高中数学排列及计算公式

排列及计算公式

从n 个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列; 从n 个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号p(n,m)表示。

p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).

2. 组合及计算公式

从n 个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合; 从n 个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数。用符号

c(n,m)表示。

c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);

3. 其他排列与组合公式

从n 个元素中取出r 个元素的循环排列数=p(n,r)/r=n!/r(n-r).

n 个元素被分成k 类,每类的个数分别是n1,n2,……nk这n 个元素的全排列数为

n!/(n1!*n2!*……*nk!).

k 类元素,每类的个数无限,从中取出m 个元素的组合数为c(m+k-1,m).

排列(Pnm(n为下标,m 为上标))

Pnm=n×(n-1)……(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n 分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n

组合(Cnm(n为下标,m 为上标))

Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n 分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

公式P 是指排列,从N 个元素取R 个进行排列。公式C 是指组合,从N 个元素取R 个,不进行排列。N-元素的总个数R 参与选择的元素个数!-阶乘,如

9!=9*8*7*6*5*4*3*2*1

从N 倒数r 个,表达式应该为n*(n-1)*(n-2).(n-r+1);

因为从n 到(n-r+1)个数为n-(n-r+1)=r

举例:

Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?

A1:123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)

Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?

A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,

9)=9*8*7/3*2*1

排列、组合的概念和公式典型例题分析

例1设有3名学生和4个课外小组。(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加。各有多少种不同方法?

解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法。

(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法。

点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算。

例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?

解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:

∴符合题意的不同排法共有9种。

点评按照分“类”的思路,本题应用了加法原理。为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型。

例3判断下列问题是排列问题还是组合问题?并计算出结果。

(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?

(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?

(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?

(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?

分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列; ②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题。其他类似分析。

(1)①是排列问题,共用了封信; ②是组合问题,共需握手(次).

(2)①是排列问题,共有(种) 不同的选法; ②是组合问题,共有种不同的选法。

(3)①是排列问题,共有种不同的商; ②是组合问题,共有种不同的积。

(4)①是排列问题,共有种不同的选法; ②是组合问题,共有种不同的选法。

例4证明。

证明左式

右式。

∴等式成立。

点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化。

例5化简。

解法一原式

解法二原式

点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质; 解法二选用了组合数的两个性质,都使变形过程得以简化。

例6解方程:(1);(2).

解(1)原方程

解得。

(2)原方程可变为

∵,

∴原方程可化为。

即,解得

排列及计算公式

从n 个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列; 从n 个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号p(n,m)表示。

p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).

2. 组合及计算公式

从n 个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合; 从n 个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数。用符号

c(n,m)表示。

c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);

3. 其他排列与组合公式

从n 个元素中取出r 个元素的循环排列数=p(n,r)/r=n!/r(n-r).

n 个元素被分成k 类,每类的个数分别是n1,n2,……nk这n 个元素的全排列数为

n!/(n1!*n2!*……*nk!).

k 类元素,每类的个数无限,从中取出m 个元素的组合数为c(m+k-1,m).

排列(Pnm(n为下标,m 为上标))

Pnm=n×(n-1)……(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n 分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n

组合(Cnm(n为下标,m 为上标))

Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n 分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

公式P 是指排列,从N 个元素取R 个进行排列。公式C 是指组合,从N 个元素取R 个,不进行排列。N-元素的总个数R 参与选择的元素个数!-阶乘,如

9!=9*8*7*6*5*4*3*2*1

从N 倒数r 个,表达式应该为n*(n-1)*(n-2).(n-r+1);

因为从n 到(n-r+1)个数为n-(n-r+1)=r

举例:

Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?

A1:123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)

Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?

A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,

9)=9*8*7/3*2*1

排列、组合的概念和公式典型例题分析

例1设有3名学生和4个课外小组。(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加。各有多少种不同方法?

解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法。

(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法。

点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算。

例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?

解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:

∴符合题意的不同排法共有9种。

点评按照分“类”的思路,本题应用了加法原理。为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型。

例3判断下列问题是排列问题还是组合问题?并计算出结果。

(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?

(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?

(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?

(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?

分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列; ②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题。其他类似分析。

(1)①是排列问题,共用了封信; ②是组合问题,共需握手(次).

(2)①是排列问题,共有(种) 不同的选法; ②是组合问题,共有种不同的选法。

(3)①是排列问题,共有种不同的商; ②是组合问题,共有种不同的积。

(4)①是排列问题,共有种不同的选法; ②是组合问题,共有种不同的选法。

例4证明。

证明左式

右式。

∴等式成立。

点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化。

例5化简。

解法一原式

解法二原式

点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质; 解法二选用了组合数的两个性质,都使变形过程得以简化。

例6解方程:(1);(2).

解(1)原方程

解得。

(2)原方程可变为

∵,

∴原方程可化为。

即,解得


相关文章

  • 高中数学知识口诀大全
  • 高中数学知识口诀大全[转] 一.<集合> 集合概念不定义,属性相同来相聚, 内含子交并补集,高中数学的基础. 集合元素三特征,互异无序确定性. 集合元素尽相同,两个集合才相等. 书写采用符号化,表示列举描述法. 元素集合多属于, ...查看


  • 浙江省教师招聘考试中学数学考试大纲
  • 浙江省中小学教师录用考试中学数学学科考试说明 Ⅰ. 考试性质 浙江省中小学教师录用考试是为全省教育行政部门招聘教师而进行的选拔性考试, 其目的是为教育行政部门录用教师提供智育方面的参考.各地根据考生的考试成绩,结合面试情况,按已确定的招聘计 ...查看


  • 高中数学(文科)知识点有哪些啊 请帮我总结一下
  • 1.集合.简易逻辑 理解集合.子集.补集.交集.并集的概念: 了解空集和全集的意义: 了解属于.包含.相等关系的意义: 掌握有关的术语和符号,并会用它们正确表示一些简单的集合. 理解逻辑联结词"或"."且&qu ...查看


  • 化学解题巧用排列组合
  • 化学解题巧用排列组合 排列组合是高中数学中的一个非常重要的知识点,在高中化学中涉及到的许多问题都用到了排列组合知识,如分子种类的确定.同分异构问题及化学计算等.把数学中讲的排组合内容应用到化学这一学科来解决有关问题往往会使问题得到简化,容易 ...查看


  • [高中数学]计数原理(1)
  • [高中数学]计数原理(1) 1. 分类计数原理---加法原理 如果完成一件工作有两类不同的方案,由第1类方案中有m 种方法,在第2类方案中有n 种不同的方法,那么,完成这件工作共有m +n 种不同的方法. [例1]一件工作可以用2种方法完成 ...查看


  • 上海市二期课改高中数学教材目录
  • 上海市二期课改高一到高三所有的数学教材目录(共 21 个单元) 高中一年级第一学期第 1 章 集合和命 一.集合 1.1 集合及其表示法 1.2 集合之间的关系 1.3 集合的运算 二.四种命题的形式 1.4 命题的形式及等价关系 三.充分 ...查看


  • 高中数学公式口诀
  • 高中数学公式口诀 一.<集合与函数> 内容子交并补集,还有幂指对函数.性质奇偶与增减,观察图象最明显. 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓. 指数与对数函数,两者互为反函数.底数非1的正数,1两边增减 ...查看


  • 北京市高中数学课程架构与进度
  • 北京市高中数学课程架构与进度 一.教材使用 北京全市所有区县的数学教材总共分为两套,以中轴线为地理分界线东西各使用一套.东部区县使用人教A 版,如东城.朝阳.通州等.西部区县使用人教B 版,如西城.海淀.石景山.房山,昌平.门头沟.怀柔等. ...查看


  • 对高中数学课标教材的分析与研究
  • 对高中数学课标教材的分析与研究 博 兴 一 中 孙 翠 玲 自2004年9月开始,各个版本的高中数学课程标准实验教科书开始在全国范围内实验.与原来大纲教材相比,各个版本课标教材在知识内容的体系安排,教材的组织形式和呈现方式等方面都做了很大的 ...查看


热门内容