铁电薄膜的铁电性能测量
实验目的
一、了解什么是铁电体,什么是电滞回线及其测量原理和方法。
二、了解铁电薄膜电滞回线的形状及其产生原因。
实验内容、方法
主要通过计算机操作,调整测试铁电薄膜电滞回线极化电压等各参数,绘制电滞回线,并从回线上得出剩余极化强度强度Pr,自发极化强度Ps,以及矫顽电场Ec等参数。
实验原理
一、铁电体的特点
1.电滞回线
某些晶体在一定温度范围内具有自发极化,且自发极化的方向随外电场方向的反向而反向。晶体的这种性质称为铁电性,具有铁电性的晶体成为铁电体,铁电体的重要特性之一是具有电滞回线。电滞回线的存在是判定晶体为铁电体的重要依据,并且通过电滞回线的测量,可以测定铁电体的剩余极化强度Pr,自发极化强度Ps,以及矫顽场Ec等参数。
电滞回线表明铁电体的极化强度P与外加电场E之间呈非线性关系,并且自发极化可随外电场方向反向而反向,回线所包围的面积就是极化强度反转两次所需要的能量。
电滞回线的产生是由于铁电晶体中存在铁电畴。铁电体的自发极化强度并非整个晶体为同一方向,而是包括各个不同方向的自发极化区域。晶体由许多晶胞组成的。具有相同自发极化方向的小区域叫做铁电畴。铁电体未加电场时,由于自发极化取向的任意性和热运动的影响,宏观上不呈现极化现象。当加上外电场时,沿电场方向的电畴由于新畴核的形成和畴壁的运动,畴体积迅速扩大,而逆电场方向的电畴体积则减小或消失,即逆电场方向的电畴转化为顺电场方向。
铁电体的极化随外电场的变化而变化,但电场较强时,极化与电场之间呈非线性关系。在电场作用下新畴成核生长,畴壁移动,导致极化转向。在电场很弱时,极化线性地依赖于电场,参见图(1) ,此时可逆的畴壁移动成为不可逆的,极化随电场的增加比线性段快。当电场达到相应于B点值时,晶体成为单畴,极化趋于饱和。电场进一步增强时,由于感应极化的增加,总极化仍然有所增大(BC)段。如果趋于饱和后电场减小,极化将沿 CBD段曲线减小,以致当电场达到零时,晶体仍保留在宏观极化状态,线段OD表示的极化称为剩余极化Pr(Polarization Remanent)。将线段CB外推到与极化轴相交于E,则线段OE 为饱和自发极化Ps(Polarization Saturated)。如果电场反向,极化将随之降低并改变方向,直到电场等于某一值时,极化又将趋于饱和。这一过程如曲线DFG所示,OF所代表的电场是使极化等于零的电场,称为矫顽场 Ec(Elctric-field Coercive)。电场在正负饱和度之间循环一周时,极化与电场的关系如曲线CBDFGHC所示此曲线称为电滞回线。
图1 铁电体的电滞回线图2 电滞回线的显示
铁电体中除了由于自发极化转向过程所产生的极化以外,还存在着线性感应极化;此外,铁电体的电导常常也很大。如果样品两端加上正弦交变电压:UUmsin
t,则样品两端的电荷将由以下三个部分组成:(1)自发极化转向过程所提供的电荷。(2)感应极化过程所提供的电荷。(3)漏电导等损耗所提供的电荷。
研究电滞回线的目的,主要在于考察与自发极化转向过程有关的各种现象。
实验上所得到的回线形状与下列几个因素有关:如样品的尺寸、温度、湿度,晶体的质地,样品原先的热和电
的经历,以及交变电场的频率等。实际的晶体不是非常完美的,因此很难得到比较理想的矩形回线,即使是比较好的晶体,其电滞回线的拐角处也总是被稍微变圆。对于大多数铁电陶瓷来说,因自发极化反转比较缓慢,因而具有圆弧形的电滞回线。
回线围成区域的面积正比于损耗能量,这部分能量在样品内被转化为热量,为此,电滞回线的观测通常是在低频下进行的,如50Hz或者更低。
在一定的外加电场下,电滞回线会呈现饱和,这是铁电晶体的一个显著特点。而且,也只有饱和的电滞回线才是铁电性的一个真正可靠的判据。
电滞回线可以用图2的装置显示出来(这就是著名的Sawyer-Tower电路),以铁电晶体作介质的电容Cx上的电压V是加在示波器的水平电极板上,与Cx串联一个恒定电容Cy(即普通电容),Cy上的电压Vy加在示波器的垂直电极板上,很容易证明Vy与铁电体的极化强度P成正比,因而示波器显示的图像,纵坐标反映P的变化,而横坐标Vx与加在铁电体上外电场强成正比,因而就可直接观测到P-E的电滞回线。
下面证明Vy和P的正比关系,因
1
VyCyCx(1) VxCy
Cx
式中为图中电源V的角频率0S
d Cx
为铁电体的介电常数,0为真空的介电常数,S
式得: 为平板电容Cx的面积,d为平行平板间距离,代入(1)
VyCxSVx0SVx0E (2) CYCydCy
根据电磁学
P0(1)E0E0E (3)
对于铁电体1,因此有后一近似等式,代入(2)式,
VySP (4) Cy
因S与Cy都是常数,故Vy与P成正比。
2.居里点Tc
当温度高于某一临界温度Tc时,晶体的铁电性消失。这一温度称为铁电体的居里点。由于铁电体的消失或出现总是伴随着晶格结构的转变,所以是个相变过程,已发现铁电体存在两种相变:一级相变伴随着潜热的产生,二级相变呈现比热的突变,而无潜热发生。铁电相变中自发极化总是和电致形变联系在一起,所以铁电相的晶格结构的对称性要比非铁电相要低。如果晶体具有两个或多个铁电相时,最高的一个相变温度称为居里点,其它则称为转变温度。
3.居里-外斯定律
由于极化的非线性,铁电体的介电常数不是常数,而是依赖于外加电场的,一般以OA曲线(图1)在原点的斜率代表介电常数,即在测量介电常数时,所加外电场很小,铁电体在转变温度附近时,介电常数具有很大的数值,数量级达104-105。当温度高于居里点时,介电常数随温度变化的关系
C(5) TT0C
二实验仪器:RT66A铁电性能综合测试仪。
1测量电路
目前,测量电滞回线的方法较多。其中测试方法简单、应用最广泛的是Sawyer-Tower电路[2],如图3所示,其中虚框部分为铁电薄膜样品的等效电路,Cxi为线性感应等效电容,Rx为铁电薄膜样品的漏电导及损耗等效电阻,Cxs为与自发极化反转对应的非线性等效电容。
在理想情况下,若只考虑Cxs的作用(认为Cxi与Rx开路),很容易证明Uy与铁电薄膜样品的极化强度P成正比[2]。但一般情况下,铁电薄膜样品同时具有漏电导和线性感应电容,如果要获得铁电薄膜样品的本征电滞回线,必须在测量过程中对样品的漏电导和线性感应电容进行合适的补偿,但这在实际测量中是较难处理的。另外,此电路中外接积分电容Co的选取和精度会影响测试的精确度,当然给铁电薄膜样品提供的信号源U的频率对测试结果也有很大的影响,这样就较难对测试结果进行标定和校准。
图3 Sawyer-Tower电路图4 电滞回线电路(虚框中为铁电薄膜样品等效电路)
我们选用如图4所示的测量电路,此电路由信号源U、被测样品、电流放大器和积分器组成。信号源U提供给被测样品的电流经电流放大器放大再经积分器积分后得到Uy进入测量系统。即使被测样品端加的电压U为零,积分器上仍然维持电压,被测样品端是虚地的,因此该测试电路可称为虚地模式。
2
实验内容
a 测量铁电薄膜样品的电滞回线,画出电滞回线及得到铁电薄膜材料的饱和极化±Ps、剩余极化±Pr、矫顽场±Ec等参数。
思考与问答题
1.如何从电滞回线得出饱和极化强度,矫顽场参数?
2.铁电材料电滞回线形状与哪些因数相关?
3.试思考具有何种特性的电滞回线材料有可能应用于电存储器件?
思考与回答:1:由图可得极化强度Ps,矫顽场参数Ec
2: 实验上所得到的回线形状与下列几个因素有关:如样品的尺寸、温度、湿度,晶体的质地,样品原
先的热和电的经历,以及交变电场的频率等。实际的晶体不是非常完美的,因此很难得到比较理想的矩形回线,即使是比较好的晶体,其电滞回线的拐角处也总是被稍微变圆。对于大多数铁电陶瓷来说,因自发极化反转比较缓慢,因而具有圆弧形的电滞回线。
3:较低的矫顽场的电磁滞回线材料适合
4通过本次实验认识到了铁电薄膜的铁电性能,以及如何测量铁电薄膜的铁电性能,并对仪器的操作有了一定的熟悉,并通过实验资料的收集和实验报告的撰写拓展了课外知识,对铁电性有了一定的了解,有了很大的收获,我认为本学期开设的实验都有很大的专业性,都对课本知识进行了深入的拓展,是我们对课本的知识也有了更深入的了解,并开拓了我们的视野,提升了我们的技能,我建议实验的选择设计更加系统,并在做实验时将实验与实际生产应用联系起来,拓宽我们的视野
铁电薄膜的铁电性能测量
实验目的
一、了解什么是铁电体,什么是电滞回线及其测量原理和方法。
二、了解铁电薄膜电滞回线的形状及其产生原因。
实验内容、方法
主要通过计算机操作,调整测试铁电薄膜电滞回线极化电压等各参数,绘制电滞回线,并从回线上得出剩余极化强度强度Pr,自发极化强度Ps,以及矫顽电场Ec等参数。
实验原理
一、铁电体的特点
1.电滞回线
某些晶体在一定温度范围内具有自发极化,且自发极化的方向随外电场方向的反向而反向。晶体的这种性质称为铁电性,具有铁电性的晶体成为铁电体,铁电体的重要特性之一是具有电滞回线。电滞回线的存在是判定晶体为铁电体的重要依据,并且通过电滞回线的测量,可以测定铁电体的剩余极化强度Pr,自发极化强度Ps,以及矫顽场Ec等参数。
电滞回线表明铁电体的极化强度P与外加电场E之间呈非线性关系,并且自发极化可随外电场方向反向而反向,回线所包围的面积就是极化强度反转两次所需要的能量。
电滞回线的产生是由于铁电晶体中存在铁电畴。铁电体的自发极化强度并非整个晶体为同一方向,而是包括各个不同方向的自发极化区域。晶体由许多晶胞组成的。具有相同自发极化方向的小区域叫做铁电畴。铁电体未加电场时,由于自发极化取向的任意性和热运动的影响,宏观上不呈现极化现象。当加上外电场时,沿电场方向的电畴由于新畴核的形成和畴壁的运动,畴体积迅速扩大,而逆电场方向的电畴体积则减小或消失,即逆电场方向的电畴转化为顺电场方向。
铁电体的极化随外电场的变化而变化,但电场较强时,极化与电场之间呈非线性关系。在电场作用下新畴成核生长,畴壁移动,导致极化转向。在电场很弱时,极化线性地依赖于电场,参见图(1) ,此时可逆的畴壁移动成为不可逆的,极化随电场的增加比线性段快。当电场达到相应于B点值时,晶体成为单畴,极化趋于饱和。电场进一步增强时,由于感应极化的增加,总极化仍然有所增大(BC)段。如果趋于饱和后电场减小,极化将沿 CBD段曲线减小,以致当电场达到零时,晶体仍保留在宏观极化状态,线段OD表示的极化称为剩余极化Pr(Polarization Remanent)。将线段CB外推到与极化轴相交于E,则线段OE 为饱和自发极化Ps(Polarization Saturated)。如果电场反向,极化将随之降低并改变方向,直到电场等于某一值时,极化又将趋于饱和。这一过程如曲线DFG所示,OF所代表的电场是使极化等于零的电场,称为矫顽场 Ec(Elctric-field Coercive)。电场在正负饱和度之间循环一周时,极化与电场的关系如曲线CBDFGHC所示此曲线称为电滞回线。
图1 铁电体的电滞回线图2 电滞回线的显示
铁电体中除了由于自发极化转向过程所产生的极化以外,还存在着线性感应极化;此外,铁电体的电导常常也很大。如果样品两端加上正弦交变电压:UUmsin
t,则样品两端的电荷将由以下三个部分组成:(1)自发极化转向过程所提供的电荷。(2)感应极化过程所提供的电荷。(3)漏电导等损耗所提供的电荷。
研究电滞回线的目的,主要在于考察与自发极化转向过程有关的各种现象。
实验上所得到的回线形状与下列几个因素有关:如样品的尺寸、温度、湿度,晶体的质地,样品原先的热和电
的经历,以及交变电场的频率等。实际的晶体不是非常完美的,因此很难得到比较理想的矩形回线,即使是比较好的晶体,其电滞回线的拐角处也总是被稍微变圆。对于大多数铁电陶瓷来说,因自发极化反转比较缓慢,因而具有圆弧形的电滞回线。
回线围成区域的面积正比于损耗能量,这部分能量在样品内被转化为热量,为此,电滞回线的观测通常是在低频下进行的,如50Hz或者更低。
在一定的外加电场下,电滞回线会呈现饱和,这是铁电晶体的一个显著特点。而且,也只有饱和的电滞回线才是铁电性的一个真正可靠的判据。
电滞回线可以用图2的装置显示出来(这就是著名的Sawyer-Tower电路),以铁电晶体作介质的电容Cx上的电压V是加在示波器的水平电极板上,与Cx串联一个恒定电容Cy(即普通电容),Cy上的电压Vy加在示波器的垂直电极板上,很容易证明Vy与铁电体的极化强度P成正比,因而示波器显示的图像,纵坐标反映P的变化,而横坐标Vx与加在铁电体上外电场强成正比,因而就可直接观测到P-E的电滞回线。
下面证明Vy和P的正比关系,因
1
VyCyCx(1) VxCy
Cx
式中为图中电源V的角频率0S
d Cx
为铁电体的介电常数,0为真空的介电常数,S
式得: 为平板电容Cx的面积,d为平行平板间距离,代入(1)
VyCxSVx0SVx0E (2) CYCydCy
根据电磁学
P0(1)E0E0E (3)
对于铁电体1,因此有后一近似等式,代入(2)式,
VySP (4) Cy
因S与Cy都是常数,故Vy与P成正比。
2.居里点Tc
当温度高于某一临界温度Tc时,晶体的铁电性消失。这一温度称为铁电体的居里点。由于铁电体的消失或出现总是伴随着晶格结构的转变,所以是个相变过程,已发现铁电体存在两种相变:一级相变伴随着潜热的产生,二级相变呈现比热的突变,而无潜热发生。铁电相变中自发极化总是和电致形变联系在一起,所以铁电相的晶格结构的对称性要比非铁电相要低。如果晶体具有两个或多个铁电相时,最高的一个相变温度称为居里点,其它则称为转变温度。
3.居里-外斯定律
由于极化的非线性,铁电体的介电常数不是常数,而是依赖于外加电场的,一般以OA曲线(图1)在原点的斜率代表介电常数,即在测量介电常数时,所加外电场很小,铁电体在转变温度附近时,介电常数具有很大的数值,数量级达104-105。当温度高于居里点时,介电常数随温度变化的关系
C(5) TT0C
二实验仪器:RT66A铁电性能综合测试仪。
1测量电路
目前,测量电滞回线的方法较多。其中测试方法简单、应用最广泛的是Sawyer-Tower电路[2],如图3所示,其中虚框部分为铁电薄膜样品的等效电路,Cxi为线性感应等效电容,Rx为铁电薄膜样品的漏电导及损耗等效电阻,Cxs为与自发极化反转对应的非线性等效电容。
在理想情况下,若只考虑Cxs的作用(认为Cxi与Rx开路),很容易证明Uy与铁电薄膜样品的极化强度P成正比[2]。但一般情况下,铁电薄膜样品同时具有漏电导和线性感应电容,如果要获得铁电薄膜样品的本征电滞回线,必须在测量过程中对样品的漏电导和线性感应电容进行合适的补偿,但这在实际测量中是较难处理的。另外,此电路中外接积分电容Co的选取和精度会影响测试的精确度,当然给铁电薄膜样品提供的信号源U的频率对测试结果也有很大的影响,这样就较难对测试结果进行标定和校准。
图3 Sawyer-Tower电路图4 电滞回线电路(虚框中为铁电薄膜样品等效电路)
我们选用如图4所示的测量电路,此电路由信号源U、被测样品、电流放大器和积分器组成。信号源U提供给被测样品的电流经电流放大器放大再经积分器积分后得到Uy进入测量系统。即使被测样品端加的电压U为零,积分器上仍然维持电压,被测样品端是虚地的,因此该测试电路可称为虚地模式。
2
实验内容
a 测量铁电薄膜样品的电滞回线,画出电滞回线及得到铁电薄膜材料的饱和极化±Ps、剩余极化±Pr、矫顽场±Ec等参数。
思考与问答题
1.如何从电滞回线得出饱和极化强度,矫顽场参数?
2.铁电材料电滞回线形状与哪些因数相关?
3.试思考具有何种特性的电滞回线材料有可能应用于电存储器件?
思考与回答:1:由图可得极化强度Ps,矫顽场参数Ec
2: 实验上所得到的回线形状与下列几个因素有关:如样品的尺寸、温度、湿度,晶体的质地,样品原
先的热和电的经历,以及交变电场的频率等。实际的晶体不是非常完美的,因此很难得到比较理想的矩形回线,即使是比较好的晶体,其电滞回线的拐角处也总是被稍微变圆。对于大多数铁电陶瓷来说,因自发极化反转比较缓慢,因而具有圆弧形的电滞回线。
3:较低的矫顽场的电磁滞回线材料适合
4通过本次实验认识到了铁电薄膜的铁电性能,以及如何测量铁电薄膜的铁电性能,并对仪器的操作有了一定的熟悉,并通过实验资料的收集和实验报告的撰写拓展了课外知识,对铁电性有了一定的了解,有了很大的收获,我认为本学期开设的实验都有很大的专业性,都对课本知识进行了深入的拓展,是我们对课本的知识也有了更深入的了解,并开拓了我们的视野,提升了我们的技能,我建议实验的选择设计更加系统,并在做实验时将实验与实际生产应用联系起来,拓宽我们的视野