中微子质量矩阵和中微子转换矩阵间的一种可能的关系

第30卷第7期2006年7月

HIGH

高能物理与核物理

ENERGY

PHYSICS

AND

NUCLEAR

PHYSICS

v01.30,No.7

Jul.,2006

APossibleR凳la-tionbetweentheNeutrino

andthe

MassMa-trix

NeutrinoMappingMatrix

R.niedber91

T.D.Leel,2

1(P11ysicsDepartment,columbiauniversity,NewYbrk,NY10027,u.S.A.)

2(chinacenterofAd、,ancedsdence蚰dTechnolo酊(CCAsT/wbrldLab.),Beijing100080,china)

AbstractWb

explorethecoIlse(1uencesof嬲suming

8iⅡlple

3_par锄eter

new

form,arstwithoutT・Vi01ation,

the

fortheneutrinoma鹃matri)【埘’intheb嬲isve,v¨,vfwiththreeneutrinom嬲8esm1,m2,m3,嬲weU嬲the,乙violation,yieldsthreeme鹪urabktermsofthree

symInetry-Thismatri)(determines

m印ping

matri】(Uthat

diagonaLliz鹤M.Since

U,without

par锄eters

in

812,823,s13,01lr

formexpressessi)【me踮urablequaIltitiesin

par眦eters,丽thr鹤ults

is

agreementwiththeexperimentaldata.Morepreciseme嬲urement8

c龇l西ve8tringenttests

ofthemodel鹅weU踮determiningthevaluesofitsthree

alsodi8cussed.

p缸锄eters.

Anexten8ion

in∞rporatingnvi01ation

Key、Ⅳords

neutrino

m嬲s

operator,neutrillo

m印ping

matri】(,21-Violation

Neutrinomapping

j—violation

nlatrixwithouttionmatri)(uthattheneutrino

case

brings—∥丘om(1.2)to(1.1)is

for

m印pingmatrix6=o.(The

general

when

6≠o

willbediscussedinthe

ne)(七section.)

Inthispaper

1v矿e

wishtoexplorefhrtherthe

con・

Throughoutthepaper,wedenote

nectionbetweentheneu-trinomassoperator彳彩whichcontainsthreeneutrinomassesm1,m2,m3andtheneutrino

耽=妒(耽)

and_t=妒+(阮)讯

Dirac

field

(1.3)

mappingmatri)(U,characterized1bythe

with妒(耽)a冬component

deIloting让Let=l,2,3

or

operator,t

standardfburparaⅡleter8口12,口23,p13ande坩.Fbr

herIllitiane,“,下.

conjugation

andtheindeX

cl盯ity,we6rsteXaminethespecial

case

thattheT—

SincetheIleutrinomappingmatri)【Uisindepen_dentoftheo、陀raUmass—shiRtermmo,inorderfor

our

violatingphaseparameter6=0.Intermsofthemass

eigeIl8tates王,1,耽and地theneutrinoma8s

is

operator

hypothesis

to

besuccessful,theremu8tbesome

.,∥=m1可1正,1+m2可2屹+m3-3的.(1.1)

8pecialfbaturesaboutthe6rsttwotermsin(1.2):

(1.4)

Ourassumptionisthatthe8ame‘,∥,whenexpressed

intermsof%,∥“and收,ha8new8y工【u11etryproperty:

simpleformwith

Q(珥一瓦)(蚱一‰)+p(现一-e)(咋一%)

wb

tion

note

that(1.4)is

invariantunderthetransforma-

Q(玩一可“)(蜥一z,¨)+卢(可恤一-e)(L,斗一%)+mo(_e%+巩‰+玩蜘)

alsowith

(1.2)

Q,卢andmo.These

by

the

v。_v。+名,

V¨_÷Vp+z

and

VT_VT+z(1.5)

constant

thee

real

par锄eters

are

threenewparameters

to

bedeterminedwith彳aspace—tiIneindependent

element

masseigen、,alueSm1,m2andm3.

Thetransforma—

oftheGrassmannalgebra,anticomInutingwiththe

Received7June2006

591—598

592

高能物理与核物理(HEP&NP)

第30卷

neutrino6eldoperators%.

Thus,theusualequal—Thes01epurposeofusingthisless8ymmetriceXpres—sionof—∥istohaⅣethere8ultingneutrino

timea11ticommutationrela七jonsbetw-eentheneutrino

flelds

andtheir

are

m印piI埒

zero—mass矗ee

particle

actior卜

matrixUinthestandardformgivenbythepaurticle

data

i】1tegral

in、,alria舶t

under(1.5).This

mo—dependentterm

symmetryisgroup‘1。.wbwrite(1.10)as

violatedbythelastweU

as

in(1.2),as

byPvi01ation,as

ca8e

weshalldiscusslater.The

∥=(_e秒p玩)(mo+丽)

where

卜、

\‰/,

interesting

that

mightbe8pace—timedependent

I‰I,

(1.11)

wiUnotbediscussedintllispaper.

Expression(1.4)can

begeneralizedto

an

equiva-

c:

1entformwiththreerealparameterso,6and

o(-下—巩)(‰一‰)+6(_p—_e)(1,斗一蚝)+c(_e—%)(%一班).

(1.6)

Thecorre8pondingneutrinomassoperatoris

砑=㈢羹

Theneutrinomappingmatri)(Uisdefined

(1.12)

by

o(玩一可斗)(蜥一工,恤)+6(可¨一_e)(Ⅳp一%)+

U+(mo+砑)u=

(1.7)

Introduce

c(_e一-下)(%一‰)+m。∑玩耽.

Itisclear

that(1.6)is

alsoinVa工iantunderthetrans-

can

3×1c011lIDI】

formation(1.5).The

co瑚taIlts

s锄ein、御iance

alsobe

eX_

pressedintermsofthetransfbrmationbet‘weenthe

o,6andc,with

≯。三V亏

0necan

啡n∽均㈡.

∽均

o_n+A,6_6+A,

and

c_c+A

(1.8)

readilyveri矽that

AsweshaUpro、陀,theformoftheneutrinomapping

郦2=o;

i.e.,≯2

is

an

(1.15)

ma七r仅UremaillsunchangedunderthetraIlsforma-

eigellvectorof』订witheigenValueO.Let

tion(1.8).

Sincetherelati、他phasesbetweenV。,V“andV下

are

西1and咖3

tors

betheothertwDrealnormalizedeigenVec—

of丽.Since

审t中j=6砑,

unphysic以,wemay

tra璐form

(1.16)

Ve_一Ve,

so

V仙_一V恤

writtenin

and

V下_V下,(1.9)

with~denotingthetranspose,theneutrinomapping

that(1.7)is

lesssymmetricform,with

matri)cUis

∥=口(玩+可“)(收+工,弘)+6(可“一-e)(∥斗一%)+

u=(≯-咖。咖s),

which,onaccount

(1.17)

c(_e+玩)(%+坎)+m。∑玩耽.

(1.10)

of(1.14)and(1.16),isgivenby

c08互

U=

p一2

锯一锯曲罢

锯店st《+锯c。s罢

V百

|1|1.ej|1

(1.18)

镛居

p一2

镀居

一V石8m互+V互c08互

in

the印proximation

of西1,毋3

thattheT—Vi01atingparameter

denotingtheazimuthalori—

isthesameexpression丘rstobtainedbyHarrisonand

6=0,withtheenta越on

angle目/2

Scott【2】.

Ne)(tweretIlrntothe

aroundthef泌ed

eigenVector≯2.

aboveU

tra瑚formation(1.8),under

as

Exceptforminornotationaldi髓rences,thewhich五孑of(1.12)tra璐forms

第7期

R.№iedberg等:中微子质量矩阵和中微予转换矩阵间的一种可戆的关系

593

砑_砑+A(÷;三

陵n∞

一J2

l|也:o,j》

2_ll

2夕

垃屺neutr纽omappingmatri)cUreInainsgiVenby

(王。18)。Setting

A=一c.

(1.19)

weh8ve

n_口=8~C.6_筘=易一c,(1.20)

e_0。

Thecorrespondingneutrinomas8

operator么7of(1.7)

beco磁es(1。2)。W量瞧t&ad鑫itio珏蘸p魏ase∞溉哦量。毪

(1.9),∥of(1.10)reduces

to

∥=a陬+秽≯)(玫+‰)+

p(-p一玩)(‰一蚝)+m。∑玩魄,

(1.21)

w毯chhasonlythreep甜a勰eters&,∥越通mo.Of

collrse,themass

operator(1.21)is

speci啦easeof

thema88

operator(1.10),whichhas4parameter8

a,

坟ea丑dmo。毪isofi娥erest攮at镪ey8haresthes溯∞

neut西no

m印pingmatri)[F

given

by(1.18)’provid磋

that8一c=aand

6一c=卢.、,et,the

neutrinoma8ses

ml,m2赫d嫩3主n

the专wo

cases

ea薹l

be

d疆套re娥,

as

can

be

readily

8een

by

ex毡幽ning

thetrace

of膨

given

by(1。12).Therefore,the“l

phy8ical

contents

of(1.2王)8珏d(1。10)8re珏ott&sa班e.圜1isis瓣

pecial垮important

whenwe黧pneralize娃地modeltoinclu(1e

nviolation

inthenextsection.

融t鹣re班越瓤瓣gp嚣toft辍8sect呈。戤黼s地珏eX_

plore矗lrtherthephysicalcon8equencesofourmodel,

using

only

themorerestrictive

form(1.21)with

tllree

砖采p戤濑et日s&,移褪dm。。

ItisiIlstructive

to静derive(1.18)in

moreel伊

mentary

Wa弘w}ite(1.21)a8

∥=(玩瓦瓦)(a耽+p%+mo)

眠=(|;;)∽矧

晦=㈠》∞㈣

matrb【‘3’41骗by

setting口=o

in(1.18);ile.,

醌一聪斟

(1。25)

一一2(|;;)'(i.㈣A%=哪砒%玩=壶(一羹圣一}丐).c・.2力

玩一(:三喜三t篓]

el。2国

sin9一卜卅。埘。r向,(1.29)c。sp一[(2a—p)2+3p2]一麦(2a一卢),

(1.3。)

tanp一盏。

(1.31)

工,1

andz,2depending

a>0

forfor

on

thesignofQ,with

(蒌)=u(囊),

m3>m1o。m2,m3<m1

Or

(1.43)

c・.32,

Q<0

Ne91ecting

m2.

D(p/a)corrections,ⅥrehaⅣe丘om(1.34),

m1positive,

(1.39)and

一Q伊0一钟+南r+螂粥,ana

mo>昙蚓

(1.44)

6m2三m;一m;=(m。一兰lpl)3吲.

(1.45)

m2=mo

(1.34)

and

一州+(口一针+南]丢+mo∞.ss,鼢

ThematrkU

depends

onlyonone

parameterp,

whichinturnisdeterⅡlined

by

theratio

p/a.

Inthe

siaIldard

pararnetricrepresentation,the

matri)(element巩3

iss13=sin口13whene16=1,with

theexperimentalbomnfl】

s;。=。.9:::i×l。一2.(-.36)

~(1_18)胁ts一店幽扣硒・炯stkn

stn2兰=独《・.

(1.37)

Thus,byusing(1.29)一(1.31)we

see

that

㈥2《1,

(1.38)

\口/

wllichtogetherwith(1.33)一(1.35)yield

theconclu-

sionthatm1

andm2韶everyclose,forming

dou-

blet,andm3iSthesinglet.Theirmassdi能rences

are

given

by印proXimate

expressions:

m。一m,=一兰p十。(譬),u.

m2一m1一J

I=J’

2一石p十u

(1.39)

\u,

m。一m。=2a+壶卢+。(譬)

c-.4。,

and

m。一去cm。+m。,=2Q一去卢+。(等).c・.4・,

nom

m1<m2,weconclude

卢<o.

(1.42)

FIlrthermore。地isheaⅣierorlighterthanthedoublet

Thus

6m2>罢胪(1.46)

△m2三m;一丢(m;+m;)

(1.47)

We丘nd,neglecting

U(∥),

△m2=4Q(Q+m。)+(去m。一2a)俐.(・.48)

The

e印erimental

valuesfor6m2

and△m2牡e西ven

by[1】

6m2=7.92(1士o.09)×lo一5eV2

(1.49)

M观4(1二㈦舢。3驴n㈣罱-s.3(・拦)舢一.∽5・,

Next,、耽analyze

flr8tthe

case

thatthesinglet均

isof

lowermassthanthedoubletma8ses;i.e.,a<0.

Inthatcause,sincem3>o,(1.26)yields

m。=m。一2

I口|一去lpI+。(等)>。;

therefbre

mo>2川.

(1.52)

NedectiI培0∞/a)coHectio璐in(1.45)and(1.48),

wehave

l器蚓引南,

I丽l

2五吲诵’∽㈣¨句驯

whichgives

淄>l黑I>甜

∽昀

第7期R.niedberg等:中微子质量矩阵和中微子转换矩阵间的一种可能的关系

Comb聪ng

thi8

expression诚强(王.5王),we蠡nd

4.4×lo一2>I笔l>2.2×,o一2.

8I

(1.55)

Ontheother

haIld,f)叼m(1.29)and

to

thesaⅡlea◇

curacy,wehave

sl舻移=器,

∞器6)

Whichonaccount

of(1.36)gives

等=(o.72:㈦×加~.

∽57,

while(1。55)isba糟ly

consiste娃毫w涟(圭.57Lt&eo静

patibiHtydepends

on

that,within

one

8tandardofde—

viation’(1.57)i8

also

co瑚istent

with

p2/a2=o(i息,

si3=o).Tks,this‘‘eoⅡlpa乇ibili桫’betWee珏(1。51)and(1.57)isde丘Ilitely

nota

comfortableone.Amore

accura土e

determin8.tion

of矾3

mayWellruleoutthe

ease

that强ea珏belig醵er擒an侥e纛oublet致,觇。

Within

our

Inodel,wealsomade

8iInilar

analy8is

fbr诅le瑚嚼etha主戗le8iI塔let刍,3isheaⅣier七hanthe

dollblet魄,地。狐thatease,a>0and

tk

situatlon

isquitedi往bren七;thereis

no

inco切-patibilitybetween

(1.51)aIld(1.57).

Remark.w.e箍ote磕atif黟=o溉(1.21)t№娃

therei8

onk矿oneterm

80瓦+歹强)(妖◆椎)(1。5国

耻㈥卜㈣

…=㈠)…鼬,

㈠),

∞叫

一0+。

(1.62)

屹= ̄/丢(蚝十‰一h)

(1。63)

磁=雕卜崩,

whichis

rotation。f则e=sin以、/言.Forp/a

Neutrinomappingma毫rixwith至乙

violationW.e

generalizetheneutrinomas8

operator么‘by

iIl8erting

ph88e

f诎orse蜘into(1.6),replacingitby

8限一取)(洗一‰)+舂(-≯一玩)(强一毪)+

c(e一”玩一玩)(e‘”心一收)

(2.1)

wbere穆,6,cand雄a£e

a融z.e采。、Ⅳhen零=o,(2。1)

becomes(1.6),and

is

inv甜iant

underthesymmetry

(1.5).nrthermore,ife1”≠士1,T—invariance

isalso

viol皴ed。As嫩(1,6),i珏order

to

eo歉勤rm专。毛heS专羽}

dard

fo凇oftheneutrino

mappingmatri)cUgiVenby

thep盯ticled舭agroup【^J,we

makethepha8e

tralls—

高能物理与核物瑷(HEP&NP)

第30卷

c(e一54-e◆弱)(e11蚝十块)+m。∑玩玖,(2.2)

慨=∞》∞6,

一弛,掰㈦,

G||

Ol

O1

协3,

腹=∽≯法7,

“…‘:—一T一▲

知趣(王。25)~(1.27),黼鑫躐per妇mtk玩tr基嚣sI

25

O一

l—

l—

一—

厂扣4c酬狮-w忆2e咱)躯-桫”)、鹾三玩舰醌=l躲t舻喇”)扣酬舟圭妒)1.

k三锯(t憎)

Nex七,靴apply

the仉trallsform舭ion

given

泣8)

q’28爻则鼍M%阢:哳矗

矾砺M%矾一凰+e矗

by

滗9,舻m+(8一辨+番卜。。

(2.9)

二/L

℃二珏一移,。J

by‘磊■———————————————一

In(2・9)

锯(小一)

where风is

diagonal,given

%豫∞

竺三竺

∽埘黜一二兰:协啪t。竺

塘轳“∥

滔瑚

一Ⅲ一(8一辨◆番]壹诋,

坠12

w妇e

rL

 ̄/主c。s罢+ ̄/丢stn罢

一 ̄/三

扭14,

磊7蚓歉霉l一锯eos兰一店s;《

一店渊兰手锯惑《l

艉cos兰一锯s;《

第7期

R.n女edberg等:中微子质量矩阵和中微子转换矩阵间的一种可能的关系

眦d

the

ma土ri)【elementsof九儿are百Venby磕=言[2+三cosp+ct+cosp,c。s叩]+ ̄/丢(三+cos叩)咖口,

磕。言(1一cos,7),

^曼=三(2+c。st7)一丢(1+2c。s叼)c。8口一

三 ̄/三(1+2c唧)si以

(2.15)

境=磕=积(cos罢一佤n加一砒

^磊=九蠹2去(锯c。sp—sin口)(1+2c。8,7)

and

蜘蜘一 ̄/丢ccos兰+击stn知一刚.

Thepr髑enceof^,violat髑21-inva盯iance.

wbnote丘om(2.14)that

theelement

i地一i、/言sin叩

(2.16)

isof

p盯ticul缸importancefor

testing

Dinvari8J1ce.

F\】rthermore.there

are

atleastthree

cases

tobe

con一

8idered:

i)Icl《16l;then正violation

isI玎_ucb

jmauer

than

thepr鹤entupper1imit,reg盯dl朗sof卵.

ii)IcI—D叫】butsin77I《1;then口violation

isagainVerysmaUonaccoun七oftheprefactorsin叩in

(2.14).

iii)IcI—D[|6|】andIsin叩l—D【1】;thenBViolation

can

beclosetothepreseIltupperlimit.ThediagonaUzationofthe3×3

matri)((2.9)issim_

pli乱dinc嬲e

i).In

that

c嬲e,lcI

ismuchlessthan

|6I

and

I口I.Them嬲seigenstatesandthecorrection

totheneutrino

m印pingmatri)(canbereadilyob

tailledbyusingthestandard丘rstorderperturbationfbrmuIa.

AnothersiⅡlplec船e

is…《l,whjch

includesthe

aboye

c嬲eii).Decompose(2.7)into

sm

腹=(耽)o+厶

(2.17)

witb

c叫㈣

亿㈣

written踮

M=%+c△

(2.20)

眠=口尥+6坛+c(尥)o+mo.

(2.21)

can

bediagonahzedbythe

s锄e

lu血t龇ymatri)(

the

an舀e口givenby(1.29)一(1.31),in

aand

are

given

by(1.20).For…《1,厶small;theneutrinom印pingmatri)(Vcanthenbe

byllsing(2.20)and

treatingc△鹪asmall

117匆妇^tD饶口n七W,.Q.Z危口o,or^e豇d也f口ss妇一

ond,Dr{码加rm{唧啪巧冼eptD礼ee而哪p印e鸺

Dt‘r∞唧把托D佗盯琥妇ma佗t‘sc却£

Correspondingly,(2.4)ca肛bewith

朋0

(1.18),with

w11ichi8derived

Derturba七ion.

t口nce

D,R咖.忍劫妒er∞cept,Dr泓r毪厂e他竹ces.

高能物理与核物瑷(HEP&NP)

第30卷

R,e&re鞋ces

Eidelmanset越(ParticleDataGroup).Phys.Lett.,2004,

B592:l

Xi珏gZ

Z.p酾.王詹坻。,2002,B533:8鼋薹王e

Se88ion

XG,ZeeA。

phys.Lett.,2003,B560:87

LeeTD.Chinese至cal

Phy8ic8,2006,15:1125(AmericanPhy8-

on

Socie坶Mee乇i醒,Fir8t

22,2006)

50Year8Sincethe

2王壬蝌i80n

F,S∞ttWG.phy8。毛ett.,2∞2,B535:l∞

D淑Ⅺverv《P解i专yKo黼。璐erv8圭io歉泌t沁W如瓤l珏te穗昏

tionl,April

W^01fensteinL.Phys.R启v.,1978,D18:958;Ha盯isonpF,PerkinsDH,ScottWG.Phys.Lett.,2002,B530:167;

中微子质量矩阵和中微子转换矩阵间的一种可能的关系

R.niedber91李政道112

l《Phy8ic8

D印a砖檄e斌,Gol聃坟氇UniVe秘ity,NewY&k,NY

2(中国高等科学技术中心jE京100080)

l∞27,u。S。A,)

攘要我镧探讨了泼v。,7#,掣。受基的,吴有一秘麓避对穗性鼗孛微予质量矩阵掰.首先在没有?(砖闺)破坏的前提下,假定该质量矩阵具有一个筒单的三参数形武.这一矩阵确定了3种中微子的质落m,,m。,ma以及使M对角化的转换矩阵U.因为无T破坏的U给出3个可测量参数s。。,s。。,8,。,我们的形式用3个参数表示6个鼍测量的物理量,荬结果与实验数据替合褥很好。更精确翡测量将对模型给窭严格的检验,并确定这3个参数的值.本文还推广讨论了包含T破坏的情况.关键词中徽子质案算符

串擞予转换短阵T(时阍)破螺

2006一06一07牧稿

中微子质量矩阵和中微子转换矩阵间的一种可能的关系

作者:作者单位:

R.Friedberg, 李政道, R.Friedberg, T.D. Lee1

R.Friedberg,R.Friedberg(Physics Department, Columbia University, New York, NY10027, U.S.A.), 李政道,T.D. Lee1(Physics Department, Columbia University, NewYork, NY 10027, U.S.A.;中国高等科学技术中心,北京,100080)高能物理与核物理

HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS2006,30(7)

刊名:英文刊名:年,卷(期):

参考文献(7条)

1.Eidelman S 查看详情 2004

2.Lee T D 查看详情[期刊论文]-Chinese Physics 20063.He X G;Zee A 查看详情 20034.Xing Z Z 查看详情 2002

5.Harrison P F;Perkins D H;Scott W G 查看详情 20026.Wolfenstein L 查看详情 1978

7.Harrison P F;Scott W G 查看详情 2002

本文链接:http://d.g.wanfangdata.com.cn/Periodical_gnwlyhwl200607001.aspx

第30卷第7期2006年7月

HIGH

高能物理与核物理

ENERGY

PHYSICS

AND

NUCLEAR

PHYSICS

v01.30,No.7

Jul.,2006

APossibleR凳la-tionbetweentheNeutrino

andthe

MassMa-trix

NeutrinoMappingMatrix

R.niedber91

T.D.Leel,2

1(P11ysicsDepartment,columbiauniversity,NewYbrk,NY10027,u.S.A.)

2(chinacenterofAd、,ancedsdence蚰dTechnolo酊(CCAsT/wbrldLab.),Beijing100080,china)

AbstractWb

explorethecoIlse(1uencesof嬲suming

8iⅡlple

3_par锄eter

new

form,arstwithoutT・Vi01ation,

the

fortheneutrinoma鹃matri)【埘’intheb嬲isve,v¨,vfwiththreeneutrinom嬲8esm1,m2,m3,嬲weU嬲the,乙violation,yieldsthreeme鹪urabktermsofthree

symInetry-Thismatri)(determines

m印ping

matri】(Uthat

diagonaLliz鹤M.Since

U,without

par锄eters

in

812,823,s13,01lr

formexpressessi)【me踮urablequaIltitiesin

par眦eters,丽thr鹤ults

is

agreementwiththeexperimentaldata.Morepreciseme嬲urement8

c龇l西ve8tringenttests

ofthemodel鹅weU踮determiningthevaluesofitsthree

alsodi8cussed.

p缸锄eters.

Anexten8ion

in∞rporatingnvi01ation

Key、Ⅳords

neutrino

m嬲s

operator,neutrillo

m印ping

matri】(,21-Violation

Neutrinomapping

j—violation

nlatrixwithouttionmatri)(uthattheneutrino

case

brings—∥丘om(1.2)to(1.1)is

for

m印pingmatrix6=o.(The

general

when

6≠o

willbediscussedinthe

ne)(七section.)

Inthispaper

1v矿e

wishtoexplorefhrtherthe

con・

Throughoutthepaper,wedenote

nectionbetweentheneu-trinomassoperator彳彩whichcontainsthreeneutrinomassesm1,m2,m3andtheneutrino

耽=妒(耽)

and_t=妒+(阮)讯

Dirac

field

(1.3)

mappingmatri)(U,characterized1bythe

with妒(耽)a冬component

deIloting让Let=l,2,3

or

operator,t

standardfburparaⅡleter8口12,口23,p13ande坩.Fbr

herIllitiane,“,下.

conjugation

andtheindeX

cl盯ity,we6rsteXaminethespecial

case

thattheT—

SincetheIleutrinomappingmatri)【Uisindepen_dentoftheo、陀raUmass—shiRtermmo,inorderfor

our

violatingphaseparameter6=0.Intermsofthemass

eigeIl8tates王,1,耽and地theneutrinoma8s

is

operator

hypothesis

to

besuccessful,theremu8tbesome

.,∥=m1可1正,1+m2可2屹+m3-3的.(1.1)

8pecialfbaturesaboutthe6rsttwotermsin(1.2):

(1.4)

Ourassumptionisthatthe8ame‘,∥,whenexpressed

intermsof%,∥“and收,ha8new8y工【u11etryproperty:

simpleformwith

Q(珥一瓦)(蚱一‰)+p(现一-e)(咋一%)

wb

tion

note

that(1.4)is

invariantunderthetransforma-

Q(玩一可“)(蜥一z,¨)+卢(可恤一-e)(L,斗一%)+mo(_e%+巩‰+玩蜘)

alsowith

(1.2)

Q,卢andmo.These

by

the

v。_v。+名,

V¨_÷Vp+z

and

VT_VT+z(1.5)

constant

thee

real

par锄eters

are

threenewparameters

to

bedeterminedwith彳aspace—tiIneindependent

element

masseigen、,alueSm1,m2andm3.

Thetransforma—

oftheGrassmannalgebra,anticomInutingwiththe

Received7June2006

591—598

592

高能物理与核物理(HEP&NP)

第30卷

neutrino6eldoperators%.

Thus,theusualequal—Thes01epurposeofusingthisless8ymmetriceXpres—sionof—∥istohaⅣethere8ultingneutrino

timea11ticommutationrela七jonsbetw-eentheneutrino

flelds

andtheir

are

m印piI埒

zero—mass矗ee

particle

actior卜

matrixUinthestandardformgivenbythepaurticle

data

i】1tegral

in、,alria舶t

under(1.5).This

mo—dependentterm

symmetryisgroup‘1。.wbwrite(1.10)as

violatedbythelastweU

as

in(1.2),as

byPvi01ation,as

ca8e

weshalldiscusslater.The

∥=(_e秒p玩)(mo+丽)

where

卜、

\‰/,

interesting

that

mightbe8pace—timedependent

I‰I,

(1.11)

wiUnotbediscussedintllispaper.

Expression(1.4)can

begeneralizedto

an

equiva-

c:

1entformwiththreerealparameterso,6and

o(-下—巩)(‰一‰)+6(_p—_e)(1,斗一蚝)+c(_e—%)(%一班).

(1.6)

Thecorre8pondingneutrinomassoperatoris

砑=㈢羹

Theneutrinomappingmatri)(Uisdefined

(1.12)

by

o(玩一可斗)(蜥一工,恤)+6(可¨一_e)(Ⅳp一%)+

U+(mo+砑)u=

(1.7)

Introduce

c(_e一-下)(%一‰)+m。∑玩耽.

Itisclear

that(1.6)is

alsoinVa工iantunderthetrans-

can

3×1c011lIDI】

formation(1.5).The

co瑚taIlts

s锄ein、御iance

alsobe

eX_

pressedintermsofthetransfbrmationbet‘weenthe

o,6andc,with

≯。三V亏

0necan

啡n∽均㈡.

∽均

o_n+A,6_6+A,

and

c_c+A

(1.8)

readilyveri矽that

AsweshaUpro、陀,theformoftheneutrinomapping

郦2=o;

i.e.,≯2

is

an

(1.15)

ma七r仅UremaillsunchangedunderthetraIlsforma-

eigellvectorof』订witheigenValueO.Let

tion(1.8).

Sincetherelati、他phasesbetweenV。,V“andV下

are

西1and咖3

tors

betheothertwDrealnormalizedeigenVec—

of丽.Since

审t中j=6砑,

unphysic以,wemay

tra璐form

(1.16)

Ve_一Ve,

so

V仙_一V恤

writtenin

and

V下_V下,(1.9)

with~denotingthetranspose,theneutrinomapping

that(1.7)is

lesssymmetricform,with

matri)cUis

∥=口(玩+可“)(收+工,弘)+6(可“一-e)(∥斗一%)+

u=(≯-咖。咖s),

which,onaccount

(1.17)

c(_e+玩)(%+坎)+m。∑玩耽.

(1.10)

of(1.14)and(1.16),isgivenby

c08互

U=

p一2

锯一锯曲罢

锯店st《+锯c。s罢

V百

|1|1.ej|1

(1.18)

镛居

p一2

镀居

一V石8m互+V互c08互

in

the印proximation

of西1,毋3

thattheT—Vi01atingparameter

denotingtheazimuthalori—

isthesameexpression丘rstobtainedbyHarrisonand

6=0,withtheenta越on

angle目/2

Scott【2】.

Ne)(tweretIlrntothe

aroundthef泌ed

eigenVector≯2.

aboveU

tra瑚formation(1.8),under

as

Exceptforminornotationaldi髓rences,thewhich五孑of(1.12)tra璐forms

第7期

R.№iedberg等:中微子质量矩阵和中微予转换矩阵间的一种可戆的关系

593

砑_砑+A(÷;三

陵n∞

一J2

l|也:o,j》

2_ll

2夕

垃屺neutr纽omappingmatri)cUreInainsgiVenby

(王。18)。Setting

A=一c.

(1.19)

weh8ve

n_口=8~C.6_筘=易一c,(1.20)

e_0。

Thecorrespondingneutrinomas8

operator么7of(1.7)

beco磁es(1。2)。W量瞧t&ad鑫itio珏蘸p魏ase∞溉哦量。毪

(1.9),∥of(1.10)reduces

to

∥=a陬+秽≯)(玫+‰)+

p(-p一玩)(‰一蚝)+m。∑玩魄,

(1.21)

w毯chhasonlythreep甜a勰eters&,∥越通mo.Of

collrse,themass

operator(1.21)is

speci啦easeof

thema88

operator(1.10),whichhas4parameter8

a,

坟ea丑dmo。毪isofi娥erest攮at镪ey8haresthes溯∞

neut西no

m印pingmatri)[F

given

by(1.18)’provid磋

that8一c=aand

6一c=卢.、,et,the

neutrinoma8ses

ml,m2赫d嫩3主n

the专wo

cases

ea薹l

be

d疆套re娥,

as

can

be

readily

8een

by

ex毡幽ning

thetrace

of膨

given

by(1。12).Therefore,the“l

phy8ical

contents

of(1.2王)8珏d(1。10)8re珏ott&sa班e.圜1isis瓣

pecial垮important

whenwe黧pneralize娃地modeltoinclu(1e

nviolation

inthenextsection.

融t鹣re班越瓤瓣gp嚣toft辍8sect呈。戤黼s地珏eX_

plore矗lrtherthephysicalcon8equencesofourmodel,

using

only

themorerestrictive

form(1.21)with

tllree

砖采p戤濑et日s&,移褪dm。。

ItisiIlstructive

to静derive(1.18)in

moreel伊

mentary

Wa弘w}ite(1.21)a8

∥=(玩瓦瓦)(a耽+p%+mo)

眠=(|;;)∽矧

晦=㈠》∞㈣

matrb【‘3’41骗by

setting口=o

in(1.18);ile.,

醌一聪斟

(1。25)

一一2(|;;)'(i.㈣A%=哪砒%玩=壶(一羹圣一}丐).c・.2力

玩一(:三喜三t篓]

el。2国

sin9一卜卅。埘。r向,(1.29)c。sp一[(2a—p)2+3p2]一麦(2a一卢),

(1.3。)

tanp一盏。

(1.31)

工,1

andz,2depending

a>0

forfor

on

thesignofQ,with

(蒌)=u(囊),

m3>m1o。m2,m3<m1

Or

(1.43)

c・.32,

Q<0

Ne91ecting

m2.

D(p/a)corrections,ⅥrehaⅣe丘om(1.34),

m1positive,

(1.39)and

一Q伊0一钟+南r+螂粥,ana

mo>昙蚓

(1.44)

6m2三m;一m;=(m。一兰lpl)3吲.

(1.45)

m2=mo

(1.34)

and

一州+(口一针+南]丢+mo∞.ss,鼢

ThematrkU

depends

onlyonone

parameterp,

whichinturnisdeterⅡlined

by

theratio

p/a.

Inthe

siaIldard

pararnetricrepresentation,the

matri)(element巩3

iss13=sin口13whene16=1,with

theexperimentalbomnfl】

s;。=。.9:::i×l。一2.(-.36)

~(1_18)胁ts一店幽扣硒・炯stkn

stn2兰=独《・.

(1.37)

Thus,byusing(1.29)一(1.31)we

see

that

㈥2《1,

(1.38)

\口/

wllichtogetherwith(1.33)一(1.35)yield

theconclu-

sionthatm1

andm2韶everyclose,forming

dou-

blet,andm3iSthesinglet.Theirmassdi能rences

are

given

by印proXimate

expressions:

m。一m,=一兰p十。(譬),u.

m2一m1一J

I=J’

2一石p十u

(1.39)

\u,

m。一m。=2a+壶卢+。(譬)

c-.4。,

and

m。一去cm。+m。,=2Q一去卢+。(等).c・.4・,

nom

m1<m2,weconclude

卢<o.

(1.42)

FIlrthermore。地isheaⅣierorlighterthanthedoublet

Thus

6m2>罢胪(1.46)

△m2三m;一丢(m;+m;)

(1.47)

We丘nd,neglecting

U(∥),

△m2=4Q(Q+m。)+(去m。一2a)俐.(・.48)

The

e印erimental

valuesfor6m2

and△m2牡e西ven

by[1】

6m2=7.92(1士o.09)×lo一5eV2

(1.49)

M观4(1二㈦舢。3驴n㈣罱-s.3(・拦)舢一.∽5・,

Next,、耽analyze

flr8tthe

case

thatthesinglet均

isof

lowermassthanthedoubletma8ses;i.e.,a<0.

Inthatcause,sincem3>o,(1.26)yields

m。=m。一2

I口|一去lpI+。(等)>。;

therefbre

mo>2川.

(1.52)

NedectiI培0∞/a)coHectio璐in(1.45)and(1.48),

wehave

l器蚓引南,

I丽l

2五吲诵’∽㈣¨句驯

whichgives

淄>l黑I>甜

∽昀

第7期R.niedberg等:中微子质量矩阵和中微子转换矩阵间的一种可能的关系

Comb聪ng

thi8

expression诚强(王.5王),we蠡nd

4.4×lo一2>I笔l>2.2×,o一2.

8I

(1.55)

Ontheother

haIld,f)叼m(1.29)and

to

thesaⅡlea◇

curacy,wehave

sl舻移=器,

∞器6)

Whichonaccount

of(1.36)gives

等=(o.72:㈦×加~.

∽57,

while(1。55)isba糟ly

consiste娃毫w涟(圭.57Lt&eo静

patibiHtydepends

on

that,within

one

8tandardofde—

viation’(1.57)i8

also

co瑚istent

with

p2/a2=o(i息,

si3=o).Tks,this‘‘eoⅡlpa乇ibili桫’betWee珏(1。51)and(1.57)isde丘Ilitely

nota

comfortableone.Amore

accura土e

determin8.tion

of矾3

mayWellruleoutthe

ease

that强ea珏belig醵er擒an侥e纛oublet致,觇。

Within

our

Inodel,wealsomade

8iInilar

analy8is

fbr诅le瑚嚼etha主戗le8iI塔let刍,3isheaⅣier七hanthe

dollblet魄,地。狐thatease,a>0and

tk

situatlon

isquitedi往bren七;thereis

no

inco切-patibilitybetween

(1.51)aIld(1.57).

Remark.w.e箍ote磕atif黟=o溉(1.21)t№娃

therei8

onk矿oneterm

80瓦+歹强)(妖◆椎)(1。5国

耻㈥卜㈣

…=㈠)…鼬,

㈠),

∞叫

一0+。

(1.62)

屹= ̄/丢(蚝十‰一h)

(1。63)

磁=雕卜崩,

whichis

rotation。f则e=sin以、/言.Forp/a

Neutrinomappingma毫rixwith至乙

violationW.e

generalizetheneutrinomas8

operator么‘by

iIl8erting

ph88e

f诎orse蜘into(1.6),replacingitby

8限一取)(洗一‰)+舂(-≯一玩)(强一毪)+

c(e一”玩一玩)(e‘”心一收)

(2.1)

wbere穆,6,cand雄a£e

a融z.e采。、Ⅳhen零=o,(2。1)

becomes(1.6),and

is

inv甜iant

underthesymmetry

(1.5).nrthermore,ife1”≠士1,T—invariance

isalso

viol皴ed。As嫩(1,6),i珏order

to

eo歉勤rm专。毛heS专羽}

dard

fo凇oftheneutrino

mappingmatri)cUgiVenby

thep盯ticled舭agroup【^J,we

makethepha8e

tralls—

高能物理与核物瑷(HEP&NP)

第30卷

c(e一54-e◆弱)(e11蚝十块)+m。∑玩玖,(2.2)

慨=∞》∞6,

一弛,掰㈦,

G||

Ol

O1

协3,

腹=∽≯法7,

“…‘:—一T一▲

知趣(王。25)~(1.27),黼鑫躐per妇mtk玩tr基嚣sI

25

O一

l—

l—

一—

厂扣4c酬狮-w忆2e咱)躯-桫”)、鹾三玩舰醌=l躲t舻喇”)扣酬舟圭妒)1.

k三锯(t憎)

Nex七,靴apply

the仉trallsform舭ion

given

泣8)

q’28爻则鼍M%阢:哳矗

矾砺M%矾一凰+e矗

by

滗9,舻m+(8一辨+番卜。。

(2.9)

二/L

℃二珏一移,。J

by‘磊■———————————————一

In(2・9)

锯(小一)

where风is

diagonal,given

%豫∞

竺三竺

∽埘黜一二兰:协啪t。竺

塘轳“∥

滔瑚

一Ⅲ一(8一辨◆番]壹诋,

坠12

w妇e

rL

 ̄/主c。s罢+ ̄/丢stn罢

一 ̄/三

扭14,

磊7蚓歉霉l一锯eos兰一店s;《

一店渊兰手锯惑《l

艉cos兰一锯s;《

第7期

R.n女edberg等:中微子质量矩阵和中微子转换矩阵间的一种可能的关系

眦d

the

ma土ri)【elementsof九儿are百Venby磕=言[2+三cosp+ct+cosp,c。s叩]+ ̄/丢(三+cos叩)咖口,

磕。言(1一cos,7),

^曼=三(2+c。st7)一丢(1+2c。s叼)c。8口一

三 ̄/三(1+2c唧)si以

(2.15)

境=磕=积(cos罢一佤n加一砒

^磊=九蠹2去(锯c。sp—sin口)(1+2c。8,7)

and

蜘蜘一 ̄/丢ccos兰+击stn知一刚.

Thepr髑enceof^,violat髑21-inva盯iance.

wbnote丘om(2.14)that

theelement

i地一i、/言sin叩

(2.16)

isof

p盯ticul缸importancefor

testing

Dinvari8J1ce.

F\】rthermore.there

are

atleastthree

cases

tobe

con一

8idered:

i)Icl《16l;then正violation

isI玎_ucb

jmauer

than

thepr鹤entupper1imit,reg盯dl朗sof卵.

ii)IcI—D叫】butsin77I《1;then口violation

isagainVerysmaUonaccoun七oftheprefactorsin叩in

(2.14).

iii)IcI—D[|6|】andIsin叩l—D【1】;thenBViolation

can

beclosetothepreseIltupperlimit.ThediagonaUzationofthe3×3

matri)((2.9)issim_

pli乱dinc嬲e

i).In

that

c嬲e,lcI

ismuchlessthan

|6I

and

I口I.Them嬲seigenstatesandthecorrection

totheneutrino

m印pingmatri)(canbereadilyob

tailledbyusingthestandard丘rstorderperturbationfbrmuIa.

AnothersiⅡlplec船e

is…《l,whjch

includesthe

aboye

c嬲eii).Decompose(2.7)into

sm

腹=(耽)o+厶

(2.17)

witb

c叫㈣

亿㈣

written踮

M=%+c△

(2.20)

眠=口尥+6坛+c(尥)o+mo.

(2.21)

can

bediagonahzedbythe

s锄e

lu血t龇ymatri)(

the

an舀e口givenby(1.29)一(1.31),in

aand

are

given

by(1.20).For…《1,厶small;theneutrinom印pingmatri)(Vcanthenbe

byllsing(2.20)and

treatingc△鹪asmall

117匆妇^tD饶口n七W,.Q.Z危口o,or^e豇d也f口ss妇一

ond,Dr{码加rm{唧啪巧冼eptD礼ee而哪p印e鸺

Dt‘r∞唧把托D佗盯琥妇ma佗t‘sc却£

Correspondingly,(2.4)ca肛bewith

朋0

(1.18),with

w11ichi8derived

Derturba七ion.

t口nce

D,R咖.忍劫妒er∞cept,Dr泓r毪厂e他竹ces.

高能物理与核物瑷(HEP&NP)

第30卷

R,e&re鞋ces

Eidelmanset越(ParticleDataGroup).Phys.Lett.,2004,

B592:l

Xi珏gZ

Z.p酾.王詹坻。,2002,B533:8鼋薹王e

Se88ion

XG,ZeeA。

phys.Lett.,2003,B560:87

LeeTD.Chinese至cal

Phy8ic8,2006,15:1125(AmericanPhy8-

on

Socie坶Mee乇i醒,Fir8t

22,2006)

50Year8Sincethe

2王壬蝌i80n

F,S∞ttWG.phy8。毛ett.,2∞2,B535:l∞

D淑Ⅺverv《P解i专yKo黼。璐erv8圭io歉泌t沁W如瓤l珏te穗昏

tionl,April

W^01fensteinL.Phys.R启v.,1978,D18:958;Ha盯isonpF,PerkinsDH,ScottWG.Phys.Lett.,2002,B530:167;

中微子质量矩阵和中微子转换矩阵间的一种可能的关系

R.niedber91李政道112

l《Phy8ic8

D印a砖檄e斌,Gol聃坟氇UniVe秘ity,NewY&k,NY

2(中国高等科学技术中心jE京100080)

l∞27,u。S。A,)

攘要我镧探讨了泼v。,7#,掣。受基的,吴有一秘麓避对穗性鼗孛微予质量矩阵掰.首先在没有?(砖闺)破坏的前提下,假定该质量矩阵具有一个筒单的三参数形武.这一矩阵确定了3种中微子的质落m,,m。,ma以及使M对角化的转换矩阵U.因为无T破坏的U给出3个可测量参数s。。,s。。,8,。,我们的形式用3个参数表示6个鼍测量的物理量,荬结果与实验数据替合褥很好。更精确翡测量将对模型给窭严格的检验,并确定这3个参数的值.本文还推广讨论了包含T破坏的情况.关键词中徽子质案算符

串擞予转换短阵T(时阍)破螺

2006一06一07牧稿

中微子质量矩阵和中微子转换矩阵间的一种可能的关系

作者:作者单位:

R.Friedberg, 李政道, R.Friedberg, T.D. Lee1

R.Friedberg,R.Friedberg(Physics Department, Columbia University, New York, NY10027, U.S.A.), 李政道,T.D. Lee1(Physics Department, Columbia University, NewYork, NY 10027, U.S.A.;中国高等科学技术中心,北京,100080)高能物理与核物理

HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS2006,30(7)

刊名:英文刊名:年,卷(期):

参考文献(7条)

1.Eidelman S 查看详情 2004

2.Lee T D 查看详情[期刊论文]-Chinese Physics 20063.He X G;Zee A 查看详情 20034.Xing Z Z 查看详情 2002

5.Harrison P F;Perkins D H;Scott W G 查看详情 20026.Wolfenstein L 查看详情 1978

7.Harrison P F;Scott W G 查看详情 2002

本文链接:http://d.g.wanfangdata.com.cn/Periodical_gnwlyhwl200607001.aspx


相关文章

  • 粒子物理标准模型
  • 2012届本科毕业论文 标准模型的缺陷及其完善 姓 名: 系 别: 物理与电气信息学院 专 业: 物理学 学 号: 指导教师: 谷勤忠 2012年05月06日 目 录 摘 要 ................................ ...查看


  • 1.质量概念的发展
  • 1.质量概念的发展 物理学家海森堡说:"为了理解现象,首要条件是引入适当的概念,我们才能真正知道观察到了什么." 在17.18世纪之际,物理学已经发展为以拉普拉斯为代表的.把力学视为物理学基础的"牛顿范式&qu ...查看


  • 原子核物理-兰北
  • 第六章 β跃迁 1. β衰变的费米理论 本质:原子核中的一个中子转化为一个质子,或者是一个质子转化为一个中子,中子和质子可以看做是同一核子的不同量子状态. 类比原子发光:β粒子是核子不同状态之间跃迁的产物,之前并不存在于核内,正像原子发光一 ...查看


  • 1945年诺贝尔物理学奖──泡利不相容原理
  • 1945年诺贝尔物理学奖──泡利不相容原理 1945年诺贝尔物理学奖授予美国新泽西州普林斯顿大学的奥地利物理学家泡利(Wolfgamg Pauli,1900-1958),以表彰他发现了所谓泡利原理的不相容原理. 不相容原理是量子理论中的重要 ...查看


  • 3.中微子的质量问题
  • 7.中微子的质量问题 <自然杂志>19卷4期的 '探索物理学难题的科学意义'的 97个悬而未决的难题: 65.中微子有无静止质量?66.有无中微子振荡? 在微观世界中,中微子一直是一个无所不在.而又不可捉摸的过客.中微子产生的途 ...查看


  • 产品设计质量保证
  • 第五篇 产品设计质量保证 第11章 质量功能配置(QFD ) 本章从产品开发和质量保证的角度出发,在介绍了质量功能配置(QFD )的一些基本概念的基础上,着重讨论了QFD 中顾客需求的获取.整理.分析,以及顾客需求在产品开发中的瀑布分解过程 ...查看


  • 波特五力分析模型
  • 波特五力分析模型 出自 MBA智库百科(http://wiki.mbalib.com/) 波特五力分析模型(Michael Porter's Five Forces Model),又称波特竞争力模型 目录 [隐藏] 1 波特五力分析模型简介 ...查看


  • 北航自然辩证法概论课程论文
  • 2015-2016学年第二学期 <自然辩证法概论>期末课程论文 物质微观结构探索与应用推动未来科技 --宏观.微观.纳米到量子力学在工程领域的应用 姓 名: 学 号: 任课教师: 完成时间: 年 月 日 物质微观结构探索与应用推 ...查看


  • 论物质的结构和组成暨广义统一场理论2015.6.8投稿
  • 论物质的结构和组成暨广义统一场理论 曹 焱 合肥工业大学硕士研究生 邮编:241002 摘要:统一场理论共分为狭义统一场理论和广义统一场理论.狭义统一场理论就是指四种力:即电磁力与强力.弱力.万有引力的统一:广义统一场理论就是指物质世界都最 ...查看


热门内容