前几天还是北风呼啸

二0一0年济南市初三年级学业水平考试

数 学 试 题

第Ⅰ卷(选择题 共48分)

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合

题目要求的.) 1.2+(-2)的值是 C A.-4

B.

14

C.0 D.4

2.一组数据0、1、2、2、3、1、3、3的众数是D A.0 B.1 C.2 D.3

3.图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为D

第3题图

D. C. B. A.

4.作为历史上第一个正式提出“低碳世博”理念的世博会,上海世博会从一开始就确定以“低碳、和谐、可持续发展的城市”为主题.如今在世博场馆和周边共运行着一千多辆新能源汽车,为目前世界上规模最大的新能源汽车示范运行,预计将减少温室气体排放约28400吨.将28400吨用科学记数法表示为B A.0.284×105 吨 B.2.84×104吨 C.28.4×103吨 D.284×102吨 5.二元一次方程组

xy4xy2

第4题图

的解是D

A.

x3y7

B.

x1y1

C.

x7y3

D.

x3y1

6.下列各选项的运算结果正确的是B

20

15 C.x6x2x3 D.(ab)2a2b2

7.在一次体育课上,体育老师对九年级一班的40名同学进行了10 跳远项目的测试,测试所得分数及相应的人数如图所示,则这5

0 试的平均分为 A.分 B.

35

354

人数(人)

A.(2x2)38x6 B.5a2b2a2b3

立定

次测

6分 8分 10分

第7题图

分数

分 C.

403

分 D.8分

8.一次函数y2x1的图象经过哪几个象限B A.一、二、三象限 C.一、三、四象限

B.一、二、四象限 D.二、三、四象限

D

M、N分别

9.如图所示,正方形ABCD中,对角线AC、BD交于点O,点

第9题图

OB、OC的中点,则cos∠OMN的值为C

A.

12

B

2

C2

D.1

10.二次函数yx2x2的图象如图所示,则函数值y<0时

x的取值范围是

A.x<-1

B.x>2

C.-1<x<2

第10题图 D.x<-1或x>2

11.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n(n是正整数)的结果为

……

⑴ ⑶ ⑵

1+8+16+24=?1+8=?1+8+16=?

A.(2n1)2 B.(2n1)2 C.(n2)2 D.

n2 12.如图所示,矩形ABCD中,AB=4,BC=,点E是折线段A-

第11题图

D

D-C上的一个动点(点E与点A不重合),点P是点A关于BE

的对称点.在点E运动的过程中,使△PCB为等腰三角形的点E的位置共有

A.2个 B.3个 C.4个 D.5个 绝密★启用前

济南市2010年初三年级学业水平考试

数 学 试 题

注意事项:

1.第Ⅱ卷共6页.用蓝、黑色钢笔或圆珠笔直接答在考试卷上. 2.答卷前将密封线内的项目填写清楚.

第Ⅱ卷(非选择题 共72分) 第12题图

二、填空题(本大题共5个小题,每小题3分,共15分.把答案填在题

中的横线上.) 2

13.分解因式:x2x1 14.如图所示,△DEF是△ABC沿水平方向向右平移后的对

应图形,若∠B=31°,∠C=79°,则∠D的度数是 度.

C E 15.解方程

2x1

32x3

的结果是 .

第14

题图

1x

16.如图所示,点A是双曲线y在第二象限的分支上的任意一点,点B、C、D分别是点A关于x轴、

原点、y轴的对称点,则四边形ABCD的面积是 .

17.如图所示,△ABC的三个顶点的坐标分别为A(-1,3)、B (-2,-2)、C (4,-2),则

△ABC外接圆半径的长度为 .

三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)

18.(本小题满分7分)

⑴解不等式组:

x2x2x≤4

⑵如图所示,在梯形ABCD中,BC∥AD,AB=DC,点M是AD的中点. 求证:BM=CM.

∵BC∥AD,AB=DC,

∴∠BAM=∠CDM, ···································

···················分 ∵点M是AD的中点,

∴AM=DM, ················································M

第18题图 3分 ∴△ABM≌△DCM, ································································· ∴BM=CM.

19.(本小题满分7分)

(3)0

⑵如图所示,△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,若AC 求线段AD的长.

第19题图

20.(本小题满分8分)

如图所示,有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个扇形内分别标有数字1、2、-3、-4.若将转盘转动两次,每一次停止转动后,指针指向的扇形内的数字分别记为a、b(若指针恰好指在分界线上,则该次不计,重新转动一次,直至指针落在扇形内).

请你用列表法或树状图求a与 b的乘积等于2的概率.

21.(本小题满分8分) 第20题图

如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.

第21题图

22.(

本小题满分9分)

如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(-2,0).

⑴求线段AD所在直线的函数表达式.

⑵动点P从点A出发,以每秒1→B→A的顺

序在菱形的边上匀速运动一周,设运动时间为t以点P为圆心、以1为半径的圆与对角线AC相切?

第22题图

23.(本小题满分9分)

已知:△ABC是任意三角形.

⑴如图1所示,点M、P、N分别是边AB、BC、CA的中点.求证:∠MPN=∠A

. ⑵如图2所示,点M、N分别在边AB、AC上,且

AMAB

13

ANAC

13

,点P1、P2是边BC的三等分

点,你认为∠MP1N+∠MP2N=∠A是否正确?请说明你的理由.

⑶如图3所示,点M、N分别在边AB、AC上,且

AMAB

12010

ANAC

12010

,点P1、P2、……、P2009

是边BC的2010等分点,则∠MP1N+∠MP2N+……+∠MP2009N=____________. (请直接将该小问的答案写在横线上.) A A N

N

N

……

C C 1 2 2009C 1 2 第23题图2 第23题图3 第23题图1

24.(本小题满分9分)

如图所示,抛物线yx22x3与x轴交于A、B两点,直线BD的函数表达式为y抛物线的对称轴l与直线BD交于点C、与x轴交于点E. ⑴求A、B、C三个点的坐标.

⑵点P为线段AB上的一个动点(与点A、点B不重合),以点A为圆心、以AP为半径的圆弧与线段AC交于点M,以点B为圆心、以BP为半径的圆弧与线段BC交于点N,分别连接AN、BM、MN.

①求证:AN=BM.

②在点P运动的过程中,四边形AMNB的面积有最大值还是有最小值?并求出该最大值或最小值.

济南市2010年初三年级学业水平考试

数学试题参考答案及评分标准

13. (x1)2 14. 70 15. x9 16. 4 17. 三、解答题 18.(1)解:

x2>x2x≤4

① ②

解不等式①,得x>1, ·································································· 1分 解不等式②,得x≥-2, ··································································· 2分 ∴不等式组的解集为x>1. ···································································· 3分 (2) 证明:∵BC∥AD,AB=DC,

∴∠BAM=∠CDM, ··································································· 1分 ∵点M是AD的中点,

∴AM=DM, ··············································································· 2分

∴△ABM≌△DCM, ·········································

························ 3分 ∴BM=CM. ··············································

·································· 4分 19.(1)解:原式(3)

·····················

······································ 1分

2+1 ················································································ 2分

-1 ··················································································· 3分

(2)解:∵△ABC中,∠C=90º,∠B=30º,

∴∠BAC=60º,

∵AD是△ABC的角平分线,

∴∠CAD=30º, ···········

········

·························································· 1分 ∴在Rt△ADC中,AD

ACcos30

················································· 2分 ·······················

························· 3分

=2 . ························································ 4分

20.解:a与b

·················································································································· 6分 总共有16种结果,每种结果出现的可能性相同,其中ab=2的结果有2种, ··························································································································· 7分 ∴a与 b的乘积等于2的概率是. ·························································· 8分

81

21.解:设BC边的长为x米,根据题意得 ··················································· 1分 x32x2

120

, ················································································· 4分

解得:x112,x220, ··········································································· 6分

∵20>16,

∴x220不合题意,舍去, ·················································

··············

·· 7分

答:该矩形草坪BC边的长为12米. ··············································· 8分 22. 解:⑴∵点A的坐标为(-2,0),∠BAD=60°

,∠AOD=90°,

∴OD=OA·tan60°=,

∴点

D的坐标为(0

,, ··············

·····

········································· 1分 设直线AD的函数表达式为ykxb,

2kb0

bk,解得

b

∴直线AD的函数表达式为y. ······································· 3分 ⑵∵四边形ABCD是菱形,

∴∠DCB=∠BAD=60°, ∴∠1=∠2=∠3=∠4=30°, AD=DC=CB=BA=4, ········································································· 5分 如图所示:

①点P在AD上与AC相切时, AP1=2r=2, ∴t1=2. ·································································································· 6分

②点P在DC上与AC相切时,

CP2=2r=2,

∴AD+DP2=6, ∴t2=6. ······································ 7分 ③点P在BC上与AC相切时,

CP3=2r=2,

第22题图

∴AD+DC+CP3=10, ∴t3=10. ······································ 8分 ④点P在AB上与AC相切时, AP4=2r=2,

∴AD+DC+CB+BP4=14, ∴t4=14,

∴当t=2、6、10、14时,以点P为圆心、以1为半径的圆与对角线AC相切. ··························································· 9分

23. ⑴证明:∵点M、P、N分别是AB、BC、CA的中点, ∴线段MP、PN是△ABC的中位线,

∴MP∥AN,PN∥AM, ··················· 1分

∴四边形AMPN是平行四边形, ····· 2分

M

∴∠MPN=∠A. ···························· 3分

1 2 ⑵∠MP1N+∠MP2N=∠A正确. ··················· 4分

如图所示,连接MN, ···························· 5分 ∵

AMAB

ANAC

13

A N

,∠A=∠A,

B

P1 P2

C

∴△AMN∽△ABC, ∴∠AMN=∠B,

MNBC

13

第23题图

∴MN∥BC,MN=BC, ······················· 6分

3

1

∵点P1、P2是边BC的三等分点,

∴MN与BP1平行且相等,MN与P1P2平行且相等,MN与P2C平行且相等, ∴四边形MBP1N、MP1P2N、MP2CN都是平行四边形, ∴MB∥NP1,MP1∥NP2,MP2∥AC, ······································································ 7分 ∴∠MP1N=∠1,∠MP2N=∠2,∠BMP2=∠A, ∴∠MP1N+∠MP2N=∠1+∠2=∠BMP2=∠A. ····································································· 8分 ⑶∠A. ···················································· 9分

24.解:⑴令x2x30,

2

y

解得:x11,x23, ∴A(-1,0),B(3,0) ······························· 2分 ∵yx22x3=(x1)24, ∴抛物线的对称轴为直线x=1,

将x=1

代入y,得y

N

M

C

F

D

l

A O E P B x

第24题图

∴C(1,

. ··································· 3分 ⑵①在Rt△ACE中,tan∠CAE

=

CEAE

∴∠CAE=60º,

由抛物线的对称性可知l是线段AB的垂直平分线, ∴AC=BC,

∴△ABC为等边三角形, ·································································· 4分 ∴AB= BC =AC = 4,∠ABC=∠ACB= 60º, 又∵AM=AP,BN=BP, ∴BN = CM,

∴△ABN≌△BCM, ∴AN=BM. ···························································································· 5分 ②四边形AMNB的面积有最小值. ··················································· 6分 设AP=m,四边形AMNB的面积为S, 由①可知AB= BC= 4,BN = CM=BP,S△ABC

4

×42

=

∴CM=BN= BP=4-m,CN=m, 过M作MF⊥BC,垂足为F, 则MF=MC•sin60º

=

1

21

(4m),

2

m)=

4

2

∴S△CMN=CNMF=m

2

2

, ························· 7分

∴S=S△ABC-S△CMN

=

4

2

4

2

m2) ············································································· 8分

∴m=2时,S取得最小值

·························································· 9分

二0一0年济南市初三年级学业水平考试

数 学 试 题

第Ⅰ卷(选择题 共48分)

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合

题目要求的.) 1.2+(-2)的值是 C A.-4

B.

14

C.0 D.4

2.一组数据0、1、2、2、3、1、3、3的众数是D A.0 B.1 C.2 D.3

3.图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为D

第3题图

D. C. B. A.

4.作为历史上第一个正式提出“低碳世博”理念的世博会,上海世博会从一开始就确定以“低碳、和谐、可持续发展的城市”为主题.如今在世博场馆和周边共运行着一千多辆新能源汽车,为目前世界上规模最大的新能源汽车示范运行,预计将减少温室气体排放约28400吨.将28400吨用科学记数法表示为B A.0.284×105 吨 B.2.84×104吨 C.28.4×103吨 D.284×102吨 5.二元一次方程组

xy4xy2

第4题图

的解是D

A.

x3y7

B.

x1y1

C.

x7y3

D.

x3y1

6.下列各选项的运算结果正确的是B

20

15 C.x6x2x3 D.(ab)2a2b2

7.在一次体育课上,体育老师对九年级一班的40名同学进行了10 跳远项目的测试,测试所得分数及相应的人数如图所示,则这5

0 试的平均分为 A.分 B.

35

354

人数(人)

A.(2x2)38x6 B.5a2b2a2b3

立定

次测

6分 8分 10分

第7题图

分数

分 C.

403

分 D.8分

8.一次函数y2x1的图象经过哪几个象限B A.一、二、三象限 C.一、三、四象限

B.一、二、四象限 D.二、三、四象限

D

M、N分别

9.如图所示,正方形ABCD中,对角线AC、BD交于点O,点

第9题图

OB、OC的中点,则cos∠OMN的值为C

A.

12

B

2

C2

D.1

10.二次函数yx2x2的图象如图所示,则函数值y<0时

x的取值范围是

A.x<-1

B.x>2

C.-1<x<2

第10题图 D.x<-1或x>2

11.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n(n是正整数)的结果为

……

⑴ ⑶ ⑵

1+8+16+24=?1+8=?1+8+16=?

A.(2n1)2 B.(2n1)2 C.(n2)2 D.

n2 12.如图所示,矩形ABCD中,AB=4,BC=,点E是折线段A-

第11题图

D

D-C上的一个动点(点E与点A不重合),点P是点A关于BE

的对称点.在点E运动的过程中,使△PCB为等腰三角形的点E的位置共有

A.2个 B.3个 C.4个 D.5个 绝密★启用前

济南市2010年初三年级学业水平考试

数 学 试 题

注意事项:

1.第Ⅱ卷共6页.用蓝、黑色钢笔或圆珠笔直接答在考试卷上. 2.答卷前将密封线内的项目填写清楚.

第Ⅱ卷(非选择题 共72分) 第12题图

二、填空题(本大题共5个小题,每小题3分,共15分.把答案填在题

中的横线上.) 2

13.分解因式:x2x1 14.如图所示,△DEF是△ABC沿水平方向向右平移后的对

应图形,若∠B=31°,∠C=79°,则∠D的度数是 度.

C E 15.解方程

2x1

32x3

的结果是 .

第14

题图

1x

16.如图所示,点A是双曲线y在第二象限的分支上的任意一点,点B、C、D分别是点A关于x轴、

原点、y轴的对称点,则四边形ABCD的面积是 .

17.如图所示,△ABC的三个顶点的坐标分别为A(-1,3)、B (-2,-2)、C (4,-2),则

△ABC外接圆半径的长度为 .

三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)

18.(本小题满分7分)

⑴解不等式组:

x2x2x≤4

⑵如图所示,在梯形ABCD中,BC∥AD,AB=DC,点M是AD的中点. 求证:BM=CM.

∵BC∥AD,AB=DC,

∴∠BAM=∠CDM, ···································

···················分 ∵点M是AD的中点,

∴AM=DM, ················································M

第18题图 3分 ∴△ABM≌△DCM, ································································· ∴BM=CM.

19.(本小题满分7分)

(3)0

⑵如图所示,△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,若AC 求线段AD的长.

第19题图

20.(本小题满分8分)

如图所示,有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个扇形内分别标有数字1、2、-3、-4.若将转盘转动两次,每一次停止转动后,指针指向的扇形内的数字分别记为a、b(若指针恰好指在分界线上,则该次不计,重新转动一次,直至指针落在扇形内).

请你用列表法或树状图求a与 b的乘积等于2的概率.

21.(本小题满分8分) 第20题图

如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.

第21题图

22.(

本小题满分9分)

如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(-2,0).

⑴求线段AD所在直线的函数表达式.

⑵动点P从点A出发,以每秒1→B→A的顺

序在菱形的边上匀速运动一周,设运动时间为t以点P为圆心、以1为半径的圆与对角线AC相切?

第22题图

23.(本小题满分9分)

已知:△ABC是任意三角形.

⑴如图1所示,点M、P、N分别是边AB、BC、CA的中点.求证:∠MPN=∠A

. ⑵如图2所示,点M、N分别在边AB、AC上,且

AMAB

13

ANAC

13

,点P1、P2是边BC的三等分

点,你认为∠MP1N+∠MP2N=∠A是否正确?请说明你的理由.

⑶如图3所示,点M、N分别在边AB、AC上,且

AMAB

12010

ANAC

12010

,点P1、P2、……、P2009

是边BC的2010等分点,则∠MP1N+∠MP2N+……+∠MP2009N=____________. (请直接将该小问的答案写在横线上.) A A N

N

N

……

C C 1 2 2009C 1 2 第23题图2 第23题图3 第23题图1

24.(本小题满分9分)

如图所示,抛物线yx22x3与x轴交于A、B两点,直线BD的函数表达式为y抛物线的对称轴l与直线BD交于点C、与x轴交于点E. ⑴求A、B、C三个点的坐标.

⑵点P为线段AB上的一个动点(与点A、点B不重合),以点A为圆心、以AP为半径的圆弧与线段AC交于点M,以点B为圆心、以BP为半径的圆弧与线段BC交于点N,分别连接AN、BM、MN.

①求证:AN=BM.

②在点P运动的过程中,四边形AMNB的面积有最大值还是有最小值?并求出该最大值或最小值.

济南市2010年初三年级学业水平考试

数学试题参考答案及评分标准

13. (x1)2 14. 70 15. x9 16. 4 17. 三、解答题 18.(1)解:

x2>x2x≤4

① ②

解不等式①,得x>1, ·································································· 1分 解不等式②,得x≥-2, ··································································· 2分 ∴不等式组的解集为x>1. ···································································· 3分 (2) 证明:∵BC∥AD,AB=DC,

∴∠BAM=∠CDM, ··································································· 1分 ∵点M是AD的中点,

∴AM=DM, ··············································································· 2分

∴△ABM≌△DCM, ·········································

························ 3分 ∴BM=CM. ··············································

·································· 4分 19.(1)解:原式(3)

·····················

······································ 1分

2+1 ················································································ 2分

-1 ··················································································· 3分

(2)解:∵△ABC中,∠C=90º,∠B=30º,

∴∠BAC=60º,

∵AD是△ABC的角平分线,

∴∠CAD=30º, ···········

········

·························································· 1分 ∴在Rt△ADC中,AD

ACcos30

················································· 2分 ·······················

························· 3分

=2 . ························································ 4分

20.解:a与b

·················································································································· 6分 总共有16种结果,每种结果出现的可能性相同,其中ab=2的结果有2种, ··························································································································· 7分 ∴a与 b的乘积等于2的概率是. ·························································· 8分

81

21.解:设BC边的长为x米,根据题意得 ··················································· 1分 x32x2

120

, ················································································· 4分

解得:x112,x220, ··········································································· 6分

∵20>16,

∴x220不合题意,舍去, ·················································

··············

·· 7分

答:该矩形草坪BC边的长为12米. ··············································· 8分 22. 解:⑴∵点A的坐标为(-2,0),∠BAD=60°

,∠AOD=90°,

∴OD=OA·tan60°=,

∴点

D的坐标为(0

,, ··············

·····

········································· 1分 设直线AD的函数表达式为ykxb,

2kb0

bk,解得

b

∴直线AD的函数表达式为y. ······································· 3分 ⑵∵四边形ABCD是菱形,

∴∠DCB=∠BAD=60°, ∴∠1=∠2=∠3=∠4=30°, AD=DC=CB=BA=4, ········································································· 5分 如图所示:

①点P在AD上与AC相切时, AP1=2r=2, ∴t1=2. ·································································································· 6分

②点P在DC上与AC相切时,

CP2=2r=2,

∴AD+DP2=6, ∴t2=6. ······································ 7分 ③点P在BC上与AC相切时,

CP3=2r=2,

第22题图

∴AD+DC+CP3=10, ∴t3=10. ······································ 8分 ④点P在AB上与AC相切时, AP4=2r=2,

∴AD+DC+CB+BP4=14, ∴t4=14,

∴当t=2、6、10、14时,以点P为圆心、以1为半径的圆与对角线AC相切. ··························································· 9分

23. ⑴证明:∵点M、P、N分别是AB、BC、CA的中点, ∴线段MP、PN是△ABC的中位线,

∴MP∥AN,PN∥AM, ··················· 1分

∴四边形AMPN是平行四边形, ····· 2分

M

∴∠MPN=∠A. ···························· 3分

1 2 ⑵∠MP1N+∠MP2N=∠A正确. ··················· 4分

如图所示,连接MN, ···························· 5分 ∵

AMAB

ANAC

13

A N

,∠A=∠A,

B

P1 P2

C

∴△AMN∽△ABC, ∴∠AMN=∠B,

MNBC

13

第23题图

∴MN∥BC,MN=BC, ······················· 6分

3

1

∵点P1、P2是边BC的三等分点,

∴MN与BP1平行且相等,MN与P1P2平行且相等,MN与P2C平行且相等, ∴四边形MBP1N、MP1P2N、MP2CN都是平行四边形, ∴MB∥NP1,MP1∥NP2,MP2∥AC, ······································································ 7分 ∴∠MP1N=∠1,∠MP2N=∠2,∠BMP2=∠A, ∴∠MP1N+∠MP2N=∠1+∠2=∠BMP2=∠A. ····································································· 8分 ⑶∠A. ···················································· 9分

24.解:⑴令x2x30,

2

y

解得:x11,x23, ∴A(-1,0),B(3,0) ······························· 2分 ∵yx22x3=(x1)24, ∴抛物线的对称轴为直线x=1,

将x=1

代入y,得y

N

M

C

F

D

l

A O E P B x

第24题图

∴C(1,

. ··································· 3分 ⑵①在Rt△ACE中,tan∠CAE

=

CEAE

∴∠CAE=60º,

由抛物线的对称性可知l是线段AB的垂直平分线, ∴AC=BC,

∴△ABC为等边三角形, ·································································· 4分 ∴AB= BC =AC = 4,∠ABC=∠ACB= 60º, 又∵AM=AP,BN=BP, ∴BN = CM,

∴△ABN≌△BCM, ∴AN=BM. ···························································································· 5分 ②四边形AMNB的面积有最小值. ··················································· 6分 设AP=m,四边形AMNB的面积为S, 由①可知AB= BC= 4,BN = CM=BP,S△ABC

4

×42

=

∴CM=BN= BP=4-m,CN=m, 过M作MF⊥BC,垂足为F, 则MF=MC•sin60º

=

1

21

(4m),

2

m)=

4

2

∴S△CMN=CNMF=m

2

2

, ························· 7分

∴S=S△ABC-S△CMN

=

4

2

4

2

m2) ············································································· 8分

∴m=2时,S取得最小值

·························································· 9分


相关文章

  • 描写冬天的好段:呼啸的北风
  • 打开深秋的大门,走出去,自己便觉得有股寒气猛然袭来,刺疼着脸的风儿在吹着,枯黄的叶子在随风飘落着,随后也便只剩下光秃秃的树干了,早晨也会有明显的霜降落了,气温大幅度地降下去了,观望四周--已是深秋了,冬天的脚步近了. 渐渐地,天气凉了,风也 ...查看


  • 描写雪景的句子:严冬到来,北风呼啸,大雪漫天飞舞
  • 寒风"呼呼"地咆哮着,用它那粗大的手指,蛮横地乱抓行人的头发,针一般地刺着行人的肌肤.行人万般无奈,只得将冬衣扣得严严实实的,把手揣在衣兜里,缩着脖子,疾步前行.而大路两旁的松柏,却精神抖擞地挺立着,傲迎风霜雨雪,激励着 ...查看


  • 描写冬天的好段:狂风呼啸,大树在狂风中摇晃
  • 1.呼--呼--",狂风呼啸,大树在狂风中摇晃,一条条树枝就像一条条狂舞的皮鞭在空中抽打着. 2.松树苍翠地站在白皑皑的雪地里,随着凛冽的西北风,摇晃着身子,发出尖厉刺耳的呼啸,像是有意在蔑视冬天. 3.刚到下午4点多,太阳就已经 ...查看


  • [优秀作文]忘不了那个眼神
  • 那一年的冬天格外寒冷,似刀一般的北风肆无忌惮的呼啸着,那轮罕见的冬阳也被无情的北风吹进了云层里.一个风雪弥漫的午后,那个眼神,温暖了整个寒冬. 午饭过后,见窗外大雪纷飞,北风呼啸,不由得想出门欣赏一番"北国风光".却不想 ...查看


  • 孟浩然的诗:早寒有怀
  • 木落雁南渡,北风江上寒. 我家襄水曲,遥隔楚云端. 乡泪客中尽,孤帆天际看. 迷津欲有问,平海夕漫漫. [注解]: 1.我家句:孟浩然家在襄阳,襄阳则当襄水之曲,故云.襄水:也叫襄河,汉水在 襄樊市以下一段,水流曲折,故云襄水曲. 2. ...查看


  • 描写冬天的好段:隆冬,北风凛冽
  • 独自来到郊外,置身于茫茫雪原,把自己还原成苍茫天地间的一个小黑点,静静地停在这里.如果把这片雪原看作个一个世界,那我们就是上帝撒下的无数雪花.我们如落雪一样被命运的风送到这个世界,回首来路,却无迹可巡.我们躺在我们落下的位置,等待着命运的风 ...查看


  • 形容冬天的句子:狂风呼啸
  • 刚到下午点多,太阳就已经收起它那淡淡的光,好像也怕冷似的,躲进了像棉胎一样厚的云层. 寒冷的严冬,河水一改往日的活泼,似乎恬静地睡着了 呼--呼--",狂风呼啸,大树在狂风中摇晃,一条条树枝就像一条条狂舞的皮鞭在空中抽打着. 黄昏 ...查看


  • 描写冬天的好句好段优美句子
  • 描写冬天的好句好段优美句子 1.冬天,户外那粘满霜雪的柳树上尽是树挂,像是一根根银条悬挂在树上,格外壮观. 2.暖暖的阳光隔着窗玻照射进来.光与能量洒在屋内的地板上,屋里暖了,室内亮了,就连窗帘儿的花纹都印在了地板上.窗玻楞框的影子,不容置 ...查看


  • 关于假文盲的作文
  • 关于假文盲的作文(一) 一九八九年的一个早晨,寒风猛烈地刮着,好像北风爷爷之前攒足了气力,就在这一瞬间把全部的劲儿都呼了出来一样.树上干枯的叶子在风儿狮吼般地嚎叫下,一片一片飘飘悠悠地落下来,只剩下几片树叶孤零零地挂在树上.一股冷空气闪电般 ...查看


热门内容