采后赤霉酸处理对番茄果实冷害的影响

现代食品科技 Modern Food Science and Technology

2016, Vol.32, No.11

采后赤霉酸处理对番茄果实冷害的影响

朱珍,丁洋,赵金红,聂莹,张瑜,唐选明

(中国农业科学院农产品加工研究所,农业部农产品加工重点实验室,北京 100193)

摘要:本文研究外源赤霉酸(gibberellic acid,GA 3)处理对采后番茄果实抗冷性的影响。以绿熟期的浙粉702番茄果实为试材,室温下经0、0.2、0.5和1 mM GA3水溶液处理30 min后,在4 ℃条件下贮藏,分别在贮藏第0、3、7、14、21和28 d时取样,于室温下放置3 d 后测定番茄果实的冷害指数以确定适宜的GA 3浓度,并观察此浓度GA 3处理后番茄果实微观结构变化,测定其丙二醛(malondialdehyde ,MDA )含量、离子渗透率以及细胞膜磷脂相关酶:磷脂酶C (phospholipase C,PLC )、磷脂酶D (phospholipase D, PLD )、脂氧合酶(lipoxidase ,LOX )和细胞壁降解酶多聚半乳糖醛酸酶(polygalacturonase ,PG )活性的变化。结果表明:与对照组相比,外源0.5 mM GA3处理能有效减轻番茄果实的冷害症状、保护细胞的微观结构、抑制MDA 含量和离子渗透率的增加以及PLC 、PLD 、LOX 和PG 活性的增强,从而提高采后番茄果实的抗冷性。

关键词:赤霉酸;番茄果实;冷害;抗冷性

文章篇号:1673-9078(2016)11-184-189 DOI: 10.13982/j.mfst.1673-9078.2016.11.028

Effect of Postharvest Gibberellic Acid Treatment on the Chilling Injury of

Tomato Fruits during Cold Storage

ZHU Zhen, DING Yang, ZHAO Jin-hong, NIE Ying, ZHANG Yu, TANG Xuan-ming

(Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences, Key Opening Laboratory of

Agricultural Products Processing and Quality Control, Ministry of Agriculture, Beijing 100193, China)

Abstract: The effect of exogenous gibberellic acid (GA3) treatment on chilling stress tolerance of harvested tomato fruits was investigated in this study. Solanum lycopersicum L. ‘Zhefen’ No. 702 at the mature green stage was used as the test material, treated with 0, 0.2, 0.5, or 1 mM GA 3 aqueous solution at room temperature, and stored at 4 ℃. Tomato samples were collected on days 0, 3, 7, 14, 21, and 28, and stored at room temperature for three days before the chilling injury index was measured to determine the most suitable GA 3 concentration. In addition, microstructure changes, malondialdehyde (MDA) content, electrolyte leakage, and changes in the activities of phospholipase C (PLC), phospholipase D (PLD), lipoxidase (LOX), and polygalacturonase (PG) were measured. These results showed that compared with the control, 0.5 mM exogenous GA 3 treatment effectively alleviated the chilling injury symptoms, protected cellular microstructure, and significantly inhibited increases in the MDA content, electrolyte leakage, and activities of PLC, PLD, LOX, and PG , thus enhancing the chilling stress tolerance of postharvest tomato fruits.

Key words: gibberellic acid; tomato fruit; chilling injury; chilling stress tolerance

低温贮藏是目前最有效、应用最广泛的果蔬保鲜手段。适宜的低温可以显著延缓果蔬组织衰老,抑制微生物生长,延长贮藏期。但当温度处理不当,则易导致冷敏型果蔬(如番茄、香蕉、黄瓜等)发生冷害[1,2]

。番茄是一种重要的模式植物,同时又是典型的冷敏型果实[3]。一般情况下,番茄果实在2~6 ℃下贮藏

收稿日期:2015-12-02

基金项目:国家自然科学基金项目(31401551);基本科研业务费专项(0032015017);中国农业科学院科技创新工程

作者简介:朱珍(1989-),女,硕士研究生,研究方向:农产品加工与安全 通讯作者:唐选明(1963-),男,博士,副研究员,硕士生导师,研究方向:农产品加工与贮藏

两星期再转移至20~22 ℃后会发生明显的冷害症状,

如:果皮凹陷、水渍状斑点、干疤、果肉风味降低、不能正常后熟、腐烂加快等[4~8]。这些症状导致消费者的接受性降低,由此带来了巨大的经济损失[9]。因此,开发安全、高效、经济的番茄抗冷诱导新方法对采后减损具有重要意义。一般认为,冷害主要发生在细胞膜磷脂脂肪酸组成发生变化的部位,磷脂脂肪酸成分变化后引发的一连串的次级反应会进一步导致细胞结构的破坏[2]。磷脂酶是生物体内存在的可以水解细胞膜磷脂的一类酶,其水解产物通常作为主要底物参与其他脂类代谢途径,或者直接作为信号分子参与生物及非生物胁迫的应答信号传递过程[10]。Mao 等[11]研究

184

现代食品科技 Modern Food Science and Technology 2016, Vol.32, No.11

发现,低温贮藏下黄瓜冷害指数的增加伴随着磷脂酶D (phospholipase D,PLD )活性的增强。同样的,Rui 等[12]也发现,1 ℃贮藏期间枇杷果实内PLD 活性呈上升趋势。芮怀瑾[13]研究表明,钙处理可以抑制磷脂酶C (phospholipase C,PLC )和PLD 对细胞膜的降解和过氧化作用,保持细胞膜脂肪酸较高的不饱和度,从而减轻枇杷果实的冷害症状。

赤霉素(gibberellin ,GA )是生物体内的一类重要的四环二萜羧酸化合物,目前已发现136种GA ,在高等植物中,只有少数GA 具有生物活性,最常见的有GA 1、GA 3和GA 4[14]。Wang 等[15]研究认为低浓度(0.1和1 μmol/L)的外源GA 3处理能提高东农冬麦1号和济麦22植株内源性脱落酸与赤霉素的比值(ABA/GA)和可溶性蛋白含量,从而提高其抗冷性。Gang 等[16]人研究指出GA 3处理可作为一种有效的保鲜方法来减轻贮藏期间桃果实的软化和冷害现象并延长其货架期。然而,目前GA 在采后果实抗冷调控中的作用机制尚未完全清楚,有关采后GA 3处理对低温贮藏下番茄果实细胞膜及细胞壁影响的研究甚少。本实验以绿熟期浙粉702番茄果实为试材,经外源GA 3处理后,4 ℃贮藏28 d,期间观察番茄果实微观结构变化,测定丙二醛(malondialdehyde ,MDA )含量、离子渗透率,PLC 、PLD 、脂氧合酶(lipoxidase ,LOX )以及多聚半乳糖醛酸酶(polygalacturonase ,PG )活性变化,研究采后GA 3处理对番茄果实抗冷性的影响。

妥酸,生化试剂;国药集团化学试剂有限公司。

1.3 主要仪器设备

美国BIORAD680型全自动酶标仪,上海甘薇生

物科技有限公司;GL-20G-Ⅱ型高速离心机,上海安亭科学仪器厂;AC120S 精密天平,德国Sartorius 公司;FA2204B 精密电子天平,YP502N 电子天平,上海精密科学仪器有限公司;HH-4数显恒温水浴锅,江苏省金坛市荣华仪器有限责任公司;TU-1901双光束紫外可见分光光度计,北京普析通用有限责任公司;ZHWY -200H 温型无级调幅振荡器,上海智城分析仪器制造有限公司;电热恒温培养箱,上海一恒科学仪器有限公司。

1.4 试验方法 1.4.1 原料处理

挑选好的番茄果实以流水清洗干净后用1% (V/V)的次氯酸钠溶液消毒2 min,再以流水冲洗10 min 并沥干表面水分。实验分为两部分,第一部分:取90个番茄果实,均分为两组,分别以0、0.2 mM、0.5 mM 和1 mM GA 3水溶液[GA3溶于含有0.1% (V/V)Tween-20的乙醇水溶液,乙醇:水=1:1000 (V/V)]于室温下浸泡30 min,取出擦干表面水分后4 ℃冷库贮藏28 d,分别于贮藏第14、21和28 d进行取样,每组取样15个,取出后常温放置3 d,分别统计其冷害发生情况,筛选出适宜的GA 3浓度以进行下一步实验。第二部分:取140个番茄果实,均分为两组,其中经上一步试验筛选出的适宜的GA 3水溶液浸泡30 min 处理番茄果实作为实验组,含有0.1%(V/V)Tween-20的乙醇水溶液处理作为对照,4 ℃冷库贮藏28 d,分别于贮藏第0、3、7、14、21和28 d 进行取样,每次取样均取番茄果皮作为实验材料,测定其MDA 含量、离子渗透率、PLC 、PLD 、LOX 以及PG 活性变化。其中取贮藏第21 d的果实进行电镜透射实验,观察其微观结构变化。每次试验均重复三次。

1 材料与方法 1.1 实验材料

浙粉702番茄果实(Solanum lycopersicum L. cv. Zhefen No. 702) ,采摘于北京市昌平区金六环农业园,1 h内运回实验室,静置过夜去田间热。选择成熟度(绿熟期)一致、大小基本相同、果型饱满、无病虫害、无机械伤的果实进行试验。

1.2 主要试剂

水溶性赤霉素,MYM 生物试剂有限公司。苯甲基磺酰氟,阿达玛斯试剂有限公司。多聚半乳糖醛酸,美国Sigma 公司。亚油酸钠,阿拉丁试剂(上海)有限公司。氰乙酰胺,阿法埃莎(天津)有限公司。次氯酸钠、氯化钾,无水碳酸钠、蔗糖、酸性茚三酮、氢氧化钠、硼酸、盐酸、冰乙酸,无水乙酸钠、磷酸二氢钠、磷酸氢二钠、聚乙烯吡咯烷酮、乙二胺四乙酸、酒石酸钾钠、苯酚、硫酸钠、三氯乙酸和乙醇等均为分析纯;3,5-二硝基水杨酸,化学纯;硫代巴比

1.4.2 冷害指数测定

冷害指数测定参考Zhao 等[17]的方法。

1.4.3 超微结构观察

番茄组织电镜切片制作及微观结构观察参考生吉萍等[18]的方法。

1.4.4 MDA 含量测定

MDA 含量测定采用硫代巴比妥酸(TBA )[19]法,略有改动。

取番茄果皮组织1.5 g,加入7 mL、10%(m/V)

185

现代食品科技 Modern Food Science and Technology 2016, Vol.32, No.11

三氯乙酸溶液,研磨至匀浆,4 ℃下5000 r/min离心15 min,取上清液2 mL(对照加入2 mL三氯乙酸溶液),加入2 mL 、0.67%(m/V)TBA 溶液,混匀后95 ℃水浴20 min,迅速冷却5 min后同上述条件离心,取上清液分别测定450 nm、532 nm和600 nm处的吸光值。按下式计算MDA 的含量(μmol/g FW):

C (μmol/L)=6.45 (OD532-OD 600)-0.56 OD450

C ×V ×V 1

MDA 含量(μmol /gFW ) =

V 2×FW

式中:C :MDA 浓度,μmol/L;V :提取液体积,mL ;V 1:反应体系体积,mL ;V 2:测定用提取液体积,mL ;FW :样品鲜重,g 。

如图1所示,0.2、0.5和1 mM GA3处理组和对照组番茄果实均在4 ℃条件下贮藏14 d ,并转移至室温放置3 d后出现冷害症状,在随后的贮藏期内,冷害指数均呈显著上升趋势(p 0.05),1 mM GA3处理组仅在贮藏第21 d时与对照组有显著性差异(p >0.05),而0.5 mM GA3处理组在整个贮藏期内冷害指数显著低于对照组(p

1.4.5 离子渗透率测定

离子渗透率测定参考Zhang [20]等的方法。

2.2 GA 3处理对番茄果实微观结构变化的影响

0.5 mM GA 3处理对番茄果实超微结构变化的影响如图2所示。实验材料均在4 ℃下贮藏了21 d,由图2a 中可以看出,对照组番茄果皮细胞趋于扁平化,细胞壁内外不光滑,厚薄不均匀(1和2),可能由于这些微观结构的改变导致了果皮凹陷等症状的发生。此外,对照组番茄果皮细胞之间开始出现相互贯通现象(3),细胞内质壁分离明显(4和5),细胞器大量边聚甚至退化消失,出现弥散性沉积物(6),这些结构的变化导致细胞内各种生理生化反应的接触面积的增加,从而加速果实的衰老和品质劣变,并为冷害病菌的入侵提供了有利条件[25]。而GA 3处理组细胞虽有轻度质壁分离现象,但细胞内各类细胞器特征明显,细胞核区完整存在(7)。可见0.5 mM GA 3处理能较好地保持冷害情况下番茄果实细胞的完整性,从而防止冷害症状的加深。

1.4.6 PLC 、PLD 活性测定

PLC 、PLD 活性测定方法分别参考Mao [21]和Kurioka [22]的方法。

1.4.7 LOX 活性测定

LOX 活性测定参考Minguez-Mosquera [23]的方法。

1.4.8 PG 活性测定

PG 活性测定参考Gayathri [24]等的方法。

1.5 数据处理

每个试验重复至少3次,结果均以平均值表示。应用origin 8软件中One-Way ANOV A 的Fisher LSD 法对所有数据进行方差分析,以p

2 结果与讨论

2.1 GA 3处理对番茄果实冷害指数的影响

图2 GA3处理对番茄果实超微结构变化的影响

Fig.2 Effects of GA3 treatment on the microstructure of tomato

fruits

图1 GA3处理对番茄果实冷害指数的影响

Fig.1 Effects of GA3 treatment on the chilling injury index of

tomato fruits

注:图中不同小写字母表示在α=0.05显著水平下差异显著,反之则差异不显著。 186

2.3 GA 3处理对番茄果实MDA 含量及离子渗透率变化的影响

MDA 含量和离子渗透率的变化是衡量果实细胞膜受损伤的直观指标,通常与冷害指数有直接的联系[26]

。冷害指数增加,膜损伤程度加重[27]。由图3可知,

现代食品科技 Modern Food Science and Technology 2016, Vol.32, No.11

在整个贮藏期间,番茄果实MDA 含量和离子渗透率均处于持续上升趋势,与冷害指数变化情况(图1)相同,并且0.5 mM GA 3处理组均显著低于对照组(p

GA 3处理组PLD 活性始终显著性低于对照组(p

图4 GA3处理对番茄果实PLC(a)、PLD(b)活性的影响 Fig.4 Effects of GA3 treatment on the PLC (a) and PLD (b)

activities of tomato fruits

图3 GA3处理对番茄果实MDA 含量(a)及离子渗透率(b)的

影响

Fig.3 Effects of GA3 treatment on the MDA content (a) and

electrolyte leakage (b) of tomato fruits

2.5 GA 3处理对番茄果实LOX 活性的影响

LOX 是酶促脂质过氧化的重要因子,它能催化游离的不饱和脂肪酸产生脂质过氧化自由基,这些自由基能直接作用于膜磷脂中的结合态不饱和脂肪酸,导致细胞膜磷脂双分子层破坏[28]。Renard 等[29]研究发现,4 ℃贮藏6 d后番茄果实内LOX 活性显著增强。因此,果实贮藏过程中LOX 活性变化与冷害程度之间有着重要的联系。

由图5可知,整个贮藏期间,0.5 mM GA3处理组LOX 活性显著低于对照组(p

187

2.4 GA 3处理对番茄果实PLC 和PLD 活性的影响

由图4a 可知,整个贮藏期间,对照组和0.5 mM GA 3处理组PLC 活性呈先上升后降低趋势。贮藏第14 d时,对照组PLC 活性为5.32 U/g FW,此时GA 3处理组PLC 活性达到峰值,为3.34 U/g FW,比对照组低37%。由图4b 可知,贮藏前期,对照组和GA 3处理组PLD 活性均呈显著上升趋势(p

现代食品科技 Modern Food Science and Technology 2016, Vol.32, No.11

番茄果实的冷害发生率,并且能保持其细胞微观结构的相对完整。另外,GA 3处理能显著降低贮藏期间番茄果实MDA 含量和离子渗透率的增加,并抑制细胞膜磷脂及相关酶PLC 、PLD 、LOX 和细胞壁降解酶PG 活性的增强,从而提高了番茄果实的抗冷性。

参考文献

[1] Hong J H, Gross K C. Maintaining quality of fresh-cut

tomato slices through modified atmosphere packaging and low temperature storage [J]. Journal of Food Science, 2001, 66(7): 960-965

[2] Aghdam M S, Asghari M, Khorsandi O, et al. Alleviation of

postharvest chilling injury of tomato fruit by salicylic acid treatment [J]. Journal of Food Science and Technology, 2014, 51(10): 2815-2820

[3] Tao F, Zhang L, McCarthy M J, et al. Magnetic resonance

imaging provides spatial resolution of Chilling Injury in Micro-Tom tomato (Solanum lycopersicum L.) fruit [J]. Postharvest Biology and Technology, 2014, 97: 62-67 [4] V ega-García M O, López-Espinoza G , Ontiveros J C, et al.

Changes in protein expression associated with chilling injury in tomato fruit [J]. Journal of the American Society for Horticultural Science, 2010, 135(1): 83-89

[5] Sevillano L, Sanchez-Ballesta M T, Romojaro F, et al.

Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact [J]. Journal of the Science of Food and Agriculture, 2009, 89(4): 555-573 [6] Gonzalez C, Ré M D, Sossi M L, et al. Tomato cv.

‘Micro-Tom’ as a model system to study postharvest chilling tolerance [J]. Scientia Horticulturae, 2015, 184: 63-69 [7] Luengwilai K, Beckles D M, Saltveit M E. Chilling-injury of

harvested tomato (Solanum lycopersicum L.) cv. Micro-Tom fruit is reduced by temperature pre-treatments [J]. Postharvest Biology and Technology, 2012, 63(1): 123-128

[8] Ding Y, Sheng J, Li S, et al. The role of gibberellins in the

mitigation of chilling injury in cherry tomato (Solanum lycopersicum L.) fruit [J]. Postharvest Biology and Technology, 2015, 101: 88-95

[9] Zhang X, Shen L, Li F, et al. Up-regulating arginase

contributes to amelioration of chilling stress and the antioxidant system in cherry tomato fruits [J]. Journal of the Science of Food and Agriculture, 2010, 90(13): 2195-2202 [10] Wang X. Plant phospholipases [J]. Annual Review of Plant

Biology, 2001, 52(1): 211-231

图5 GA3处理对番茄果实LOX 活性的影响

Fig.5 Effects of GA3 treatment on the LOX activity of tomato

fruits

2.6 GA 3处理对番茄果实PG 活性的影响

细胞壁降解酶PG 能降解果胶,使细胞壁破损[32]。目前也有研究表明,细胞壁组成成分的变化与果实冷害之间存在着必然的联系[33]。如Martínez-Téllez等[34]研究发现2 ℃条件下贮藏12 d后,2.0 mM腐胺、精胺和亚精胺处理组南瓜果实内PG 活性显著低于对照组,其冷害症状也均相对较轻。

图6 GA3处理对番茄果实PG 活性的影响

Fig.6 Effects of GA3 treatment on the PG activity of tomato

fruits

如图6所示,贮藏期间,PG 活性呈先上升后略有下降的趋势,对照组和0.5 mM GA3处理组PG 活性均在贮藏第14 d 达到最大,此时对照组酶活性高达 4713.95 μg/(h·g) FW,而GA 3处理组酶活性为3882.03 μg/(h·g) FW 。整个贮藏期内,GA 3处理组PG 活性显著低于对照组(p

3 结论

本文采用外源GA 3处理采后番茄果实,并在4 ℃条件下贮藏。研究发现,0.5 mM GA3处理能有效降低

188

现代食品科技 Modern Food Science and Technology 2016, Vol.32, No.11

[11] Mao L, Pang H, Wang G , et al. Phospholipase D and

lipoxygenase activity of cucumber fruit in response to chilling stress [J]. Postharvest Biology and Technology, 2007, 44(1): 42-47

[12] Rui H, Cao S, Shang H, et al. Effects of heat treatment on

internal browning and membrane fatty acid in loquat fruit in response to chilling stress [J]. Journal of the Science of Food and Agriculture, 2010, 90(9): 1557-1561

[13] 芮怀瑾.CaCl 2和热处理对枇杷果实木质化的影响及其机

理研究[D].南京农业大学,2009

RUI Huai-jin. Effects of CaCl2 and heat treatments on fresh leatheriness of loquat fruit and the possible mechanisms involved [D]. Nanjing: Nanjing agricultural University, 2009 [14] Middleton A M, Úbeda-Tomás S, Griffiths J, et al.

Mathematical modeling elucidates the role of transcriptional feedback in gibberellin signaling [J]. Proceedings of the National Academy of Sciences, 2012, 109(19): 7571-7576 [15] Wang X, Xu C, Cang J, et al. Effects of exogenous GA3 on

wheat cold tolerance [J]. Journal of Agricultural Science and Technology, 2015, 17(4): 921-934

[16] Gang C, Li J, Chen Y , et al. Synergistic effect of chemical

treatments on storage quality and chilling injury of honey peaches [J]. Journal of Food Processing and Preservation, 2014, 39(6): 1108-1117

[17] Zhao D Y , Shen L, Fan B, et al. Physiological and genetic

properties of tomato fruits from 2 cultivars differing in chilling tolerance at cold storage [J]. Journal of Food Science, 2009, 74(5): C348-C352

[18] 生吉萍, 罗云波.PG 和LOX 对采后番茄果实软化及细胞超

微结构的影响[J].园艺学报,2000,27(4):276-281

SHENG Ji-ping, LUO Y un-bo. Effects of PG and LOX on the postharvest fruit softening and cellultrastructure [J]. Acta Horticulturae Sinica, 2000, 27(4): 276-281

[19] Aghdam M S, Asghari M, Farmani B, et al. Impact of

postharvest brassinosteroids treatment on PAL activity in tomato fruit in response to chilling stress [J]. Scientia Horticulturae, 2012, 144: 116-120

[20] Zhang X, Shen L, Li F, et al. Arginase induction by heat

treatment contributes to amelioration of chilling injury and activation of antioxidant enzymes in tomato fruit [J]. Postharvest Biology and Technology, 2013, 79: 1-8

[21] Mao L C, Que F, Donald H J. 1-Methylcyclopropene and

CaCl 2 treatments affect lipolytic enzymes in fresh-cut watermelon fruit [J]. Acta Botanica Sinica, 2004, 46(12): 1402-1407

[22] Kurioka S, Matsuda M. Phospholipase C assay using

p-nitrophenylphosphorylcholine together with sorbitol and its application to studying the metal and detergent requirement of the enzyme [J]. Analytical Biochemistry, 1976, 75(1): 281- 289

[23] Minguez-Mosquera M I, Jaren-Galan M, Garrido-Fernandez

J. Lipoxygenase activity during pepper ripening and processing of paprika [J]. Phytochemistry, 1993, 32(5): 1103- 1108

[24] Gayathri T, Nair A S. Isolation, purification and

characterisation of polygalacturonase from ripened banana (Musa acuminata cv. Kadali) [J]. International Journal of Food Science & Technology, 2014, 49(2): 429-434 [25] 许玲, 张维一, 田允温. 低温冷害对哈密瓜外部形态和细胞

结构的影响[J].植物学报,1990,32(10):772-776

XU Ling, ZHANG Wei-yi, TIAN Y un-wen. Effects of chilling injury on the morphology and cell structure of Hami mellon fruits [J]. Acta Botanica sinica, 1990, 32(10): 772-776 [26] Aghdam M S, Naderi R, Sarcheshmeh M A A, et al.

Amelioration of postharvest chilling injury in anthurium cut flowers by γ-aminobutyric acid (GABA) treatments [J]. Postharvest Biology and Technology, 2015, 110: 70-76 [27] Luo Z, Wu X, Xie Y, et al. Alleviation of chilling injury and

browning of postharvest bamboo shoot by salicylic acid treatment [J]. Food Chemistry, 2012, 131(2): 456-461 [28] Pongprasert N, Sekozawa Y , Sugaya S, et al. A novel

postharvest UV-C treatment to reduce chilling injury (membrane damage, browning and chlorophyll degradation) in banana peel [J]. Scientia horticulturae, 2011, 130(1): 73-77 [29] Renard C M G C, Ginies C, Gouble B, et al. Home

conservation strategies for tomato (Solanum lycopersicum): Storage temperature vs. duration-Is there a compromise for better aroma preservation? [J]. Food Chemistry, 2013, 139(1): 825-836

[30] Lv J, Rao J, Zhu Y , et al. Cloning and expression of

lipoxygenase genes and enzyme activity in ripening persimmon fruit in response to GA and ABA treatments [J]. Postharvest Biology and Technology, 2014, 92: 54-61 [31] Y u T, Wu P G, Qi J J, et al. Improved control of postharvest

blue mold rot in pear fruit by a combination of Cryptococcus laurentii and gibberellic acid [J]. Biological Control, 2006, 39(2): 128-134

[32] Khademi O, Besada C, Mostofi Y, et al. Changes in pectin

methylesterase, polygalacturonase, catalase and peroxidase activities associated with alleviation of chilling injury in

189

现代食品科技

Horticulturae, 2014, 179: 191-197

Modern Food Science and Technology 2016, Vol.32, No.11

persimmon by hot water and 1-MCP treatments [J]. Scientia [33] Lurie S, Crisosto C H. Chilling injury in peach and nectarine

[J]. Postharvest Biology and Technology, 2005, 37(3): 195- 208

[34] Martínez-Téllez M A, Ramos-Clamont M G, Gardea A A, et

al. Effect of infiltrated polyamines on polygalacturonase activity and chilling injury responses in zucchini squash

(Cucurbita pepo L.) [J]. Biochemical and Biophysical Research Communications, 2002, 295(1): 98-101

[35] El-Hammady A M, Abdel-Hamid N, Saleh M, et al. Effect of

gibberellic acid and calcium chloride treatments on delaying maturity, quality and storability of "Balady" mandarin fruits [J]. Arab Universities Journal of Agricultural Sciences, 2000, 8(3): 755-766

190

现代食品科技 Modern Food Science and Technology

2016, Vol.32, No.11

采后赤霉酸处理对番茄果实冷害的影响

朱珍,丁洋,赵金红,聂莹,张瑜,唐选明

(中国农业科学院农产品加工研究所,农业部农产品加工重点实验室,北京 100193)

摘要:本文研究外源赤霉酸(gibberellic acid,GA 3)处理对采后番茄果实抗冷性的影响。以绿熟期的浙粉702番茄果实为试材,室温下经0、0.2、0.5和1 mM GA3水溶液处理30 min后,在4 ℃条件下贮藏,分别在贮藏第0、3、7、14、21和28 d时取样,于室温下放置3 d 后测定番茄果实的冷害指数以确定适宜的GA 3浓度,并观察此浓度GA 3处理后番茄果实微观结构变化,测定其丙二醛(malondialdehyde ,MDA )含量、离子渗透率以及细胞膜磷脂相关酶:磷脂酶C (phospholipase C,PLC )、磷脂酶D (phospholipase D, PLD )、脂氧合酶(lipoxidase ,LOX )和细胞壁降解酶多聚半乳糖醛酸酶(polygalacturonase ,PG )活性的变化。结果表明:与对照组相比,外源0.5 mM GA3处理能有效减轻番茄果实的冷害症状、保护细胞的微观结构、抑制MDA 含量和离子渗透率的增加以及PLC 、PLD 、LOX 和PG 活性的增强,从而提高采后番茄果实的抗冷性。

关键词:赤霉酸;番茄果实;冷害;抗冷性

文章篇号:1673-9078(2016)11-184-189 DOI: 10.13982/j.mfst.1673-9078.2016.11.028

Effect of Postharvest Gibberellic Acid Treatment on the Chilling Injury of

Tomato Fruits during Cold Storage

ZHU Zhen, DING Yang, ZHAO Jin-hong, NIE Ying, ZHANG Yu, TANG Xuan-ming

(Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences, Key Opening Laboratory of

Agricultural Products Processing and Quality Control, Ministry of Agriculture, Beijing 100193, China)

Abstract: The effect of exogenous gibberellic acid (GA3) treatment on chilling stress tolerance of harvested tomato fruits was investigated in this study. Solanum lycopersicum L. ‘Zhefen’ No. 702 at the mature green stage was used as the test material, treated with 0, 0.2, 0.5, or 1 mM GA 3 aqueous solution at room temperature, and stored at 4 ℃. Tomato samples were collected on days 0, 3, 7, 14, 21, and 28, and stored at room temperature for three days before the chilling injury index was measured to determine the most suitable GA 3 concentration. In addition, microstructure changes, malondialdehyde (MDA) content, electrolyte leakage, and changes in the activities of phospholipase C (PLC), phospholipase D (PLD), lipoxidase (LOX), and polygalacturonase (PG) were measured. These results showed that compared with the control, 0.5 mM exogenous GA 3 treatment effectively alleviated the chilling injury symptoms, protected cellular microstructure, and significantly inhibited increases in the MDA content, electrolyte leakage, and activities of PLC, PLD, LOX, and PG , thus enhancing the chilling stress tolerance of postharvest tomato fruits.

Key words: gibberellic acid; tomato fruit; chilling injury; chilling stress tolerance

低温贮藏是目前最有效、应用最广泛的果蔬保鲜手段。适宜的低温可以显著延缓果蔬组织衰老,抑制微生物生长,延长贮藏期。但当温度处理不当,则易导致冷敏型果蔬(如番茄、香蕉、黄瓜等)发生冷害[1,2]

。番茄是一种重要的模式植物,同时又是典型的冷敏型果实[3]。一般情况下,番茄果实在2~6 ℃下贮藏

收稿日期:2015-12-02

基金项目:国家自然科学基金项目(31401551);基本科研业务费专项(0032015017);中国农业科学院科技创新工程

作者简介:朱珍(1989-),女,硕士研究生,研究方向:农产品加工与安全 通讯作者:唐选明(1963-),男,博士,副研究员,硕士生导师,研究方向:农产品加工与贮藏

两星期再转移至20~22 ℃后会发生明显的冷害症状,

如:果皮凹陷、水渍状斑点、干疤、果肉风味降低、不能正常后熟、腐烂加快等[4~8]。这些症状导致消费者的接受性降低,由此带来了巨大的经济损失[9]。因此,开发安全、高效、经济的番茄抗冷诱导新方法对采后减损具有重要意义。一般认为,冷害主要发生在细胞膜磷脂脂肪酸组成发生变化的部位,磷脂脂肪酸成分变化后引发的一连串的次级反应会进一步导致细胞结构的破坏[2]。磷脂酶是生物体内存在的可以水解细胞膜磷脂的一类酶,其水解产物通常作为主要底物参与其他脂类代谢途径,或者直接作为信号分子参与生物及非生物胁迫的应答信号传递过程[10]。Mao 等[11]研究

184

现代食品科技 Modern Food Science and Technology 2016, Vol.32, No.11

发现,低温贮藏下黄瓜冷害指数的增加伴随着磷脂酶D (phospholipase D,PLD )活性的增强。同样的,Rui 等[12]也发现,1 ℃贮藏期间枇杷果实内PLD 活性呈上升趋势。芮怀瑾[13]研究表明,钙处理可以抑制磷脂酶C (phospholipase C,PLC )和PLD 对细胞膜的降解和过氧化作用,保持细胞膜脂肪酸较高的不饱和度,从而减轻枇杷果实的冷害症状。

赤霉素(gibberellin ,GA )是生物体内的一类重要的四环二萜羧酸化合物,目前已发现136种GA ,在高等植物中,只有少数GA 具有生物活性,最常见的有GA 1、GA 3和GA 4[14]。Wang 等[15]研究认为低浓度(0.1和1 μmol/L)的外源GA 3处理能提高东农冬麦1号和济麦22植株内源性脱落酸与赤霉素的比值(ABA/GA)和可溶性蛋白含量,从而提高其抗冷性。Gang 等[16]人研究指出GA 3处理可作为一种有效的保鲜方法来减轻贮藏期间桃果实的软化和冷害现象并延长其货架期。然而,目前GA 在采后果实抗冷调控中的作用机制尚未完全清楚,有关采后GA 3处理对低温贮藏下番茄果实细胞膜及细胞壁影响的研究甚少。本实验以绿熟期浙粉702番茄果实为试材,经外源GA 3处理后,4 ℃贮藏28 d,期间观察番茄果实微观结构变化,测定丙二醛(malondialdehyde ,MDA )含量、离子渗透率,PLC 、PLD 、脂氧合酶(lipoxidase ,LOX )以及多聚半乳糖醛酸酶(polygalacturonase ,PG )活性变化,研究采后GA 3处理对番茄果实抗冷性的影响。

妥酸,生化试剂;国药集团化学试剂有限公司。

1.3 主要仪器设备

美国BIORAD680型全自动酶标仪,上海甘薇生

物科技有限公司;GL-20G-Ⅱ型高速离心机,上海安亭科学仪器厂;AC120S 精密天平,德国Sartorius 公司;FA2204B 精密电子天平,YP502N 电子天平,上海精密科学仪器有限公司;HH-4数显恒温水浴锅,江苏省金坛市荣华仪器有限责任公司;TU-1901双光束紫外可见分光光度计,北京普析通用有限责任公司;ZHWY -200H 温型无级调幅振荡器,上海智城分析仪器制造有限公司;电热恒温培养箱,上海一恒科学仪器有限公司。

1.4 试验方法 1.4.1 原料处理

挑选好的番茄果实以流水清洗干净后用1% (V/V)的次氯酸钠溶液消毒2 min,再以流水冲洗10 min 并沥干表面水分。实验分为两部分,第一部分:取90个番茄果实,均分为两组,分别以0、0.2 mM、0.5 mM 和1 mM GA 3水溶液[GA3溶于含有0.1% (V/V)Tween-20的乙醇水溶液,乙醇:水=1:1000 (V/V)]于室温下浸泡30 min,取出擦干表面水分后4 ℃冷库贮藏28 d,分别于贮藏第14、21和28 d进行取样,每组取样15个,取出后常温放置3 d,分别统计其冷害发生情况,筛选出适宜的GA 3浓度以进行下一步实验。第二部分:取140个番茄果实,均分为两组,其中经上一步试验筛选出的适宜的GA 3水溶液浸泡30 min 处理番茄果实作为实验组,含有0.1%(V/V)Tween-20的乙醇水溶液处理作为对照,4 ℃冷库贮藏28 d,分别于贮藏第0、3、7、14、21和28 d 进行取样,每次取样均取番茄果皮作为实验材料,测定其MDA 含量、离子渗透率、PLC 、PLD 、LOX 以及PG 活性变化。其中取贮藏第21 d的果实进行电镜透射实验,观察其微观结构变化。每次试验均重复三次。

1 材料与方法 1.1 实验材料

浙粉702番茄果实(Solanum lycopersicum L. cv. Zhefen No. 702) ,采摘于北京市昌平区金六环农业园,1 h内运回实验室,静置过夜去田间热。选择成熟度(绿熟期)一致、大小基本相同、果型饱满、无病虫害、无机械伤的果实进行试验。

1.2 主要试剂

水溶性赤霉素,MYM 生物试剂有限公司。苯甲基磺酰氟,阿达玛斯试剂有限公司。多聚半乳糖醛酸,美国Sigma 公司。亚油酸钠,阿拉丁试剂(上海)有限公司。氰乙酰胺,阿法埃莎(天津)有限公司。次氯酸钠、氯化钾,无水碳酸钠、蔗糖、酸性茚三酮、氢氧化钠、硼酸、盐酸、冰乙酸,无水乙酸钠、磷酸二氢钠、磷酸氢二钠、聚乙烯吡咯烷酮、乙二胺四乙酸、酒石酸钾钠、苯酚、硫酸钠、三氯乙酸和乙醇等均为分析纯;3,5-二硝基水杨酸,化学纯;硫代巴比

1.4.2 冷害指数测定

冷害指数测定参考Zhao 等[17]的方法。

1.4.3 超微结构观察

番茄组织电镜切片制作及微观结构观察参考生吉萍等[18]的方法。

1.4.4 MDA 含量测定

MDA 含量测定采用硫代巴比妥酸(TBA )[19]法,略有改动。

取番茄果皮组织1.5 g,加入7 mL、10%(m/V)

185

现代食品科技 Modern Food Science and Technology 2016, Vol.32, No.11

三氯乙酸溶液,研磨至匀浆,4 ℃下5000 r/min离心15 min,取上清液2 mL(对照加入2 mL三氯乙酸溶液),加入2 mL 、0.67%(m/V)TBA 溶液,混匀后95 ℃水浴20 min,迅速冷却5 min后同上述条件离心,取上清液分别测定450 nm、532 nm和600 nm处的吸光值。按下式计算MDA 的含量(μmol/g FW):

C (μmol/L)=6.45 (OD532-OD 600)-0.56 OD450

C ×V ×V 1

MDA 含量(μmol /gFW ) =

V 2×FW

式中:C :MDA 浓度,μmol/L;V :提取液体积,mL ;V 1:反应体系体积,mL ;V 2:测定用提取液体积,mL ;FW :样品鲜重,g 。

如图1所示,0.2、0.5和1 mM GA3处理组和对照组番茄果实均在4 ℃条件下贮藏14 d ,并转移至室温放置3 d后出现冷害症状,在随后的贮藏期内,冷害指数均呈显著上升趋势(p 0.05),1 mM GA3处理组仅在贮藏第21 d时与对照组有显著性差异(p >0.05),而0.5 mM GA3处理组在整个贮藏期内冷害指数显著低于对照组(p

1.4.5 离子渗透率测定

离子渗透率测定参考Zhang [20]等的方法。

2.2 GA 3处理对番茄果实微观结构变化的影响

0.5 mM GA 3处理对番茄果实超微结构变化的影响如图2所示。实验材料均在4 ℃下贮藏了21 d,由图2a 中可以看出,对照组番茄果皮细胞趋于扁平化,细胞壁内外不光滑,厚薄不均匀(1和2),可能由于这些微观结构的改变导致了果皮凹陷等症状的发生。此外,对照组番茄果皮细胞之间开始出现相互贯通现象(3),细胞内质壁分离明显(4和5),细胞器大量边聚甚至退化消失,出现弥散性沉积物(6),这些结构的变化导致细胞内各种生理生化反应的接触面积的增加,从而加速果实的衰老和品质劣变,并为冷害病菌的入侵提供了有利条件[25]。而GA 3处理组细胞虽有轻度质壁分离现象,但细胞内各类细胞器特征明显,细胞核区完整存在(7)。可见0.5 mM GA 3处理能较好地保持冷害情况下番茄果实细胞的完整性,从而防止冷害症状的加深。

1.4.6 PLC 、PLD 活性测定

PLC 、PLD 活性测定方法分别参考Mao [21]和Kurioka [22]的方法。

1.4.7 LOX 活性测定

LOX 活性测定参考Minguez-Mosquera [23]的方法。

1.4.8 PG 活性测定

PG 活性测定参考Gayathri [24]等的方法。

1.5 数据处理

每个试验重复至少3次,结果均以平均值表示。应用origin 8软件中One-Way ANOV A 的Fisher LSD 法对所有数据进行方差分析,以p

2 结果与讨论

2.1 GA 3处理对番茄果实冷害指数的影响

图2 GA3处理对番茄果实超微结构变化的影响

Fig.2 Effects of GA3 treatment on the microstructure of tomato

fruits

图1 GA3处理对番茄果实冷害指数的影响

Fig.1 Effects of GA3 treatment on the chilling injury index of

tomato fruits

注:图中不同小写字母表示在α=0.05显著水平下差异显著,反之则差异不显著。 186

2.3 GA 3处理对番茄果实MDA 含量及离子渗透率变化的影响

MDA 含量和离子渗透率的变化是衡量果实细胞膜受损伤的直观指标,通常与冷害指数有直接的联系[26]

。冷害指数增加,膜损伤程度加重[27]。由图3可知,

现代食品科技 Modern Food Science and Technology 2016, Vol.32, No.11

在整个贮藏期间,番茄果实MDA 含量和离子渗透率均处于持续上升趋势,与冷害指数变化情况(图1)相同,并且0.5 mM GA 3处理组均显著低于对照组(p

GA 3处理组PLD 活性始终显著性低于对照组(p

图4 GA3处理对番茄果实PLC(a)、PLD(b)活性的影响 Fig.4 Effects of GA3 treatment on the PLC (a) and PLD (b)

activities of tomato fruits

图3 GA3处理对番茄果实MDA 含量(a)及离子渗透率(b)的

影响

Fig.3 Effects of GA3 treatment on the MDA content (a) and

electrolyte leakage (b) of tomato fruits

2.5 GA 3处理对番茄果实LOX 活性的影响

LOX 是酶促脂质过氧化的重要因子,它能催化游离的不饱和脂肪酸产生脂质过氧化自由基,这些自由基能直接作用于膜磷脂中的结合态不饱和脂肪酸,导致细胞膜磷脂双分子层破坏[28]。Renard 等[29]研究发现,4 ℃贮藏6 d后番茄果实内LOX 活性显著增强。因此,果实贮藏过程中LOX 活性变化与冷害程度之间有着重要的联系。

由图5可知,整个贮藏期间,0.5 mM GA3处理组LOX 活性显著低于对照组(p

187

2.4 GA 3处理对番茄果实PLC 和PLD 活性的影响

由图4a 可知,整个贮藏期间,对照组和0.5 mM GA 3处理组PLC 活性呈先上升后降低趋势。贮藏第14 d时,对照组PLC 活性为5.32 U/g FW,此时GA 3处理组PLC 活性达到峰值,为3.34 U/g FW,比对照组低37%。由图4b 可知,贮藏前期,对照组和GA 3处理组PLD 活性均呈显著上升趋势(p

现代食品科技 Modern Food Science and Technology 2016, Vol.32, No.11

番茄果实的冷害发生率,并且能保持其细胞微观结构的相对完整。另外,GA 3处理能显著降低贮藏期间番茄果实MDA 含量和离子渗透率的增加,并抑制细胞膜磷脂及相关酶PLC 、PLD 、LOX 和细胞壁降解酶PG 活性的增强,从而提高了番茄果实的抗冷性。

参考文献

[1] Hong J H, Gross K C. Maintaining quality of fresh-cut

tomato slices through modified atmosphere packaging and low temperature storage [J]. Journal of Food Science, 2001, 66(7): 960-965

[2] Aghdam M S, Asghari M, Khorsandi O, et al. Alleviation of

postharvest chilling injury of tomato fruit by salicylic acid treatment [J]. Journal of Food Science and Technology, 2014, 51(10): 2815-2820

[3] Tao F, Zhang L, McCarthy M J, et al. Magnetic resonance

imaging provides spatial resolution of Chilling Injury in Micro-Tom tomato (Solanum lycopersicum L.) fruit [J]. Postharvest Biology and Technology, 2014, 97: 62-67 [4] V ega-García M O, López-Espinoza G , Ontiveros J C, et al.

Changes in protein expression associated with chilling injury in tomato fruit [J]. Journal of the American Society for Horticultural Science, 2010, 135(1): 83-89

[5] Sevillano L, Sanchez-Ballesta M T, Romojaro F, et al.

Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact [J]. Journal of the Science of Food and Agriculture, 2009, 89(4): 555-573 [6] Gonzalez C, Ré M D, Sossi M L, et al. Tomato cv.

‘Micro-Tom’ as a model system to study postharvest chilling tolerance [J]. Scientia Horticulturae, 2015, 184: 63-69 [7] Luengwilai K, Beckles D M, Saltveit M E. Chilling-injury of

harvested tomato (Solanum lycopersicum L.) cv. Micro-Tom fruit is reduced by temperature pre-treatments [J]. Postharvest Biology and Technology, 2012, 63(1): 123-128

[8] Ding Y, Sheng J, Li S, et al. The role of gibberellins in the

mitigation of chilling injury in cherry tomato (Solanum lycopersicum L.) fruit [J]. Postharvest Biology and Technology, 2015, 101: 88-95

[9] Zhang X, Shen L, Li F, et al. Up-regulating arginase

contributes to amelioration of chilling stress and the antioxidant system in cherry tomato fruits [J]. Journal of the Science of Food and Agriculture, 2010, 90(13): 2195-2202 [10] Wang X. Plant phospholipases [J]. Annual Review of Plant

Biology, 2001, 52(1): 211-231

图5 GA3处理对番茄果实LOX 活性的影响

Fig.5 Effects of GA3 treatment on the LOX activity of tomato

fruits

2.6 GA 3处理对番茄果实PG 活性的影响

细胞壁降解酶PG 能降解果胶,使细胞壁破损[32]。目前也有研究表明,细胞壁组成成分的变化与果实冷害之间存在着必然的联系[33]。如Martínez-Téllez等[34]研究发现2 ℃条件下贮藏12 d后,2.0 mM腐胺、精胺和亚精胺处理组南瓜果实内PG 活性显著低于对照组,其冷害症状也均相对较轻。

图6 GA3处理对番茄果实PG 活性的影响

Fig.6 Effects of GA3 treatment on the PG activity of tomato

fruits

如图6所示,贮藏期间,PG 活性呈先上升后略有下降的趋势,对照组和0.5 mM GA3处理组PG 活性均在贮藏第14 d 达到最大,此时对照组酶活性高达 4713.95 μg/(h·g) FW,而GA 3处理组酶活性为3882.03 μg/(h·g) FW 。整个贮藏期内,GA 3处理组PG 活性显著低于对照组(p

3 结论

本文采用外源GA 3处理采后番茄果实,并在4 ℃条件下贮藏。研究发现,0.5 mM GA3处理能有效降低

188

现代食品科技 Modern Food Science and Technology 2016, Vol.32, No.11

[11] Mao L, Pang H, Wang G , et al. Phospholipase D and

lipoxygenase activity of cucumber fruit in response to chilling stress [J]. Postharvest Biology and Technology, 2007, 44(1): 42-47

[12] Rui H, Cao S, Shang H, et al. Effects of heat treatment on

internal browning and membrane fatty acid in loquat fruit in response to chilling stress [J]. Journal of the Science of Food and Agriculture, 2010, 90(9): 1557-1561

[13] 芮怀瑾.CaCl 2和热处理对枇杷果实木质化的影响及其机

理研究[D].南京农业大学,2009

RUI Huai-jin. Effects of CaCl2 and heat treatments on fresh leatheriness of loquat fruit and the possible mechanisms involved [D]. Nanjing: Nanjing agricultural University, 2009 [14] Middleton A M, Úbeda-Tomás S, Griffiths J, et al.

Mathematical modeling elucidates the role of transcriptional feedback in gibberellin signaling [J]. Proceedings of the National Academy of Sciences, 2012, 109(19): 7571-7576 [15] Wang X, Xu C, Cang J, et al. Effects of exogenous GA3 on

wheat cold tolerance [J]. Journal of Agricultural Science and Technology, 2015, 17(4): 921-934

[16] Gang C, Li J, Chen Y , et al. Synergistic effect of chemical

treatments on storage quality and chilling injury of honey peaches [J]. Journal of Food Processing and Preservation, 2014, 39(6): 1108-1117

[17] Zhao D Y , Shen L, Fan B, et al. Physiological and genetic

properties of tomato fruits from 2 cultivars differing in chilling tolerance at cold storage [J]. Journal of Food Science, 2009, 74(5): C348-C352

[18] 生吉萍, 罗云波.PG 和LOX 对采后番茄果实软化及细胞超

微结构的影响[J].园艺学报,2000,27(4):276-281

SHENG Ji-ping, LUO Y un-bo. Effects of PG and LOX on the postharvest fruit softening and cellultrastructure [J]. Acta Horticulturae Sinica, 2000, 27(4): 276-281

[19] Aghdam M S, Asghari M, Farmani B, et al. Impact of

postharvest brassinosteroids treatment on PAL activity in tomato fruit in response to chilling stress [J]. Scientia Horticulturae, 2012, 144: 116-120

[20] Zhang X, Shen L, Li F, et al. Arginase induction by heat

treatment contributes to amelioration of chilling injury and activation of antioxidant enzymes in tomato fruit [J]. Postharvest Biology and Technology, 2013, 79: 1-8

[21] Mao L C, Que F, Donald H J. 1-Methylcyclopropene and

CaCl 2 treatments affect lipolytic enzymes in fresh-cut watermelon fruit [J]. Acta Botanica Sinica, 2004, 46(12): 1402-1407

[22] Kurioka S, Matsuda M. Phospholipase C assay using

p-nitrophenylphosphorylcholine together with sorbitol and its application to studying the metal and detergent requirement of the enzyme [J]. Analytical Biochemistry, 1976, 75(1): 281- 289

[23] Minguez-Mosquera M I, Jaren-Galan M, Garrido-Fernandez

J. Lipoxygenase activity during pepper ripening and processing of paprika [J]. Phytochemistry, 1993, 32(5): 1103- 1108

[24] Gayathri T, Nair A S. Isolation, purification and

characterisation of polygalacturonase from ripened banana (Musa acuminata cv. Kadali) [J]. International Journal of Food Science & Technology, 2014, 49(2): 429-434 [25] 许玲, 张维一, 田允温. 低温冷害对哈密瓜外部形态和细胞

结构的影响[J].植物学报,1990,32(10):772-776

XU Ling, ZHANG Wei-yi, TIAN Y un-wen. Effects of chilling injury on the morphology and cell structure of Hami mellon fruits [J]. Acta Botanica sinica, 1990, 32(10): 772-776 [26] Aghdam M S, Naderi R, Sarcheshmeh M A A, et al.

Amelioration of postharvest chilling injury in anthurium cut flowers by γ-aminobutyric acid (GABA) treatments [J]. Postharvest Biology and Technology, 2015, 110: 70-76 [27] Luo Z, Wu X, Xie Y, et al. Alleviation of chilling injury and

browning of postharvest bamboo shoot by salicylic acid treatment [J]. Food Chemistry, 2012, 131(2): 456-461 [28] Pongprasert N, Sekozawa Y , Sugaya S, et al. A novel

postharvest UV-C treatment to reduce chilling injury (membrane damage, browning and chlorophyll degradation) in banana peel [J]. Scientia horticulturae, 2011, 130(1): 73-77 [29] Renard C M G C, Ginies C, Gouble B, et al. Home

conservation strategies for tomato (Solanum lycopersicum): Storage temperature vs. duration-Is there a compromise for better aroma preservation? [J]. Food Chemistry, 2013, 139(1): 825-836

[30] Lv J, Rao J, Zhu Y , et al. Cloning and expression of

lipoxygenase genes and enzyme activity in ripening persimmon fruit in response to GA and ABA treatments [J]. Postharvest Biology and Technology, 2014, 92: 54-61 [31] Y u T, Wu P G, Qi J J, et al. Improved control of postharvest

blue mold rot in pear fruit by a combination of Cryptococcus laurentii and gibberellic acid [J]. Biological Control, 2006, 39(2): 128-134

[32] Khademi O, Besada C, Mostofi Y, et al. Changes in pectin

methylesterase, polygalacturonase, catalase and peroxidase activities associated with alleviation of chilling injury in

189

现代食品科技

Horticulturae, 2014, 179: 191-197

Modern Food Science and Technology 2016, Vol.32, No.11

persimmon by hot water and 1-MCP treatments [J]. Scientia [33] Lurie S, Crisosto C H. Chilling injury in peach and nectarine

[J]. Postharvest Biology and Technology, 2005, 37(3): 195- 208

[34] Martínez-Téllez M A, Ramos-Clamont M G, Gardea A A, et

al. Effect of infiltrated polyamines on polygalacturonase activity and chilling injury responses in zucchini squash

(Cucurbita pepo L.) [J]. Biochemical and Biophysical Research Communications, 2002, 295(1): 98-101

[35] El-Hammady A M, Abdel-Hamid N, Saleh M, et al. Effect of

gibberellic acid and calcium chloride treatments on delaying maturity, quality and storability of "Balady" mandarin fruits [J]. Arab Universities Journal of Agricultural Sciences, 2000, 8(3): 755-766

190


相关文章

  • 食品科学与工程毕业论文论文正式版(6.13)
  • 本科毕业论文 热处理对番茄贮藏效果的影响 学 院:食品科学与工程 专 业:食品科学与工程 学 号:050910033 姓 名:张 楠 指导教师:韩育梅 职 称:副教授 论文提交日期:二ОО九年六月 摘 要 番茄属于冷敏果实,在冬季贮藏运输过 ...查看


  • 第五章 果蔬贮藏期间的冷害和冻害
  • 第五章 果蔬贮藏期间的冷害和冻害 1.掌握果蔬冷害冻害的相关概念. 2.掌握影响冷害.冻害的因素及减轻措施. 包括果蔬的种类.品种.原产地.成熟度.组织的生理状况和化学组成,采收期等因素.前面已经提及果蔬原产地不同,种类.品种和成熟度不同, ...查看


  • 番茄裂果怎样预防
  • 目录:西安年丰番茄种苗繁育有限公司  时间:2012-8-17  浏览字体:大 中 小 番茄裂果有两个时期,一个是幼果期裂果,一个是成熟期裂果.这里所说的裂果,指一般所指的成熟期裂果.番茄果实成熟期裂果对番茄商品性影响很大,直接影响着菜农的 ...查看


  • 植物生长物质对植物的影响
  • 植物生理学课程论文 论 文 题 目:植 物 生 长 物 质 对 植 物 生 长发 育 的 影 响 班 级:生 工 院 09 级 1 班 小 组 成 员: 指 导 老 师: 完 成 时 间:2011 年 5 月 24 日 植物生长物质对植物的 ...查看


  • 植物生长化学调控技术
  • 植物生长化学调控技术 植物在生长发育过程中,除了要有适宜的温.光.气.水等外,还需要一些作用特殊.含量微小的生理活性物质,这类物质就称为植物激素.现在人们采用化学合成方法,生产出作用与植物激素相似的植物生长调节剂,并用于植物体,达到调控植物 ...查看


  • 植物的激素调节
  • 第三章 植物的激素调节 第1节 植物生长素的发现导学案 寄语:科学发现需要大胆假设和精密的实验来验证,植物生长素的发现能让你充分 体验到科学实验设计的严谨分析,希望我们也能逐渐养成良好的思维方式. [学习目标] 1.概述植物生长素的发现. ...查看


  • 赤霉素在蔬菜上的应用
  • 作者:武厥彬 新疆科技报 2000年08期 赤霉素(920),简写为GA.商品剂型为粉剂.片剂.乳剂,片.乳剂可直接加水使用,粉剂需先用少量酒精(或高度白酒),配成原液,再用水稀释至所需浓度.GA对蔬菜最显著的生理效应是促进茎叶的伸长,增加 ...查看


  • 2015年高考生物最全分类:植物的激素调节
  • 专题十三 植物的激素调节 (上海卷)24.植物根部有向着背光侧生长的特性.将萌发中的幼苗呈水平状用细线悬挂在只能获得单向光照的盒中气培(空气湿度完全满足幼苗的生长需要),装置如图8所示.一段时间后,幼苗的生长方向最可能是 [答案]B [解析 ...查看


  • 赤霉素在番茄上的新用途
  • 赤霉素在番茄上的新用途 日期:2015-04-07 08:39 作者: 来源:内蒙古农牧业信息网 点击: 28 赤霉素是大家非常熟悉的一种植物生长调节剂,具有促进茎秆伸长,缓解多效唑药害:打破种子休眠,促进种子发芽:促进开花坐果,使果实提早 ...查看


热门内容