有源滤波器与开关电容滤波器的性能比较

摘要:为了对一低频信号进行带通滤波及放大,采用由R、C和集成运算放大器组成的有源带通滤波器与开关电容滤波器两种方案,通过对实验数据的分析得出,有源滤波器的无输入噪声比较小,但是信号在中心频率附近变化时,输出信号的相位变化比较大;开关电容滤波器可以方便的改变中心频率及Q值,但是无输入时噪声比较大。

关键词:有源滤波器;带通滤波;开关电容;放大

对模拟信号进行滤波,其基本原理就是利用电路的频率特性实现对信号中频率成分的选择。根据频率滤波时,把信号看成是由不同频率正弦波叠加而成的模拟信号,通过选择不同的频率成分来实现信号滤波。针对本应用所要求的带通滤波及放大,可以有多种方案,其中使用比较多的是由R、C及集成运放组成的有源带通滤波器和开关电容滤波器。

1 带通滤波器

带通滤波器的主要性能参数有:

(1)中心频率增益K0:输入为中心频率信号时的电压放大倍数。

(2)中心频率f0:它只与滤波用的电阻和电容元件的参数有关,是带通滤波器通带内电压增益最大点的频率。

(3)截止频率fL和fH:输出幅值为×输入×中心频率增益时所对应的频率,带通滤波器有两个,分别为低频截止频率fL和高频截止频率fH。

(4)通带宽度BW:高频截止频率fH与低频截止频率fL之差。

(5)品质因数Q;对带通滤波器而言,Q值等于中心频率f0与通带宽度BW之比。

2 有源滤波器

有源滤波器是由无源元件(一般用R和C)和有源器件(如集成运算放大器)组成。这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽(由于不使用电感元件)。缺点是:通带范围受有源器件(如集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在高压、高频、大功率的场合不适用。本实验采用平常使用比较多的多路负反馈二阶带通滤波器,如图1所示。

2.1 有源滤波器参数设计

其传递函数的一般形式为:

式中ω0:带通滤波器中心角频率,Q:品质因数,K0:ω=ω0时带通滤波器的增益。设计中经常取C1=C2=C,则:

根据实际要求选择每一级带通滤波的参数为:f0=12Hz,GAIN=10,Q=6。然后再根据具体已有标称的电阻、电容值选择每一级带通滤波的器件大小: R1=17.88K,R2=2.69K,R3=324K,C=0.494μF,经计算得到的理论值为f0=11.71Hz,GAIN=9.06,Q=5.9。

2.2 有源滤波器实验及数据

图2为测试电路,由该电路得到的实验数据见表1。当输入频率在中心频率附近变化时,输出信号的相位变化比较明显。

3 开关电容滤波器

开关电容滤波器是一种新型的大规模集成器件,其主要特点是用开关和电容来代替电路中的电阻.是数字电路和模拟电路的结合,可以将很多有源的RC滤波器转换成开关电容滤波器。开关电容滤波器在使用方面的最大优点是无需更换元件,只需改变时钟频率和编程引脚电平就可以在一定的范围内改变滤波器的中心频率和Q值,这给滤波器的设计、使用带来很大方便。但是开关电容滤波器具有开关噪声和时钟噪声。

3.1 开关电容滤波器原理

开关电容的一种结构如图3所示,起开关作用的MOS管T1和T2是由时钟信号φ和

  来控制的,φ和

  反相的。当时钟信号φ为高电平时,T1管导通,T2管截止,电容C与1—1’端接通,充电电荷为Q=CV1;当时钟信号

  高电平时,T2管导通,T1管截止,电容C与2—2’接通,充电电荷为Q=CV2。若设电路的时钟周期为TC,则在此时间内从1一1’端向2—2’端传输的电荷为△Q=Q1-Q2,由1一1’端流向2—2’端的平均电流为I=△Q/TC=C(V1-V2)/TC。

如果时钟频率fclk=1/TC比信号的频率高得多,开关电容相当于一个电阻R,等效电阻值为R=(V1—V2)/I=TC/C=1/fclkC。

显然,等效电阻的值与时钟频率和电容大小成反比。对于由RC构成的滤波器就只需将电阻用开关电容代替,就可以组成开关电容滤波器,则电路的时间常数τ=RC=C2/fclkC1。

上述表明龟路的频响特性由时钟频率与电容比值决定,与电容的绝对值无关。开关电容滤波器实质上属于调制或采样系统,调制(采样)频率由分频比决定。

3.2 开关电容滤波器实验及数据

为了满足放大倍数的要求,通过给开关电容滤波器芯片编程引脚特定的高低电平选择Q=10.7,中心频f0=12.14Hz,时钟fclk=2.405k Hz,用两片开关电容芯片级联成四级得到的。图4所示为一片开关电容滤波器实验电路图。实验数据如表2所列。

4 结束语

通过对实验数据的分析得出,带通滤波器中Q值越高则通频带越窄,也就是说滤波器对频率的选择性就越好,对干扰信号的抑制能力也就越强,但并不是Q值越高电路越好越稳定。若Q值取过大,当滤波器中心频率变动时,有用信号通过滤波器时将产生较大的相位误差和幅值误差。因此在滤波器满足滤波质量前提下,Q值尽可能小。

有源带通滤波器的无输入时输出噪声较小,输出信号幅值较稳定,但当Q较大时输入信号频率在中心频率附近变化,输出信号的相位变化较大。

开关电容滤波器可以很方便的改变中心频率和Q值,但是受开关噪声和时钟噪声影响,在没有输入信号的情况下,输出有比较大的噪声信号。

摘要:为了对一低频信号进行带通滤波及放大,采用由R、C和集成运算放大器组成的有源带通滤波器与开关电容滤波器两种方案,通过对实验数据的分析得出,有源滤波器的无输入噪声比较小,但是信号在中心频率附近变化时,输出信号的相位变化比较大;开关电容滤波器可以方便的改变中心频率及Q值,但是无输入时噪声比较大。

关键词:有源滤波器;带通滤波;开关电容;放大

对模拟信号进行滤波,其基本原理就是利用电路的频率特性实现对信号中频率成分的选择。根据频率滤波时,把信号看成是由不同频率正弦波叠加而成的模拟信号,通过选择不同的频率成分来实现信号滤波。针对本应用所要求的带通滤波及放大,可以有多种方案,其中使用比较多的是由R、C及集成运放组成的有源带通滤波器和开关电容滤波器。

1 带通滤波器

带通滤波器的主要性能参数有:

(1)中心频率增益K0:输入为中心频率信号时的电压放大倍数。

(2)中心频率f0:它只与滤波用的电阻和电容元件的参数有关,是带通滤波器通带内电压增益最大点的频率。

(3)截止频率fL和fH:输出幅值为×输入×中心频率增益时所对应的频率,带通滤波器有两个,分别为低频截止频率fL和高频截止频率fH。

(4)通带宽度BW:高频截止频率fH与低频截止频率fL之差。

(5)品质因数Q;对带通滤波器而言,Q值等于中心频率f0与通带宽度BW之比。

2 有源滤波器

有源滤波器是由无源元件(一般用R和C)和有源器件(如集成运算放大器)组成。这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽(由于不使用电感元件)。缺点是:通带范围受有源器件(如集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在高压、高频、大功率的场合不适用。本实验采用平常使用比较多的多路负反馈二阶带通滤波器,如图1所示。

2.1 有源滤波器参数设计

其传递函数的一般形式为:

式中ω0:带通滤波器中心角频率,Q:品质因数,K0:ω=ω0时带通滤波器的增益。设计中经常取C1=C2=C,则:

根据实际要求选择每一级带通滤波的参数为:f0=12Hz,GAIN=10,Q=6。然后再根据具体已有标称的电阻、电容值选择每一级带通滤波的器件大小: R1=17.88K,R2=2.69K,R3=324K,C=0.494μF,经计算得到的理论值为f0=11.71Hz,GAIN=9.06,Q=5.9。

2.2 有源滤波器实验及数据

图2为测试电路,由该电路得到的实验数据见表1。当输入频率在中心频率附近变化时,输出信号的相位变化比较明显。

3 开关电容滤波器

开关电容滤波器是一种新型的大规模集成器件,其主要特点是用开关和电容来代替电路中的电阻.是数字电路和模拟电路的结合,可以将很多有源的RC滤波器转换成开关电容滤波器。开关电容滤波器在使用方面的最大优点是无需更换元件,只需改变时钟频率和编程引脚电平就可以在一定的范围内改变滤波器的中心频率和Q值,这给滤波器的设计、使用带来很大方便。但是开关电容滤波器具有开关噪声和时钟噪声。

3.1 开关电容滤波器原理

开关电容的一种结构如图3所示,起开关作用的MOS管T1和T2是由时钟信号φ和

  来控制的,φ和

  反相的。当时钟信号φ为高电平时,T1管导通,T2管截止,电容C与1—1’端接通,充电电荷为Q=CV1;当时钟信号

  高电平时,T2管导通,T1管截止,电容C与2—2’接通,充电电荷为Q=CV2。若设电路的时钟周期为TC,则在此时间内从1一1’端向2—2’端传输的电荷为△Q=Q1-Q2,由1一1’端流向2—2’端的平均电流为I=△Q/TC=C(V1-V2)/TC。

如果时钟频率fclk=1/TC比信号的频率高得多,开关电容相当于一个电阻R,等效电阻值为R=(V1—V2)/I=TC/C=1/fclkC。

显然,等效电阻的值与时钟频率和电容大小成反比。对于由RC构成的滤波器就只需将电阻用开关电容代替,就可以组成开关电容滤波器,则电路的时间常数τ=RC=C2/fclkC1。

上述表明龟路的频响特性由时钟频率与电容比值决定,与电容的绝对值无关。开关电容滤波器实质上属于调制或采样系统,调制(采样)频率由分频比决定。

3.2 开关电容滤波器实验及数据

为了满足放大倍数的要求,通过给开关电容滤波器芯片编程引脚特定的高低电平选择Q=10.7,中心频f0=12.14Hz,时钟fclk=2.405k Hz,用两片开关电容芯片级联成四级得到的。图4所示为一片开关电容滤波器实验电路图。实验数据如表2所列。

4 结束语

通过对实验数据的分析得出,带通滤波器中Q值越高则通频带越窄,也就是说滤波器对频率的选择性就越好,对干扰信号的抑制能力也就越强,但并不是Q值越高电路越好越稳定。若Q值取过大,当滤波器中心频率变动时,有用信号通过滤波器时将产生较大的相位误差和幅值误差。因此在滤波器满足滤波质量前提下,Q值尽可能小。

有源带通滤波器的无输入时输出噪声较小,输出信号幅值较稳定,但当Q较大时输入信号频率在中心频率附近变化,输出信号的相位变化较大。

开关电容滤波器可以很方便的改变中心频率和Q值,但是受开关噪声和时钟噪声影响,在没有输入信号的情况下,输出有比较大的噪声信号。


相关文章

  • 静止无功补偿器SVG发展及应用
  • 静止无功发生器 发展及应用 SVG 目录 1. 电能质量............................................................................................ ...查看


  • 开关电流技术讲义1_积分器模块
  • 开关电流技术讲义附图 开关电流结构和算法 [英]J.B .Hughes ,N .C .Bird ,I .C .Macbeth 3.1 引 言 开关电流技术是电流模信号处理技术,它利用MOS 晶体管在其栅极开路时通过存储在栅极氧化电容上的电荷 ...查看


  • 开关电容滤波器LTC1068应用
  • 第17卷第2期 2009年6月JOURNALOF DOI:10.3969/j.issn.1672-0032.2009.02.016山东交通学院学报SHANDONGV01.17No.2Jun.2009JIAOTONGUNIVERSITY 开关 ...查看


  • 高次谐波及其抑制措施
  • 高次谐波及其抑制措施 字号显示:大 中 小 2006-05-23 09:21:47 来源:电子查询网 以前,人们基本上只根据电压的幅值和周波的稳定性来衡量电能的质量.近年来,随着工业生产的发展,尤其是冶金.化工产品的开发.电气铁道系统的不断 ...查看


  • 弧焊逆变电源谐波的产生与抑制分析
  • 核心提示:弧焊逆变电源的谐波分析 1.1 谐波产生原因 自1972年美国研制出第一台300A晶闸管弧焊逆变电源以来,弧焊逆变电源有了很大发展,经历了晶闸管逆变,大功率晶体管逆变,场效应逆变以及IGBT逆... 弧焊逆变电源的谐波分析 1.1 ...查看


  • 滤波器基本介绍
  • 课程设计(论文) 说明书 摘 要 近年来,有源滤波器已成为电力系统研究领域中的热点.本文主要对滤波器的基本知识,四阶有源低通滤波器的相关设计和制作进行介绍. 我们要制作的模拟滤波器是一种非常典型的二端口网络,其作用是对信号频率进行选择,让特 ...查看


  • 电子元器件介绍
  • 电阻 电阻器主要职能就是阻碍电流流过,应用于限流.分流.降压.分压.负载与电容配合作滤波器及阻匹配等. 数字电路中功能有上拉电阻和下拉电阻. 压敏电阻器的作用是过压保护和抑制浪涌电流. 热敏电阻分为正温度系数和负温度系数.在电路中常用负温度 ...查看


  • 放大器赛题芯片运用总结
  • 一. 宽带直流放大器: 1. 输入小信号放大10DB的功能:双运放POA2690(低噪声高共模抑制比运放,最小可放 大1mV 有效值信号:加电容进行补偿减小带内起伏) 第一级做跟随器同时具有匹配阻抗的效果,第二级放大10dB 方便后级处理 ...查看


  • 电气化铁道牵引供电系统的综合有源补偿技术探讨
  • 摘要:文章对比分析了电气化铁道负序电流的各种抑制方法,探讨了目前电气化铁道有源补偿存在的问题,分析了综合有源补偿工作的原理,以期为电气化铁道的有源补偿方法提供参考. 关键词:电气化铁道:牵引供电系统:综合有源补偿:负序电流抑制法 中图分类号 ...查看


热门内容