集合的概念及表示练习题及答案 1

1.1.1

集合的含义及其表示

姓名: 一、选择题:

1. 下面四个命题:(1)集合N 中的最小元素是1:(2)若-a ∉N ,则a ∈N (3)x 2

+4=4x 的解集为{2,2};(4)0.7∈Q ,其中不正确命题的个数为 ( ) A. 0 B. 1 C.2 D.3 2. 下列各组集合中,表示同一集合的是 ( ) A. M ={(3, 2)}, N {(2, 3)} B.M ={3, 2}, N ={2, 3

} C.M =

{(x , y )x +y =1},N ={y x +y =1} D. M ={1, 2}, N ={(1.2)}

3. 下列关系中表述正确的是 ( ) A. 0∈{

x 2

=0} B.0∈

{(0, 0)} C. 0∉N D.

0∈N *

4. 平面直角坐标系内所有第二象限的点组成的集合是( ) A . {x,y且x 0} B . {(x,y)x 0} C. {(x,y) x 0} D. {x,y且x 0} 二.填空题: 5. 用符号∈或∉填空:

0 {0}, a {a },

π Q,

1

2

Z, -1 Z, 0 N, 0 N *

6. 用列举法表示集合D={(x , y ) y =-x 2

+8, x ∈N , y ∈N }为 .

7. 对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是 . 8. 用列举法表示不等式组⎨

⎧2x +4>0

1+x ≥2x -1的整数解集合为

9. 已知集合A =⎨⎧x x ∈N ,

126-x ∈N ⎫

用列举法表示集合A 为 ⎩⎬⎭

三、解答题:

10.已知A={1,2,a }B , ={2, 3,1},且A=B,求实数a ;

11. 已知集合A ={1, 2, 3},集合B ={0, 1, 2},定义A *B ={a +b a ∈A , b ∈B }

,求集合A *B 。

12、已知集合A ={

x ax 2

+2x -3=0}

只有一个元素,求a 的值。

1.1.1

集合的含义及其表示

姓名: 一、选择题:

1. 下面四个命题:(1)集合N 中的最小元素是1:(2)若-a ∉N ,则a ∈N (3)x 2

+4=4x 的解集为{2,2};(4)0.7∈Q ,其中不正确命题的个数为 ( ) A. 0 B. 1 C.2 D.3 2. 下列各组集合中,表示同一集合的是 ( ) A. M ={(3, 2)}, N {(2, 3)} B.M ={3, 2}, N ={2, 3

} C.M =

{(x , y )x +y =1},N ={y x +y =1} D. M ={1, 2}, N ={(1.2)}

3. 下列关系中表述正确的是 ( ) A. 0∈{

x 2

=0} B.0∈

{(0, 0)} C. 0∉N D.

0∈N *

4. 平面直角坐标系内所有第二象限的点组成的集合是( ) A . {x,y且x 0} B . {(x,y)x 0} C. {(x,y) x 0} D. {x,y且x 0} 二.填空题: 5. 用符号∈或∉填空:

0 {0}, a {a },

π Q,

1

2

Z, -1 Z, 0 N, 0 N *

6. 用列举法表示集合D={(x , y ) y =-x 2

+8, x ∈N , y ∈N }为 .

7. 对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是 . 8. 用列举法表示不等式组⎨

⎧2x +4>0

1+x ≥2x -1的整数解集合为

9. 已知集合A =⎨⎧x x ∈N ,

126-x ∈N ⎫

用列举法表示集合A 为 ⎩⎬⎭

三、解答题:

10.已知A={1,2,a }B , ={2, 3,1},且A=B,求实数a ;

11. 已知集合A ={1, 2, 3},集合B ={0, 1, 2},定义A *B ={a +b a ∈A , b ∈B }

,求集合A *B 。

12、已知集合A ={

x ax 2

+2x -3=0}

只有一个元素,求a 的值。


相关文章

  • 集合的概念及表示练习题及答案
  • 集合的含义及其表示 姓名:_________ 一.选择题: 1. 下面四个命题:(1)集合N 中的最小元素是1:(2)若-a ∉N ,则a ∈N (3) x 2+4=4x 的解集为{2,2}:(4)0.7∈Q ,其中不正确命题的个数为 ( ...查看


  • 必修一数学集合教案
  • 课题:集合的含义与表示(1) 课 型:新授课 教学目标: (1) 了解集合.元素的概念,体会集合中元素的三个特征: (2) 理解元素与集合的"属于"和"不属于"关系: (3) 掌握常用数集及其记法: ...查看


  • 人教版高一必修1数学教案:精品全套
  • 人教版高中数学必修1精品教案(整套) 课题:集合的含义与表示(1) 课 型:新授课 教学目标: (1) 了解集合.元素的概念,体会集合中元素的三个特征: (2) 理解元素与集合的"属于"和"不属于"关 ...查看


  • 1.函数概念及三要素(答案)
  • 函数的概念.表示法与定义域 一.映射与函数: (1)映射的概念: (2)一一映射: (3)函数的概念: 二.函数的三要素:定义域,值域,对应法则. 相同函数的判断方法:①定义域相同:②对应法则一样 (两点必须同时具备) (1)函数解析式的求 ...查看


  • 1.2函数及其表示(教案)
  • [课题]:第一章 集合与函数概念 1.2 函数及其表示 编写时间:2013年9月10日 使用班级 第 星期[课标.大纲.考纲内容]: 函数的表示是本节的主要内容之一,学生在学习用集合与对应的语言刻画函数之前, 比较习惯的是用解析式表示函数, ...查看


  • 高一数学集合
  • 第一章 集合与简易逻辑 本章概述 1.教学要求 [1] 理解集合.子集.交集.并集.补集的概念:了解空集和全集的意义:了解属于.包含.相等关系的意义:掌握有关的术语和符号,并会用它们正确表示一些简单的集合. [2]掌握简单的含绝对值不等式. ...查看


  • 职教教学计划张
  • 数学教学计划(基础模块·上册) 张小娟 一.指导思想. 1.为学生学习专业基础课和专业理论课提供必要的数学知识基础. 2.进一步学习数学基础知识和运算技能,通过对数学理论.思想.方法和运用的学习掌握,使学生逐步提高运算能力,逻辑能力.空间想 ...查看


  • 高一数学必修一课程安排表
  • 当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富. 数学部分 高一数学(新课标人教A 版必修一)课程安排表 课时 单元 内 容 重 点 难 点 第01次 第 一 章 集 合 与 函 数 的 概 念 1.1.1 ...查看


  • 高一数学集合的概念教学设计
  • 课 题:1.1集合-集合的概念 教学目的: (1)使学生初步理解集合的概念,知道常用数集的概念及记法 (2)使学生初步了解"属于"关系的意义 (3)使学生初步了解有限集.无限集.空集的意义 教学重点:集合的基本概念及表示 ...查看


热门内容