[精品]毕达哥拉斯定理证明

篇1:毕达哥拉斯定理证明

做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形.

分别以CF,AE为边长做正方形FCJI和AEIG,

∵EF=DF-DE=b-a,EI=b,

∴FI=a,

∴G,I,J在同一直线上,

∵CJ=CF=a,CB=CD=c,

∠CJB = ∠CFD = 90º,

∴RtΔCJB ≌ RtΔCFD ,

同理,RtΔABG ≌ RtΔADE,

∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE

∴∠ABG = ∠BCJ,

∵∠BCJ +∠CBJ= 90º,

∴∠ABG +∠CBJ= 90º,

∵∠ABC= 90º,

∴G,B,I,J在同一直线上,

篇2:毕达哥拉斯定理证明

解:在网格内,以两个直角边为边长的小正方形面积和,等于以斜边为边长的的正方形面积。 勾股定理的内容:直角三角形两直角边a、b的平方和等于斜边c的平方,

a^2;+b^2;=c^2;

说明:我国古代学者把直角三角形的较短直角边称为勾,较长直角边为股,斜边称为弦,所以把这个定理成为勾股定理。勾股定理揭示了直角三角形边之间的关系。

举例:如直角三角形的两个直角边分别为3、4,则斜边c^2= a^2+b^2=9+16=25即c=5 则说明斜边为5。

篇1:毕达哥拉斯定理证明

做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形.

分别以CF,AE为边长做正方形FCJI和AEIG,

∵EF=DF-DE=b-a,EI=b,

∴FI=a,

∴G,I,J在同一直线上,

∵CJ=CF=a,CB=CD=c,

∠CJB = ∠CFD = 90º,

∴RtΔCJB ≌ RtΔCFD ,

同理,RtΔABG ≌ RtΔADE,

∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE

∴∠ABG = ∠BCJ,

∵∠BCJ +∠CBJ= 90º,

∴∠ABG +∠CBJ= 90º,

∵∠ABC= 90º,

∴G,B,I,J在同一直线上,

篇2:毕达哥拉斯定理证明

解:在网格内,以两个直角边为边长的小正方形面积和,等于以斜边为边长的的正方形面积。 勾股定理的内容:直角三角形两直角边a、b的平方和等于斜边c的平方,

a^2;+b^2;=c^2;

说明:我国古代学者把直角三角形的较短直角边称为勾,较长直角边为股,斜边称为弦,所以把这个定理成为勾股定理。勾股定理揭示了直角三角形边之间的关系。

举例:如直角三角形的两个直角边分别为3、4,则斜边c^2= a^2+b^2=9+16=25即c=5 则说明斜边为5。


相关文章

  • 勾股定理公开课精品教案
  • 课题:18.1 勾股定理(1) --直角三角形三边的关系 袁婉霞 一.教学目标 (一)知识目标 1.创设情境引出问题,激起学生探索直角三角形三边的关系的兴趣. 2.让学生带着问题体验勾股定理的探索过程,并正确运用勾股定理解决相关问题. (二 ...查看


  • 微积分发展简史-中国科学技术大学
  • 精品文档!!!欢迎下载大家下载阅读!!!! 微积分发展简史 一.微积分的创立 微积分中的极限.穷竭思想可以追溯到两千五百年前的古希腊文明,著名的毕达哥拉斯学派,经过了漫长时期的酝酿,到了17世纪,在工业革命的刺激下,终于通过牛顿(Newto ...查看


  • 勾股定理的多种证法
  • 勾股定理,是几何学中一颗璀璨的明珠,是几何学的奠基定理,在高等数学和其他学科学领域有着极为广泛的应用.勾股定理发现最早的人是我国公元前1100年左右的西周时期的数学家商高,根据记载,商高曾经和周公讨论过"勾3股4弦5"的 ...查看


  • 证明毕达哥拉斯定理
  • 证明毕达哥拉斯定理 制作:有丘直方 证明毕达哥拉斯定理 制作:有丘直方 毕达哥拉斯定理 AB2AC2BC2 或者可以这么说: 直角三角形的一条直边的长度乘自己得到的积和另一条直边的长度乘自己得到的积相加的和等于斜边的长度乘自己得到的积- ...查看


  • 探究:关于勾股定理的那点事(勾股的历史.证明,勾股数探究等)
  • 探究:关于勾股定理的证明的那点事 在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,这个定理在中国又称为"商高定理",在外国称为"毕达哥拉斯定理"(Pythagor ...查看


  • 探索勾股定理一
  • 1探索勾股定理(共3课时) 第1课时 勾股定理有着悠久的历史,蕴含着丰富的传统文化,他表述了直角三角形三边之间的关系,你知道是什么关系吗? 如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2即直角三角形两直角边的平方和等于斜 ...查看


  • 初中数学课堂精彩的瞬间感悟浅析
  • 浅析初中数学课堂精彩瞬间 独山县第一中学 韦仁剑 摘要:每一节数学课精彩予否不只是老师的实力问题,更是老师的用心问题,数学课不精彩对于学生而言简直就是活受罪,如坐针毡.数学课的精彩得从推开教室门的那一刻起,老师必须精神饱满,眼神,姿态都要能 ...查看


  • 勾股定理的发现和证明
  • 勾股定理的发现和证明 中国最早的一部数学著作--<周髀算经>的开头,记载着一段周公向商高请教数学知识的对话: 周公问:"我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才 ...查看


  • 勾股定理论文
  • 勾股定理论文 一.勾股定理的简介 勾股定律是初等几何的著名定理之一.直角三角形两直角边上正方形面积的和等于斜边上正方形的面积,即如果直角三角形两直角边长度为a 和b ,斜边长度为c ,那么a^2+b^2=c^2.此定理很早已被发现.古埃及人 ...查看


热门内容