六年级上册数学第二单元分数乘法知识点总结

第一单元分数乘法知识点总结

(一)、分数乘法的意义。(只看第二个因数)

1、分数乘整数(第二个因数为整数时):分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数和得简便运算。

求一个分数的几倍是多少 求几个相同分数的和是多少,就用这个分数乘”几“

222 例如: ×3,表示:3个 相加是多少,还表示的3倍是多少。 333

2、一个数(小数、分数、整数)乘分数(第二因数为真分数时):一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

55例如:6× ,表示:6的 是多少。 12122727 × ,表示:的是多少。 7878

3、一个数(小数、分数、整数)乘分数(第二因数为大于1的分数时):一个数乘分数的意义与整数乘法的意义也不相同,是表示这个数的几倍是多少。

5252例如: ×1 ,表示:的1 倍是多少。 123123

(二)、分数乘法的计算法则:

1、分数乘整数的运算法则是:用分数的分子和整数相乘的积作分子,分母不变。 带分数乘整数的计算方法,先把带分数化成假分数,再按照分数乘整数的方法进行计算

注:(1)为了计算简便能约分的可先约分再计算。(分母和整数约分)

(2)约分是用整数和下面的分母约掉最大公因数。(计算结果必须是最简分数)

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。用字母表示为x=(a不等于0,c 不等于0)

(分子乘分子,分母乘分母)

分数乘分数的计算方法也适用于小数乘分数,先把小数化成分数,再计算,列如0.5x =x =

分数乘分数,这里的分数也可以是带分数,先把带分数化成假分数,再计算。列如2 x = x =

分数乘分数的计算方法同样适用于分乘整数,先把整数化成分母是1的分

数,再计算。列如 x4 = x =

注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:

一个数(0除外)乘大于1的数,积大于这个数。a ×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。a ×b=c,当b 注:1. 在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。(希望同学们好好理解)

(四)分数乘法混合运算

1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:a×(b±c)=a×b±a×c

(五)、解决实际问题。

1分数应用题一般解题步行骤。

(1)找出含有分率的关键句。

(2)找出单位“1”的量

(3)根据线段图写出等量关系式:

单位“1”的量×对应分率=对应量。

(4)根据已知条件和问题列式解答。

2.乘法应用题有关注意概念。

(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?

(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。当句子中的单位“1”不明显时,把原来的量看做单位“1”。

(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。

(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”

(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。

(6)当关键句中的单位“1”不明显时,要把关键句补充完整, 补充成“谁是谁的几分之几”或“甲比乙多几分之几”、 “甲比乙少几分之几”的形式。

(7)乘法应用题中,单位“1”是已知的。

(8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则。

(9).找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。 单位“1”×分率=比较量 ; 比较量÷分率=单位“1”

(10).单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。

(11).单位“1”的特点: ①单位“1”为分母; ②单位“1”为不变量。

(12)分率与量要对应。

①多的对应量对多的分率;

②少的对应量对少的分率;

③增加的对应量对增加的分率;

④减少的对应量对减少的分率;

⑤提高的对应量对提高的分率;

⑥降低的对应量对降低的分率;

⑦工作总量的对应量对工作总量的分率;

⑧工作效率的对应量对工作效率的分率;

⑨部分的对应量对部分的分率;

⑩总量的对应量对总量的分率;

例如:1、求一个数的几分之几是多少?(求一个数的几分之几用乘法计算) 方法:单位“1”的数量×对应分率=对应数量。

2、分数的连乘。找到每一个分率的单位“1”。

第一单元分数乘法知识点总结

(一)、分数乘法的意义。(只看第二个因数)

1、分数乘整数(第二个因数为整数时):分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数和得简便运算。

求一个分数的几倍是多少 求几个相同分数的和是多少,就用这个分数乘”几“

222 例如: ×3,表示:3个 相加是多少,还表示的3倍是多少。 333

2、一个数(小数、分数、整数)乘分数(第二因数为真分数时):一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

55例如:6× ,表示:6的 是多少。 12122727 × ,表示:的是多少。 7878

3、一个数(小数、分数、整数)乘分数(第二因数为大于1的分数时):一个数乘分数的意义与整数乘法的意义也不相同,是表示这个数的几倍是多少。

5252例如: ×1 ,表示:的1 倍是多少。 123123

(二)、分数乘法的计算法则:

1、分数乘整数的运算法则是:用分数的分子和整数相乘的积作分子,分母不变。 带分数乘整数的计算方法,先把带分数化成假分数,再按照分数乘整数的方法进行计算

注:(1)为了计算简便能约分的可先约分再计算。(分母和整数约分)

(2)约分是用整数和下面的分母约掉最大公因数。(计算结果必须是最简分数)

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。用字母表示为x=(a不等于0,c 不等于0)

(分子乘分子,分母乘分母)

分数乘分数的计算方法也适用于小数乘分数,先把小数化成分数,再计算,列如0.5x =x =

分数乘分数,这里的分数也可以是带分数,先把带分数化成假分数,再计算。列如2 x = x =

分数乘分数的计算方法同样适用于分乘整数,先把整数化成分母是1的分

数,再计算。列如 x4 = x =

注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:

一个数(0除外)乘大于1的数,积大于这个数。a ×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。a ×b=c,当b 注:1. 在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。(希望同学们好好理解)

(四)分数乘法混合运算

1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:a×(b±c)=a×b±a×c

(五)、解决实际问题。

1分数应用题一般解题步行骤。

(1)找出含有分率的关键句。

(2)找出单位“1”的量

(3)根据线段图写出等量关系式:

单位“1”的量×对应分率=对应量。

(4)根据已知条件和问题列式解答。

2.乘法应用题有关注意概念。

(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?

(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。当句子中的单位“1”不明显时,把原来的量看做单位“1”。

(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。

(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”

(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。

(6)当关键句中的单位“1”不明显时,要把关键句补充完整, 补充成“谁是谁的几分之几”或“甲比乙多几分之几”、 “甲比乙少几分之几”的形式。

(7)乘法应用题中,单位“1”是已知的。

(8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则。

(9).找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。 单位“1”×分率=比较量 ; 比较量÷分率=单位“1”

(10).单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。

(11).单位“1”的特点: ①单位“1”为分母; ②单位“1”为不变量。

(12)分率与量要对应。

①多的对应量对多的分率;

②少的对应量对少的分率;

③增加的对应量对增加的分率;

④减少的对应量对减少的分率;

⑤提高的对应量对提高的分率;

⑥降低的对应量对降低的分率;

⑦工作总量的对应量对工作总量的分率;

⑧工作效率的对应量对工作效率的分率;

⑨部分的对应量对部分的分率;

⑩总量的对应量对总量的分率;

例如:1、求一个数的几分之几是多少?(求一个数的几分之几用乘法计算) 方法:单位“1”的数量×对应分率=对应数量。

2、分数的连乘。找到每一个分率的单位“1”。


相关文章

  • 人教版小学六年级数学上册第二单元
  • 人教版小学六年级数学上册第二单元<倒数的认识> 教材分析 <倒数的认识>这一节课,它是在学生掌握分数乘法的意义和分数乘法计算法则的基础上进行教学的,一是为了巩固分数乘法.二是为了下一步学习分数除法的一个重要环节,是为 ...查看


  • 六年级新课标数学上册标准
  • 第一单元 分数乘法 一.与实验教材的主要区别 突出强调分数乘法意义的两种形式,增加例2,作为教学"求一个数的几分之几是多少,用乘法计算"的铺垫. 解决"求一个数的几分之几是多少"的实际问题不单独编排, ...查看


  • 人教版小学数学课本目录
  • 人教版小学数学教材全套目录[1-6年级] (2015-07-17 23:59:25) 转载▼ 标签: 分类: 小学二年级数学 教育 育儿 一年级上册 第一单元数一数 第二单元比一比: 1. 比多少 2. 比长短 3. 比高矮 第三单元 1- ...查看


  • 2014新版人教版六年级数学上册教案表格式
  • 电子备课教案 ( 2014 年---- 2015年学年度第 一 学期) 学 校: 科 目: 年 级: 教 师: 第 一 单元 分数乘法 教学内容: 1. 分数的乘法 2. 分数混合运算 3. 用分数解决问题 教材分析:本单元是在整数乘法.分 ...查看


  • 分数乘整数说课稿(共10篇)
  • 篇一:六年级上册<分数乘法第一课时>说课稿 (鞠躬) 各位评委老师你们好. 我是1号选手,今天我说课的课题是(分数乘法 ), 我将从说教材.说教法学法.说教学 过程.说板书设计这四个阶段来完成我的说课. 一.说教材. ( 分数乘 ...查看


  • 人教版六年级上册数学计划
  • 人教版六年级上册数学计划 一.指导思想 严格遵循党的教育方针, 爱岗敬业, 正确传授学生知识, 并对学生进行适当的思想教育, 培养其成为新时期现代化建设的接班人和建设者. 认真培养其数感, 提高其计算能力, 培养其空间观念, 并能把所学的知 ...查看


  • 若水情的图书馆小学二年级数学文章集
  • 小学二年级数学两位数乘法的巧算 小学二年级数学两位数乘法的巧算.对乘法要求以乘数是两位数的为主,一般不超过三位数.下面归纳总结出一些两位数乘法的巧算方法,以便提高学生的计算能力,增加灵活性.2. 两尾数相乘,作后两位数.6×4=24 作后两 ...查看


  • 六年级数学上册学期计划-学期工作计划
  • 六年级数学上册学期计划 一.教学内容: 1.在数与代数 第2单元:分数乘法 第3单元:分数除法 第5单元:百分数 分数乘法和除法的教学是在前面学习整数.小数有关计算的基础上,培养学生分数四则运算能力和解决有关分数的实际题目的能力.分数四则运 ...查看


  • 六年级数学上册教学设计:整数乘法运算法则
  • 六年级数学上册教案:整数乘法运算法则教学目标:1.理解整数的运算定律对于分数乘法同样适应.2.能灵活掌握分数简便计算的方法.3.能正确计算. 单元知识结构图分数乘以整数(求几个几是多少)分数意义一个数乘以分数(求一个数的几分之几是多少)分数 ...查看


热门内容