小学数学典型难题汇总

小学数学典型难题汇总

一、正方体展开图正方体有6个面,12

条棱,当沿着某棱将正方体剪开,可以得到正方体的展

开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且

只有11种,11种展开图形又可以分为4种类型:

1、141型中间一行4个作侧面,上下两个各作为上下底面,共有6种基

本图形。

2、231型中间一行3个作侧面,共3种基本图形。

3、222型中间两个面,只有1种基本图形。

4、33型中间没有面,两行只能有一个正方形相连,只有1种基本图形。

二、和差问题已知两数的和与差,求这两个数。

【口诀】:

和加上差,越加越大;

除以2,便是大的; 和减去差,越减越小; 除以2,便是小的。

例:已知两数和是10,差是2,求这两个数。

按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。

三、鸡兔同笼问题

【口诀】:

假设全是鸡,假设全是兔。 多了几只脚,少了几只足? 除以脚的差,便是鸡兔数。

例:鸡免同笼,有头36 ,有脚120,求鸡兔数。

求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24求鸡时,假设全是兔,则鸡数 =(4X36-120)/(4-2)=12

四、浓度问题

(1)加水稀释

【口诀】:

加水先求糖,糖完求糖水。 糖水减糖水,便是加糖量。

例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%? 加水先求糖,原来含糖为:20X15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)

(2)加糖浓化

【口诀】:

加糖先求水,水完求糖水。 糖水减糖水,求出便解题。

例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?

加糖先求水,原来含水为:20X (1-15%)=17(千克)水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)

五、路程问题

(1)相遇问题

【口诀】:

相遇那一刻,路程全走过。 除以速度和,就把时间得。

例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?

相遇那一刻,路程全走过。即甲乙走过的路程和恰好是两地的距离120千米。除以速度和,就把时间得。

即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)

(2)追及问题

【口诀】:

慢鸟要先飞,快的随后追。 先走的路程,除以速度差, 时间就求对。

例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?先

走的路程,为3X2=6(千米)速度的差,为6-3=3(千米/小时)。 所以追上的时间为:6/3=2(小时)。

六、和比问题已知整体求部分。

【口诀】:

家要众人合,分家有原则。 分母比数和,分子自己的。 和乘以比例,就是该得的。

例:甲乙丙三数和为27,甲; 乙:丙=2:3:4,求甲乙丙三数。

分母比数和,即分母为:2+3+4=9;分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。

和乘以比例,所以甲数为27X2/9=6,乙数为:27X3/9=9,丙数为:27X4/9=12。

七、差比问题(差倍问题)

【口诀】:

我的比你多,倍数是因果。 分子实际差,分母倍数差。 商是一倍的,

乘以各自的倍数,

两数便可求得。

例:甲数比乙数大12,甲:乙=7:4,求两数。

先求一倍的量,12/(7-4)=4,所以甲数为:4X7=28,乙数为:4X4=16。

八、工程问题

【口诀】:

工程总量设为1,

1除以时间就是工作效率。 单独做时工作效率是自己的, 一齐做时工作效率是众人的效率和。 1减去已经做的便是没有做的, 没有做的除以工作效率就是结果。

例:一项工程,甲单独做4天完成,乙单独做6天完成。

甲乙同时做2天后,由乙单独做,几天完成?[1-(1/6+1/4)X2]/(1/6)=1(天)

九、植树问题

【口诀】: 植树多少颗, 要问路如何?

直的减去1, 圆的是结果。

例1:在一条长为120米的马路上植树,间距为4米,植树多少颗? 路是直的。所以植树120/4-1=29(颗)。

例2:在一条长为120米的圆形花坛边植树,间距为4米,植树多少颗?路是圆的,所以植树120/4=30(颗)。

十、盈亏问题

【口诀】:

全盈全亏,大的减去小的; 一盈一亏,盈亏加在一起。 除以分配的差,

结果就是分配的东西或者是人。

例1:小朋友分桃子,每人10个少9个;每人8个多7个。 求有多少小朋友多少桃子? 一盈一亏,则公式为:

(9+7)/(10-8)=8(人),相应桃子为8X10-9=71(个)

例2:士兵背子弹。每人45发则多680发;每人50发则多200发,多少士兵多少子弹?

全盈问题。大的减去小的,则公式为:(680-200)/(50-45)=96(人)则子弹为96X50+200=5000(发)。

例3:学生发书。

每人10本则差90本;每人8 本则差8本,多少学生多少书? 全亏问题。大的减去小的。则公式为:(90-8)/(10-8)=41(人),相应书为41X10-90=320(本)

十一、牛吃草问题

【口诀】:

每牛每天的吃草量假设是份数1, A 头B 天的吃草量算出是几? M 头N 天的吃草量又是几?

大的减去小的,除以二者对应的天数的差值, 结果就是草的生长速率。 原有的草量依此反推。

公式就是A 头B 天的吃草量减去B 天乘以草的生长速率。 将未知吃草量的牛分为两个部分:

一小部分先吃新草,个数就是草的比率;

有的草量除以剩余的牛数就将需要的天数求知。

例:整个牧场上草长得一样密,一样快。27头牛6天可以把草吃完;23头牛9天也可以把草吃完。问21头多少天把草吃完。每牛每天的吃草量假设是1,则27头牛 6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;大的减去小的,207-162=45;二者对应的天数的差值,是 9-6=3(天)结果就是草的生长速率。所以草的生长速率是45/3=15(牛/

天);原有的草量依此反推。公式就是A 头B 天的吃草量减去B 天乘以草的生 长速率。

所以原有的草量=27X6-6X15=72(牛/天)。

将未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率;这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;剩下的21-15=6去吃原有的草,所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)

十二、年龄问题

【口诀】:

岁差不会变,同时相加减。 岁数一改变,倍数也改变。 抓住这三点,一切都简单。

例1:小军今年8 岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍? 岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。已知差及倍数,转化为差比问题。

26/(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。

例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?

岁差不会变,今年的岁数差13-9=4几年后也不会改变。几年后岁数和是40,岁数差是4,转化为和差问题。

则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。

十三、余数问题 【口诀】:

余数有(N-1)个,

最小的是1,最大的是(N-1)。 周期性变化时, 不要看商, 只要看余。

例:如果时钟现在表示的时间是18点整,那么分针旋转1990圈后是几点钟?

分针旋转一圈是1小时,旋转24圈就是时针转1圈,也就是时针回到原位。980/24

的余数是22,所以相当于分针向前旋转22个圈,分针向前旋转22个圈 相当于时针向前走22个小时,时针向前走22小时,也相当于向后24-22=2个小时,即相当于时针向后拔了2小时。即时针相当于是 18-2=16(点)。

小学数学典型难题汇总

一、正方体展开图正方体有6个面,12

条棱,当沿着某棱将正方体剪开,可以得到正方体的展

开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且

只有11种,11种展开图形又可以分为4种类型:

1、141型中间一行4个作侧面,上下两个各作为上下底面,共有6种基

本图形。

2、231型中间一行3个作侧面,共3种基本图形。

3、222型中间两个面,只有1种基本图形。

4、33型中间没有面,两行只能有一个正方形相连,只有1种基本图形。

二、和差问题已知两数的和与差,求这两个数。

【口诀】:

和加上差,越加越大;

除以2,便是大的; 和减去差,越减越小; 除以2,便是小的。

例:已知两数和是10,差是2,求这两个数。

按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。

三、鸡兔同笼问题

【口诀】:

假设全是鸡,假设全是兔。 多了几只脚,少了几只足? 除以脚的差,便是鸡兔数。

例:鸡免同笼,有头36 ,有脚120,求鸡兔数。

求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24求鸡时,假设全是兔,则鸡数 =(4X36-120)/(4-2)=12

四、浓度问题

(1)加水稀释

【口诀】:

加水先求糖,糖完求糖水。 糖水减糖水,便是加糖量。

例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%? 加水先求糖,原来含糖为:20X15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)

(2)加糖浓化

【口诀】:

加糖先求水,水完求糖水。 糖水减糖水,求出便解题。

例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?

加糖先求水,原来含水为:20X (1-15%)=17(千克)水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)

五、路程问题

(1)相遇问题

【口诀】:

相遇那一刻,路程全走过。 除以速度和,就把时间得。

例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?

相遇那一刻,路程全走过。即甲乙走过的路程和恰好是两地的距离120千米。除以速度和,就把时间得。

即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)

(2)追及问题

【口诀】:

慢鸟要先飞,快的随后追。 先走的路程,除以速度差, 时间就求对。

例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?先

走的路程,为3X2=6(千米)速度的差,为6-3=3(千米/小时)。 所以追上的时间为:6/3=2(小时)。

六、和比问题已知整体求部分。

【口诀】:

家要众人合,分家有原则。 分母比数和,分子自己的。 和乘以比例,就是该得的。

例:甲乙丙三数和为27,甲; 乙:丙=2:3:4,求甲乙丙三数。

分母比数和,即分母为:2+3+4=9;分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。

和乘以比例,所以甲数为27X2/9=6,乙数为:27X3/9=9,丙数为:27X4/9=12。

七、差比问题(差倍问题)

【口诀】:

我的比你多,倍数是因果。 分子实际差,分母倍数差。 商是一倍的,

乘以各自的倍数,

两数便可求得。

例:甲数比乙数大12,甲:乙=7:4,求两数。

先求一倍的量,12/(7-4)=4,所以甲数为:4X7=28,乙数为:4X4=16。

八、工程问题

【口诀】:

工程总量设为1,

1除以时间就是工作效率。 单独做时工作效率是自己的, 一齐做时工作效率是众人的效率和。 1减去已经做的便是没有做的, 没有做的除以工作效率就是结果。

例:一项工程,甲单独做4天完成,乙单独做6天完成。

甲乙同时做2天后,由乙单独做,几天完成?[1-(1/6+1/4)X2]/(1/6)=1(天)

九、植树问题

【口诀】: 植树多少颗, 要问路如何?

直的减去1, 圆的是结果。

例1:在一条长为120米的马路上植树,间距为4米,植树多少颗? 路是直的。所以植树120/4-1=29(颗)。

例2:在一条长为120米的圆形花坛边植树,间距为4米,植树多少颗?路是圆的,所以植树120/4=30(颗)。

十、盈亏问题

【口诀】:

全盈全亏,大的减去小的; 一盈一亏,盈亏加在一起。 除以分配的差,

结果就是分配的东西或者是人。

例1:小朋友分桃子,每人10个少9个;每人8个多7个。 求有多少小朋友多少桃子? 一盈一亏,则公式为:

(9+7)/(10-8)=8(人),相应桃子为8X10-9=71(个)

例2:士兵背子弹。每人45发则多680发;每人50发则多200发,多少士兵多少子弹?

全盈问题。大的减去小的,则公式为:(680-200)/(50-45)=96(人)则子弹为96X50+200=5000(发)。

例3:学生发书。

每人10本则差90本;每人8 本则差8本,多少学生多少书? 全亏问题。大的减去小的。则公式为:(90-8)/(10-8)=41(人),相应书为41X10-90=320(本)

十一、牛吃草问题

【口诀】:

每牛每天的吃草量假设是份数1, A 头B 天的吃草量算出是几? M 头N 天的吃草量又是几?

大的减去小的,除以二者对应的天数的差值, 结果就是草的生长速率。 原有的草量依此反推。

公式就是A 头B 天的吃草量减去B 天乘以草的生长速率。 将未知吃草量的牛分为两个部分:

一小部分先吃新草,个数就是草的比率;

有的草量除以剩余的牛数就将需要的天数求知。

例:整个牧场上草长得一样密,一样快。27头牛6天可以把草吃完;23头牛9天也可以把草吃完。问21头多少天把草吃完。每牛每天的吃草量假设是1,则27头牛 6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;大的减去小的,207-162=45;二者对应的天数的差值,是 9-6=3(天)结果就是草的生长速率。所以草的生长速率是45/3=15(牛/

天);原有的草量依此反推。公式就是A 头B 天的吃草量减去B 天乘以草的生 长速率。

所以原有的草量=27X6-6X15=72(牛/天)。

将未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率;这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;剩下的21-15=6去吃原有的草,所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)

十二、年龄问题

【口诀】:

岁差不会变,同时相加减。 岁数一改变,倍数也改变。 抓住这三点,一切都简单。

例1:小军今年8 岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍? 岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。已知差及倍数,转化为差比问题。

26/(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。

例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?

岁差不会变,今年的岁数差13-9=4几年后也不会改变。几年后岁数和是40,岁数差是4,转化为和差问题。

则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。

十三、余数问题 【口诀】:

余数有(N-1)个,

最小的是1,最大的是(N-1)。 周期性变化时, 不要看商, 只要看余。

例:如果时钟现在表示的时间是18点整,那么分针旋转1990圈后是几点钟?

分针旋转一圈是1小时,旋转24圈就是时针转1圈,也就是时针回到原位。980/24

的余数是22,所以相当于分针向前旋转22个圈,分针向前旋转22个圈 相当于时针向前走22个小时,时针向前走22小时,也相当于向后24-22=2个小时,即相当于时针向后拔了2小时。即时针相当于是 18-2=16(点)。


相关文章

  • 奥数题库|小学三年级奥数练习题集锦
  • 速算与巧算 巧算速算一般都是通过凑整法或者其他方法使复杂的计算变得简单明了,从而提...[巧算] [凑整法] ·三年级奥数试题及答案:速算与巧算 ·三年级奥数试题及答案:速算与巧算 上楼梯问题 爬楼梯问题的解题规律是:所走的台阶数=每层楼梯 ...查看


  • 课题研究过程资料
  • 课题研究过程资料 一.活动内容:开题会议及学习讨论研究方案 大丰市教育学会课题研究活动报告表 题图说明:课题负责人主持会议 题图说明:课题组成员交流讨论 二.课题研究反思.研究叙事 自主探究学习计算 所谓自主探究学习,是学习者持续一贯表现出 ...查看


  • 复习的策略
  • 复 习 的 策 略 阜平城厢小学 刘喜珠 各位领导,各位同仁,大家上午好! 我是城厢小学教师刘喜珠,今天在这里和大家一起探讨统考年级复习的策略,我感到很荣幸地,也很忐忑.作为一名毕业班数学老师,每年的这个时候,我们都会思考,如何做好毕业总复 ...查看


  • 幼儿园升小学试题汇总
  • 幼儿园升小学试题汇总 (比较全) 北京幼儿园升小学试题 1.龙卷风可以分为几种? A.3种 B.2种 C.4种 2.哪种配餐有营养? A.肉+黄瓜+米饭 B.鱼+黄瓜+米饭 C.胡萝卜+黄瓜+米饭 3.一人有3个,二人有4个,三人有5个,四 ...查看


  • 小学干货!这些应用题解答方式记好了,数学想要高分就靠它了!
  • 小学时孩子非常重要的时期,这个时期孩子的主要任务就是打好各科的基础,因此,家长们对孩子的成绩都十分重视,其中数学是家长们重点关注的科目.小学时期的数学,要在这个时打好基础,到了初中高中学习数学会轻松很多.事实上很多家长都十分苦恼孩子的成绩, ...查看


  • 最新初一数学难题汇总一
  • 初一数学难题汇总一 一:不等式与不等式组 [例1]:解不等式 [例2] 设a .b 是不相等的任意正数,又x = A. 都不大于2 B. 都不小于2 C. 至少有一个大于2 D. 至少有一个小于2 [例3] [例4] 解不等式: ,则x . ...查看


  • 若水情的图书馆小学二年级数学文章集
  • 小学二年级数学两位数乘法的巧算 小学二年级数学两位数乘法的巧算.对乘法要求以乘数是两位数的为主,一般不超过三位数.下面归纳总结出一些两位数乘法的巧算方法,以便提高学生的计算能力,增加灵活性.2. 两尾数相乘,作后两位数.6×4=24 作后两 ...查看


  • 数学教学 -- 维普中文期刊
  • 题名/关键词 题名 关键词 文摘 作者 机构 刊名 分类号 参考文献 作者简介 基金资助 栏目信息 任意字段 ·高级检索 ·客服中心 首 页 产品服务 期刊大全 知识社区 学者空间 学术机构 会议展览 教育培训 专题导读 医药 | 化工 | ...查看


  • 小学数学小课题研究
  • 小学数学小课题研究 我们原有的数学课堂教学在新一轮课程改革大潮的冲击下,逐渐显露出它对促进学生可持续发展的无耐和乏力.在这种形势下,我们迫切的想找到一把能解开这种困惑的钥匙. 以往的数学课堂更多的是关注书本知识的学习,教材内容.师者知识有限 ...查看


热门内容