量变化规律
研究的工具手段 模型 数学和统计方法
方法手段要服从研究对象的本质特征与数学不同,方法是为经济问题服务
计量经济研究的三个方面
理论即说明所研究对象经济行为的经济理论计量经济研究的基础
数据对所研究对象经济行为观测所得到的信息(计量经济研究的原料或依据)
方法模型的方法与估计、检验、分析的方法(计量经济研究的工具与手段
2. 计量经济学与相关学科的联系与区别
联系
●计量经济学研究的主体—经济现象和经济系的数量规律
●计量经济学必须以经济学提供的理论原则和经济运行规律为依据
●经济计量分析的结果对经济理论确定的原则加以验证、充实、完善
区别
●经济理论重在定性分析,并不对经济关系提供数量上的具体度量
●计量经济学对经济关系要作出定量的估计对经济理论提出经验的内容
3. 学习计量经济学的必要性
4. 计量经济学研究的基本思路和步骤
模型设定选择变量和数学关系式、估计参数确定变量间的数量关系 、
模型检验检验所得结论的可靠性 、模型应用作经济分析和经济预测
5. 模型的设定、参数估计、模型检验的要求
模型设定要求
●要有科学的理论依据
●选择适当的数学形式单一方程、联立方程线性形式、非线性形式
● 模型要兼顾真实性和实用性
● 包含随机误差项
● 方程中的变量要具有可观测性
参数估计要求
参数的估计值所估计参数的具体数值
参数的估计式估计参数数值的公式
6. 模型中的变量及其类型 2
从变量的因果关系区分
被解释变量应变量——要分析研究的变量
解释变量自变量—说明应变量变动主要原 因的变量非主要原因归入随机
误差项
从变量的性质区分
内生变量—其数值由模型所决定的变量是模型求解的结果
外生变量—其数值由模型以外决定的变量相关概念前定内生变量、前定变
量
注意:外生变量数值的变化能够影响内生变量的变化内生变量却不能反过来
影响外生变量
7. 计量经济研究中数据的类型
时间数列数据同一空间、不同时间、截面数据同一时间、不同空间、
混合数据面板数据 P
anel Data、 虚拟变量数据
8. 参数估计的方法类型
单一方程模型最常用的是普通最小二乘法、极大似然估计法等
联立方程模型常用二段最小二乘法和三段最小二乘法等
9. 建立计量经济模型的依据
第二章
1、变量间的关系 函数关系——相关关系
相关系数——对变量间线性相关程度的度量
3
◆相关关系的类型 ● 从涉及的变量数量看
简单相关、多重相关复相关
● 从变量相关关系的表现形式看
线性相关——散布图接近一条直线、非线性相关——散布图接近一条曲线
● 从变量相关关系变化的方向看
正相关——变量同方向变化同增同减、负相关——变量反方向变化一增一
减
不相关
2、现代意义的回归一个被解释变量对若干个 解释变量依存关系的研究
实质由固定的解释变量去估计被解释变量的平均值 4
3、总体回归函数PRF将总体被解释变量Y的条件均值表现为解释变量X 的某种函数 5
样本回归函数SRF将被解释变量Y 的样本条件均值表示为解释变量X 的某种函数。 6
●样本回归函数的函数形式
应与设定的总体回归函数的函数形式一致。 ●样本回归线还不是总体回归线至多只是未知总体回归线的近似表现。
总体回归函数与样本回归函数的区别与联系
4、随机扰动项被解释变量实际值与条件均值的偏差代表排除在模型以外的
所有因素对
Y的影响。
引入随机扰动项的原因
● 未知影响因素的代表
● 无法取得数据的已知影响因素的代表
● 众多细小影响因素的综合代表
● 模型的设定误差
● 变量的观测误差
● 变量内在随机性
5、简单线性回归的基本假定 1 2
i i iY X u 7
对模型和变量的假定
假定解释变量 X 是非随机的或者虽然是随机的但与扰动项 U 是不相关的,假定解释变量 X 在重复抽样中为固定值.假定变量和模型无设定误差 对随机扰动项u的假定: 8
6、普通最小二乘法OLS估计参数的基本思想及估计式9
10
11
12
7、 的无偏估计
8、对回归系数区间估计的思想和方法 13
9、拟合优度样本回归线对样本观测数据拟合的优劣程度拟合优度的度量建
立在对总变差分解的基础上
可决系数在总变差分解基础上确定的模型解释了的变差在总变差中的比重
可决系数的计算方法、特点与作用。14
10、对回归系数的假设检验 15
对回归系数 t 检验的思想与方法
用 P 值判断参数的显著性
16
11、对被解释变量的预测
被解释变量平均值预测与个别值预测的关系
被解释变量平均值的点预测和区间预测的方法
模型检验 17
经济意义检验
估计的解释变量的系数为0·758511说明城镇居民人均可支配收入每增加1
元人均年消费支出平均将增加0·758511元。这符合经济理论对边际消费倾
向的界定。
点预测
西部地区的城市居民人均年可支配收入第一步争取达到1000美元(按现有汇率
即人民币8270元)代入估计的模型得
第二步再争取达到1500美元(即人民币12405元)利用所估计的模型可预测这
时城市居民可能达到的人均年消费支出水平
第三章
1.多元线性回归模型是将总体回归函数描述为一个被解释变量与多个解释变量
之间线性关系的模型。
通常多元线性回归模型可以用矩阵形式表示
2.多元线性回归模型中对随机扰动项u的假定: f1?
282.2434 0.758511 8270 6555.132Y f2?282.2434 0.758511 12405 9691.577Y 0 1 1 2 2...i i i p pi iYβ βXβXβX u
Y = Xβ+u18
零 均值假定、
同方差假定、
无自相关假定、
随机扰动与解释变量不相关假定、
正态性假定、
无多重共线性假定。假定各解释变量之间不存在线性关系或各个解释变量观
测值之间线性无关。或解释变量观测值矩阵 列满秩( 列)。
3.多元线性回归模型参数的最小二乘估计式及期望、方差和标准误差
估计式 最小方差特性 E( ) 0 ( 1,2, , )
iu i n2~ (0, )iu Nσkβ?kβ19
期望值
4.在基本假定满足的条件下多元线性回归模型最小二乘估计式是最佳线性无
偏估计式。
5. 多元线性回归模型中参数区间估计的方法。
6. 多重可决系数的意义和计算方法
修正可决系数的作用和方法
7. F显著性检验是对多元线性回归模型中所有解释变量联合显著性的检
验F检验是在方差分析基础上进行的。
2 2? ?
? ?
[ - ] 1-jαjj j jαjjPβtσcβ βtσc
2
2
2RSS
1- 1-
TSS ( - )i
ie
R
Y Y
2 2
2
2 2( - )
-1
1- 1-
( - ) ( -1) - ( - )i ii ie n k e
n
R
Y Y n n k Y Y
ESS ( -1)
~ ( -1, - )
RSS ( - )
k
F F k n k
n k
20
21
8. 多元回归分析中为了分别检验当其它解释变量不变时各个解释变量是
否对被解释变量有显著影响需要分别对所估计的各个回归系数作t检验
*
^?
?
-
-
~ ( - )
?
?
SE( )j j
j j
j jjβ β
β β
t t n k
β σc
22
利用多元线性回归模型作被解释变量平均值预测与个别值预测的
方法。
点预测
平均值
个别值
?
?f
YFXβ2 2? ?
? ?
- E( )F F FY tσY Y tσ
-1 -1
F F F FX (X X) X X (X X) X2 2? ?
? ?
- 1 1F F FY tσY Y tσ
-1
F FX (X X) X-1F FX (X X) X23
案例分析中国税收增长的分析
理论分析
影响中国税收收入增长的主要因素可能有
1从宏观经济看经济整体增长是税收增长的基本源泉。
2社会经济的发展和社会保障等都对公共财政提出要求公共财政的需求
对当年的税收收入可能会有一定的影响。
3物价水平。中国的税制结构以流转税为主以现行价格计算的GDP和经
营者的收入水平都与物价水平有关。
4税收政策因素。 24
25
26
第四章 多重共线性
1.多重共线性是指各个解释变量之间有准确或近似准确的线性关系。
2.多重共线性的后果 如果各个解释变量之间有完全的共线性则它们的
回归系数是不确定的并且它们的方差会无穷大。 如果共线性是高度的但不
完全的回归系数可估计但有较大的标准误差。回归系数不能准确地估计。
3.产生多重共线性的背景
1.经济变量之间具有共同变化趋势。
2.模型中包含滞后变量。
3.利用截面数据建立模型也可能出现多重共线性。
4.样本数据自身的原因。
3.诊断共线性的经验方法
(1) 表现为可决系数异常高而回归系数的t 检验不显著。
(2) 变量之间的零阶或简单相关系数。多个解释变量时较低的零阶相关
也可能出现多重共线性需要检查偏相关系数。
(4)如果 高而偏相关系数低则多重共线性是可能的。
(5) 用解释变量间辅助回归的可决系数判断。
简单相关系数检验法
含义简单相关系数检验法是利用解释变量之间的线性相关程度去判断是否存
在严重多重共线性的一种简便方法。
判断规则一般而言如果每两个解释变量的简单相关系数(零阶相关系数)
比较高例如大于0.8则可认为存在着较严重的多重共线性。
方差扩大膨胀因子法 ●方差膨胀因子越大表明解释变量之间的多重共性越严重。反过来方差膨胀
因子越接近于1多重共线性越弱。 ●经验表明方差膨胀因子≥10时说明解释变量与其余解释变量之间有
严重的多重共线性且这种多重共线性可能会过度地影响最小二乘估计。
4.降低多重共线性的经验方法
(1)利用外部或先验信息
(2)横截面与时间序列数据并用
(3)剔除高度共线性的变量(如逐步回归)
(4)
数据转换
(5)获取补充数据或新数据 2R27
(6)选择有偏估计量如岭回归。
经验方法的效果取决于数据的性质和共线性的严重程度。
5.修正多重共线性的经验方法
1. 剔除变量法
把方差扩大因子最大者所对应的自变量首先剔除再重新建立回归方程直至回
归方程中不再存在严重的多重共线性。
注意: 若剔除了重要变量可能引起模型的设定误差。
2. 增大样本容量
如果样本容量增加会减小回归参数的方差标准误差也同样会减小。因此尽
可能地收集足够多的样本数据可以改进模型参数的估计。
问题增加样本数据在实际计量分析中常面临许多困难。
3. 变换模型形式
一般而言差分后变量之间的相关性要比差分前弱得多所以差分后的模型可
能降低出现共线性的可能性此时可直接估计差分方程。
问题差分会丢失一些信息差分模型的误差项可能存在序列相关可能会违
背经典线性回归模型的相关假设在具体运用时要慎重。
4. 利用非样本先验信息
通过经济理论分析能够得到某些参数之间的关系可以将这种关系作为约束条
件将此约束条件和样本信息结合起来进行约束最小二乘估计。
5. 横截面数据与时序数据并用
首先利用横截面数据估计出部分参数再利用时序数据估计出另外的部分参数
最后得到整个方程参数的估计。
注意这里包含着假设即参数的横截面估计和从纯粹时间序列分析中得到的
估计是一样的。
逐步回归法
1用被解释变量对每一个所考虑的解释变量做简单回归。
2以对被解释变量贡献最大的解释变量所对应的回归方程为基础按对被解
释变量贡献大小的顺序逐个引入其余的解释变量。若新变量的引入改进了 28
和 F检验且回归参数的t 检验在统计上也是显著的则在模型中保留该量。
29
30
计算各解释变量的相关系数
表明各解释变量间确实存在严重的多重共线性
31
第五章异 方 差 性
1.异方差性是指模型中随机误差项的方差不是常量而且它的变化与解释变量的变动
有关。
2.产生异方差性的主要原因有一模型中省略了某些重要的解释变量、二模
型的设定误差、三数据的测量误差四截面数据中总体各单位的差异利用
平均数作为样本数据等。
3.存在异方差性时对模型的OLS估计仍然具有无偏性但最小方差性不成立从而导
致参数的显著性检验失效和预测的精度降低。
4.检验异方差性的方法有多种
常用的有图形法 32
Goldfeld-Q
unandt检验、
作用检验递增性(或递减性)异方差。
基本思想将样本分为两部分然后分别对两个样本进行回归并计算两个子样
的残差平方和所构成的比以此为统计量来判断是否存在异方差。
一 检验的前提条件要求检验使用的为大样本容量、除了同方差假定不成立
外其它假定均满足。
White检验、
一基本思想
不需要关于异方差的任何先验信息只需要在大样本的情况下将OLS估计后的残
差平方对常数、解释变量、解释变量的平方及其交叉乘积等所构成一个辅助回归利
用辅助回归建立相应的检验统计量来判断异方差性。
检验的特点
要求变量的取值为大样本、不仅能够检验异方差的存在性同时在多变量的
情况下还能判断出是哪一个变量引起的异方差。
ARCH检验
检验的基本思想
在时间序列数据中可认为存在的异方差性为ARCH过程并通过检验这一过程是否成
立去判断时间序列是否存在异方差。 33
Glejser检验
检验的基本思想
由OLS法得到残差取得绝对值然后将对某个解释变量回归根据回归模型的显
著性和拟合优度来判断是否存在异方差。
检验的特点
不仅能对异方差的存在进行判断而且还能对异方差随某个解释变量变化的函数形
式 进行诊断。该检验要求变量的观测值为大样本。
5.异方差性的主要方法是加权最小二乘法也可以用变量变换法和对数变换法。变量
变换法与加权最小二乘法实际是等价的。
第六章自相关
1.当总体回归模型的随机误差项在不同观测点上彼此相关时就产生了自相关问
题。
2.自相关的出现有多种原因。时间序列的惯性、模型设定错误、数据的处理等
等。经济活动的滞后效应、经济系统的惯性 3.在出现自相关时普通最小二乘估计量依然是无偏、一致的但不再是有效
的。通常的t 检验和F 检验都不能有效地使用。
4.为了研究问题的方便和考虑实际问题的代表意义我们通常将自相关设定为
一阶自相关即AR(1)模式。用一阶自相关系数 表示自相关的程度与方向。当
然实际问题也存在AR(m)模式或其它模式。 34
6.如果自相关系数 是已知的我们可以使用广义差分法消除序列相关。
7.如果自相关系数是 未知的我们可采用科克伦奥克特迭代法求得 的估
计值然后用广义差分法消除序列相关。
8自相关的检验
● 图示检验法 35
36
DW检验法
1
计量经济学复习重点
第一章
1. 计量经济学的性质
计量经济学是以经济理论和经济数据的事实为依据运用数学和统计学的方法
通过建立数学模型来研究经济数量关系和规律的一门经济学科。
研究的主体出发点、归宿、核心经济现象及数量变化规律
研究的工具手段 模型 数学和统计方法
方法手段要服从研究对象的本质特征与数学不同,方法是为经济问题服务
计量经济研究的三个方面
理论即说明所研究对象经济行为的经济理论计量经济研究的基础
数据对所研究对象经济行为观测所得到的信息(计量经济研究的原料或依据)
方法模型的方法与估计、检验、分析的方法(计量经济研究的工具与手段
2. 计量经济学与相关学科的联系与区别
联系
●计量经济学研究的主体—经济现象和经济系的数量规律
●计量经济学必须以经济学提供的理论原则和经济运行规律为依据
●经济计量分析的结果对经济理论确定的原则加以验证、充实、完善
区别
●经济理论重在定性分析,并不对经济关系提供数量上的具体度量
●计量经济学对经济关系要作出定量的估计对经济理论提出经验的内容
3. 学习计量经济学的必要性
4. 计量经济学研究的基本思路和步骤
模型设定选择变量和数学关系式、估计参数确定变量间的数量关系 、
模型检验检验所得结论的可靠性 、模型应用作经济分析和经济预测
5. 模型的设定、参数估计、模型检验的要求
模型设定要求
●要有科学的理论依据
●选择适当的数学形式单一方程、联立方程线性形式、非线性形式
● 模型要兼顾真实性和实用性
● 包含随机误差项
● 方程中的变量要具有可观测性
参数估计要求
参数的估计值所估计参数的具体数值
参数的估计式估计参数数值的公式
6. 模型中的变量及其类型 2
从变量的因果关系区分
被解释变量应变量——要分析研究的变量
解释变量自变量—说明应变量变动主要原 因的变量非主要原因归入随机
误差项
从变量的性质区分
内生变量—其数值由模型所决定的变量是模型求解的结果
外生变量—其数值由模型以外决定的变量相关概念前定内生变量、前定变
量
注意:外生变量数值的变化能够影响内生变量的变化内生变量却不能反过来
影响外生变量
7. 计量经济研究中数据的类型
时间数列数据同一空间、不同时间、截面数据同一时间、不同空间、
混合数据面板数据 P
anel Data、 虚拟变量数据
8. 参数估计的方法类型
单一方程模型最常用的是普通最小二乘法、极大似然估计法等
联立方程模型常用二段最小二乘法和三段最小二乘法等
9. 建立计量经济模型的依据
第二章
1、变量间的关系 函数关系——相关关系
相关系数——对变量间线性相关程度的度量
3
◆相关关系的类型 ● 从涉及的变量数量看
简单相关、多重相关复相关
● 从变量相关关系的表现形式看
线性相关——散布图接近一条直线、非线性相关——散布图接近一条曲线
● 从变量相关关系变化的方向看
正相关——变量同方向变化同增同减、负相关——变量反方向变化一增一
减
不相关
2、现代意义的回归一个被解释变量对若干个 解释变量依存关系的研究
实质由固定的解释变量去估计被解释变量的平均值 4
3、总体回归函数PRF将总体被解释变量Y的条件均值表现为解释变量X 的某种函数 5
样本回归函数SRF将被解释变量Y 的样本条件均值表示为解释变量X 的某种函数。 6
●样本回归函数的函数形式
应与设定的总体回归函数的函数形式一致。 ●样本回归线还不是总体回归线至多只是未知总体回归线的近似表现。
总体回归函数与样本回归函数的区别与联系
4、随机扰动项被解释变量实际值与条件均值的偏差代表排除在模型以外的
所有因素对
Y的影响。
引入随机扰动项的原因
● 未知影响因素的代表
● 无法取得数据的已知影响因素的代表
● 众多细小影响因素的综合代表
● 模型的设定误差
● 变量的观测误差
● 变量内在随机性
5、简单线性回归的基本假定 1 2
i i iY X u 7
对模型和变量的假定
假定解释变量 X 是非随机的或者虽然是随机的但与扰动项 U 是不相关的,假定解释变量 X 在重复抽样中为固定值.假定变量和模型无设定误差 对随机扰动项u的假定: 8
6、普通最小二乘法OLS估计参数的基本思想及估计式9
10
11
12
7、 的无偏估计
8、对回归系数区间估计的思想和方法 13
9、拟合优度样本回归线对样本观测数据拟合的优劣程度拟合优度的度量建
立在对总变差分解的基础上
可决系数在总变差分解基础上确定的模型解释了的变差在总变差中的比重
可决系数的计算方法、特点与作用。14
10、对回归系数的假设检验 15
对回归系数 t 检验的思想与方法
用 P 值判断参数的显著性
16
11、对被解释变量的预测
被解释变量平均值预测与个别值预测的关系
被解释变量平均值的点预测和区间预测的方法
模型检验 17
经济意义检验
估计的解释变量的系数为0·758511说明城镇居民人均可支配收入每增加1
元人均年消费支出平均将增加0·758511元。这符合经济理论对边际消费倾
向的界定。
点预测
西部地区的城市居民人均年可支配收入第一步争取达到1000美元(按现有汇率
即人民币8270元)代入估计的模型得
第二步再争取达到1500美元(即人民币12405元)利用所估计的模型可预测这
时城市居民可能达到的人均年消费支出水平
第三章
1.多元线性回归模型是将总体回归函数描述为一个被解释变量与多个解释变量
之间线性关系的模型。
通常多元线性回归模型可以用矩阵形式表示
2.多元线性回归模型中对随机扰动项u的假定: f1?
282.2434 0.758511 8270 6555.132Y f2?282.2434 0.758511 12405 9691.577Y 0 1 1 2 2...i i i p pi iYβ βXβXβX u
Y = Xβ+u18
零 均值假定、
同方差假定、
无自相关假定、
随机扰动与解释变量不相关假定、
正态性假定、
无多重共线性假定。假定各解释变量之间不存在线性关系或各个解释变量观
测值之间线性无关。或解释变量观测值矩阵 列满秩( 列)。
3.多元线性回归模型参数的最小二乘估计式及期望、方差和标准误差
估计式 最小方差特性 E( ) 0 ( 1,2, , )
iu i n2~ (0, )iu Nσkβ?kβ19
期望值
4.在基本假定满足的条件下多元线性回归模型最小二乘估计式是最佳线性无
偏估计式。
5. 多元线性回归模型中参数区间估计的方法。
6. 多重可决系数的意义和计算方法
修正可决系数的作用和方法
7. F显著性检验是对多元线性回归模型中所有解释变量联合显著性的检
验F检验是在方差分析基础上进行的。
2 2? ?
? ?
[ - ] 1-jαjj j jαjjPβtσcβ βtσc
2
2
2RSS
1- 1-
TSS ( - )i
ie
R
Y Y
2 2
2
2 2( - )
-1
1- 1-
( - ) ( -1) - ( - )i ii ie n k e
n
R
Y Y n n k Y Y
ESS ( -1)
~ ( -1, - )
RSS ( - )
k
F F k n k
n k
20
21
8. 多元回归分析中为了分别检验当其它解释变量不变时各个解释变量是
否对被解释变量有显著影响需要分别对所估计的各个回归系数作t检验
*
^?
?
-
-
~ ( - )
?
?
SE( )j j
j j
j jjβ β
β β
t t n k
β σc
22
利用多元线性回归模型作被解释变量平均值预测与个别值预测的
方法。
点预测
平均值
个别值
?
?f
YFXβ2 2? ?
? ?
- E( )F F FY tσY Y tσ
-1 -1
F F F FX (X X) X X (X X) X2 2? ?
? ?
- 1 1F F FY tσY Y tσ
-1
F FX (X X) X-1F FX (X X) X23
案例分析中国税收增长的分析
理论分析
影响中国税收收入增长的主要因素可能有
1从宏观经济看经济整体增长是税收增长的基本源泉。
2社会经济的发展和社会保障等都对公共财政提出要求公共财政的需求
对当年的税收收入可能会有一定的影响。
3物价水平。中国的税制结构以流转税为主以现行价格计算的GDP和经
营者的收入水平都与物价水平有关。
4税收政策因素。 24
25
26
第四章 多重共线性
1.多重共线性是指各个解释变量之间有准确或近似准确的线性关系。
2.多重共线性的后果 如果各个解释变量之间有完全的共线性则它们的
回归系数是不确定的并且它们的方差会无穷大。 如果共线性是高度的但不
完全的回归系数可估计但有较大的标准误差。回归系数不能准确地估计。
3.产生多重共线性的背景
1.经济变量之间具有共同变化趋势。
2.模型中包含滞后变量。
3.利用截面数据建立模型也可能出现多重共线性。
4.样本数据自身的原因。
3.诊断共线性的经验方法
(1) 表现为可决系数异常高而回归系数的t 检验不显著。
(2) 变量之间的零阶或简单相关系数。多个解释变量时较低的零阶相关
也可能出现多重共线性需要检查偏相关系数。
(4)如果 高而偏相关系数低则多重共线性是可能的。
(5) 用解释变量间辅助回归的可决系数判断。
简单相关系数检验法
含义简单相关系数检验法是利用解释变量之间的线性相关程度去判断是否存
在严重多重共线性的一种简便方法。
判断规则一般而言如果每两个解释变量的简单相关系数(零阶相关系数)
比较高例如大于0.8则可认为存在着较严重的多重共线性。
方差扩大膨胀因子法 ●方差膨胀因子越大表明解释变量之间的多重共性越严重。反过来方差膨胀
因子越接近于1多重共线性越弱。 ●经验表明方差膨胀因子≥10时说明解释变量与其余解释变量之间有
严重的多重共线性且这种多重共线性可能会过度地影响最小二乘估计。
4.降低多重共线性的经验方法
(1)利用外部或先验信息
(2)横截面与时间序列数据并用
(3)剔除高度共线性的变量(如逐步回归)
(4)
数据转换
(5)获取补充数据或新数据 2R27
(6)选择有偏估计量如岭回归。
经验方法的效果取决于数据的性质和共线性的严重程度。
5.修正多重共线性的经验方法
1. 剔除变量法
把方差扩大因子最大者所对应的自变量首先剔除再重新建立回归方程直至回
归方程中不再存在严重的多重共线性。
注意: 若剔除了重要变量可能引起模型的设定误差。
2. 增大样本容量
如果样本容量增加会减小回归参数的方差标准误差也同样会减小。因此尽
可能地收集足够多的样本数据可以改进模型参数的估计。
问题增加样本数据在实际计量分析中常面临许多困难。
3. 变换模型形式
一般而言差分后变量之间的相关性要比差分前弱得多所以差分后的模型可
能降低出现共线性的可能性此时可直接估计差分方程。
问题差分会丢失一些信息差分模型的误差项可能存在序列相关可能会违
背经典线性回归模型的相关假设在具体运用时要慎重。
4. 利用非样本先验信息
通过经济理论分析能够得到某些参数之间的关系可以将这种关系作为约束条
件将此约束条件和样本信息结合起来进行约束最小二乘估计。
5. 横截面数据与时序数据并用
首先利用横截面数据估计出部分参数再利用时序数据估计出另外的部分参数
最后得到整个方程参数的估计。
注意这里包含着假设即参数的横截面估计和从纯粹时间序列分析中得到的
估计是一样的。
逐步回归法
1用被解释变量对每一个所考虑的解释变量做简单回归。
2以对被解释变量贡献最大的解释变量所对应的回归方程为基础按对被解
释变量贡献大小的顺序逐个引入其余的解释变量。若新变量的引入改进了 28
和 F检验且回归参数的t 检验在统计上也是显著的则在模型中保留该量。
29
30
计算各解释变量的相关系数
表明各解释变量间确实存在严重的多重共线性
31
第五章异 方 差 性
1.异方差性是指模型中随机误差项的方差不是常量而且它的变化与解释变量的变动
有关。
2.产生异方差性的主要原因有一模型中省略了某些重要的解释变量、二模
型的设定误差、三数据的测量误差四截面数据中总体各单位的差异利用
平均数作为样本数据等。
3.存在异方差性时对模型的OLS估计仍然具有无偏性但最小方差性不成立从而导
致参数的显著性检验失效和预测的精度降低。
4.检验异方差性的方法有多种
常用的有图形法 32
Goldfeld-Q
unandt检验、
作用检验递增性(或递减性)异方差。
基本思想将样本分为两部分然后分别对两个样本进行回归并计算两个子样
的残差平方和所构成的比以此为统计量来判断是否存在异方差。
一 检验的前提条件要求检验使用的为大样本容量、除了同方差假定不成立
外其它假定均满足。
White检验、
一基本思想
不需要关于异方差的任何先验信息只需要在大样本的情况下将OLS估计后的残
差平方对常数、解释变量、解释变量的平方及其交叉乘积等所构成一个辅助回归利
用辅助回归建立相应的检验统计量来判断异方差性。
检验的特点
要求变量的取值为大样本、不仅能够检验异方差的存在性同时在多变量的
情况下还能判断出是哪一个变量引起的异方差。
ARCH检验
检验的基本思想
在时间序列数据中可认为存在的异方差性为ARCH过程并通过检验这一过程是否成
立去判断时间序列是否存在异方差。 33
Glejser检验
检验的基本思想
由OLS法得到残差取得绝对值然后将对某个解释变量回归根据回归模型的显
著性和拟合优度来判断是否存在异方差。
检验的特点
不仅能对异方差的存在进行判断而且还能对异方差随某个解释变量变化的函数形
式 进行诊断。该检验要求变量的观测值为大样本。
5.异方差性的主要方法是加权最小二乘法也可以用变量变换法和对数变换法。变量
变换法与加权最小二乘法实际是等价的。
第六章自相关
1.当总体回归模型的随机误差项在不同观测点上彼此相关时就产生了自相关问
题。
2.自相关的出现有多种原因。时间序列的惯性、模型设定错误、数据的处理等
等。经济活动的滞后效应、经济系统的惯性 3.在出现自相关时普通最小二乘估计量依然是无偏、一致的但不再是有效
的。通常的t 检验和F 检验都不能有效地使用。
4.为了研究问题的方便和考虑实际问题的代表意义我们通常将自相关设定为
一阶自相关即AR(1)模式。用一阶自相关系数 表示自相关的程度与方向。当
然实际问题也存在AR(m)模式或其它模式。 34
6.如果自相关系数 是已知的我们可以使用广义差分法消除序列相关。
7.如果自相关系数是 未知的我们可采用科克伦奥克特迭代法求得 的估
计值然后用广义差分法消除序列相关。
8自相关的检验
● 图示检验法 35
36
DW检验法