第30卷第7期2006年7月
HIGH
高能物理与核物理
ENERGY
PHYSICS
AND
NUCLEAR
PHYSICS
v01.30,No.7
Jul.,2006
APossibleR凳la-tionbetweentheNeutrino
andthe
MassMa-trix
NeutrinoMappingMatrix
R.niedber91
T.D.Leel,2
1(P11ysicsDepartment,columbiauniversity,NewYbrk,NY10027,u.S.A.)
2(chinacenterofAd、,ancedsdence蚰dTechnolo酊(CCAsT/wbrldLab.),Beijing100080,china)
AbstractWb
explorethecoIlse(1uencesof嬲suming
a
8iⅡlple
a
3_par锄eter
new
form,arstwithoutT・Vi01ation,
the
fortheneutrinoma鹃matri)【埘’intheb嬲isve,v¨,vfwiththreeneutrinom嬲8esm1,m2,m3,嬲weU嬲the,乙violation,yieldsthreeme鹪urabktermsofthree
symInetry-Thismatri)(determines
m印ping
matri】(Uthat
diagonaLliz鹤M.Since
U,without
par锄eters
in
812,823,s13,01lr
formexpressessi)【me踮urablequaIltitiesin
par眦eters,丽thr鹤ults
is
agreementwiththeexperimentaldata.Morepreciseme嬲urement8
c龇l西ve8tringenttests
ofthemodel鹅weU踮determiningthevaluesofitsthree
alsodi8cussed.
p缸锄eters.
Anexten8ion
in∞rporatingnvi01ation
Key、Ⅳords
neutrino
m嬲s
operator,neutrillo
m印ping
matri】(,21-Violation
l
Neutrinomapping
j—violation
nlatrixwithouttionmatri)(uthattheneutrino
case
brings—∥丘om(1.2)to(1.1)is
for
m印pingmatrix6=o.(The
general
when
6≠o
willbediscussedinthe
ne)(七section.)
Inthispaper
1v矿e
wishtoexplorefhrtherthe
con・
Throughoutthepaper,wedenote
nectionbetweentheneu-trinomassoperator彳彩whichcontainsthreeneutrinomassesm1,m2,m3andtheneutrino
耽=妒(耽)
and_t=妒+(阮)讯
Dirac
field
(1.3)
mappingmatri)(U,characterized1bythe
with妒(耽)a冬component
deIloting让Let=l,2,3
or
operator,t
standardfburparaⅡleter8口12,口23,p13ande坩.Fbr
herIllitiane,“,下.
conjugation
andtheindeX
cl盯ity,we6rsteXaminethespecial
case
thattheT—
SincetheIleutrinomappingmatri)【Uisindepen_dentoftheo、陀raUmass—shiRtermmo,inorderfor
our
violatingphaseparameter6=0.Intermsofthemass
eigeIl8tates王,1,耽and地theneutrinoma8s
is
operator
hypothesis
to
besuccessful,theremu8tbesome
.,∥=m1可1正,1+m2可2屹+m3-3的.(1.1)
8pecialfbaturesaboutthe6rsttwotermsin(1.2):
(1.4)
Ourassumptionisthatthe8ame‘,∥,whenexpressed
intermsof%,∥“and收,ha8new8y工【u11etryproperty:
a
simpleformwith
a
Q(珥一瓦)(蚱一‰)+p(现一-e)(咋一%)
wb
tion
note
that(1.4)is
invariantunderthetransforma-
Q(玩一可“)(蜥一z,¨)+卢(可恤一-e)(L,斗一%)+mo(_e%+巩‰+玩蜘)
alsowith
(1.2)
Q,卢andmo.These
by
the
v。_v。+名,
V¨_÷Vp+z
and
VT_VT+z(1.5)
constant
thee
real
par锄eters
are
threenewparameters
to
bedeterminedwith彳aspace—tiIneindependent
element
masseigen、,alueSm1,m2andm3.
Thetransforma—
oftheGrassmannalgebra,anticomInutingwiththe
Received7June2006
591—598
592
高能物理与核物理(HEP&NP)
第30卷
neutrino6eldoperators%.
Thus,theusualequal—Thes01epurposeofusingthisless8ymmetriceXpres—sionof—∥istohaⅣethere8ultingneutrino
timea11ticommutationrela七jonsbetw-eentheneutrino
flelds
地
andtheir
are
m印piI埒
zero—mass矗ee
particle
actior卜
matrixUinthestandardformgivenbythepaurticle
data
i】1tegral
in、,alria舶t
under(1.5).This
mo—dependentterm
symmetryisgroup‘1。.wbwrite(1.10)as
violatedbythelastweU
as
in(1.2),as
byPvi01ation,as
ca8e
weshalldiscusslater.The
∥=(_e秒p玩)(mo+丽)
where
卜、
\‰/,
interesting
that
z
mightbe8pace—timedependent
I‰I,
(1.11)
wiUnotbediscussedintllispaper.
Expression(1.4)can
begeneralizedto
an
equiva-
c:
1entformwiththreerealparameterso,6and
o(-下—巩)(‰一‰)+6(_p—_e)(1,斗一蚝)+c(_e—%)(%一班).
(1.6)
Thecorre8pondingneutrinomassoperatoris
砑=㈢羹
Theneutrinomappingmatri)(Uisdefined
(1.12)
by
o(玩一可斗)(蜥一工,恤)+6(可¨一_e)(Ⅳp一%)+
U+(mo+砑)u=
(1.7)
Introduce
a
c(_e一-下)(%一‰)+m。∑玩耽.
Itisclear
that(1.6)is
alsoinVa工iantunderthetrans-
can
3×1c011lIDI】
formation(1.5).The
co瑚taIlts
s锄ein、御iance
alsobe
eX_
pressedintermsofthetransfbrmationbet‘weenthe
o,6andc,with
R
≯。三V亏
0necan
啡n∽均㈡.
∽均
o_n+A,6_6+A,
and
c_c+A
(1.8)
readilyveri矽that
AsweshaUpro、陀,theformoftheneutrinomapping
郦2=o;
i.e.,≯2
is
an
(1.15)
ma七r仅UremaillsunchangedunderthetraIlsforma-
eigellvectorof』订witheigenValueO.Let
tion(1.8).
Sincetherelati、他phasesbetweenV。,V“andV下
are
西1and咖3
tors
betheothertwDrealnormalizedeigenVec—
of丽.Since
审t中j=6砑,
unphysic以,wemay
tra璐form
(1.16)
Ve_一Ve,
so
V仙_一V恤
writtenin
a
and
V下_V下,(1.9)
with~denotingthetranspose,theneutrinomapping
that(1.7)is
lesssymmetricform,with
matri)cUis
∥=口(玩+可“)(收+工,弘)+6(可“一-e)(∥斗一%)+
u=(≯-咖。咖s),
which,onaccount
(1.17)
c(_e+玩)(%+坎)+m。∑玩耽.
9
(1.10)
of(1.14)and(1.16),isgivenby
c08互
U=
∞
p一2
出
锯一锯曲罢
锯店st《+锯c。s罢
V百
|1|1.ej|1
8
(1.18)
镛居
傩
p一2
镀居
洫
一V石8m互+V互c08互
in
the印proximation
of西1,毋3
thattheT—Vi01atingparameter
denotingtheazimuthalori—
isthesameexpression丘rstobtainedbyHarrisonand
6=0,withtheenta越on
angle目/2
Scott【2】.
Ne)(tweretIlrntothe
aroundthef泌ed
eigenVector≯2.
aboveU
tra瑚formation(1.8),under
as
Exceptforminornotationaldi髓rences,thewhich五孑of(1.12)tra璐forms
第7期
R.№iedberg等:中微子质量矩阵和中微予转换矩阵间的一种可戆的关系
593
砑_砑+A(÷;三
陵n∞
一J2
l|也:o,j》
2_ll
2夕
垃屺neutr纽omappingmatri)cUreInainsgiVenby
(王。18)。Setting
A=一c.
(1.19)
weh8ve
n_口=8~C.6_筘=易一c,(1.20)
e_0。
Thecorrespondingneutrinomas8
operator么7of(1.7)
beco磁es(1。2)。W量瞧t&ad鑫itio珏蘸p魏ase∞溉哦量。毪
(1.9),∥of(1.10)reduces
to
∥=a陬+秽≯)(玫+‰)+
p(-p一玩)(‰一蚝)+m。∑玩魄,
(1.21)
t
w毯chhasonlythreep甜a勰eters&,∥越通mo.Of
collrse,themass
operator(1.21)is
a
speci啦easeof
thema88
operator(1.10),whichhas4parameter8
a,
坟ea丑dmo。毪isofi娥erest攮at镪ey8haresthes溯∞
neut西no
m印pingmatri)[F
given
by(1.18)’provid磋
that8一c=aand
6一c=卢.、,et,the
neutrinoma8ses
ml,m2赫d嫩3主n
the专wo
cases
ea薹l
be
d疆套re娥,
as
can
be
readily
8een
by
ex毡幽ning
thetrace
of膨
given
by(1。12).Therefore,the“l
phy8ical
contents
of(1.2王)8珏d(1。10)8re珏ott&sa班e.圜1isis瓣
pecial垮important
whenwe黧pneralize娃地modeltoinclu(1e
nviolation
inthenextsection.
融t鹣re班越瓤瓣gp嚣toft辍8sect呈。戤黼s地珏eX_
plore矗lrtherthephysicalcon8equencesofourmodel,
using
only
themorerestrictive
form(1.21)with
tllree
砖采p戤濑et日s&,移褪dm。。
ItisiIlstructive
to静derive(1.18)in
a
moreel伊
mentary
Wa弘w}ite(1.21)a8
∥=(玩瓦瓦)(a耽+p%+mo)
眠=(|;;)∽矧
晦=㈠》∞㈣
matrb【‘3’41骗by
setting口=o
in(1.18);ile.,
醌一聪斟
(1。25)
一一2(|;;)'(i.㈣A%=哪砒%玩=壶(一羹圣一}丐).c・.2力
玩一(:三喜三t篓]
el。2国
sin9一卜卅。埘。r向,(1.29)c。sp一[(2a—p)2+3p2]一麦(2a一卢),
(1.3。)
tanp一盏。
(1.31)
工,1
andz,2depending
a>0
forfor
on
thesignofQ,with
(蒌)=u(囊),
m3>m1o。m2,m3<m1
Or
(1.43)
c・.32,
Q<0
Ne91ecting
m2.
D(p/a)corrections,ⅥrehaⅣe丘om(1.34),
m1positive,
(1.39)and
一Q伊0一钟+南r+螂粥,ana
mo>昙蚓
(1.44)
6m2三m;一m;=(m。一兰lpl)3吲.
(1.45)
m2=mo
(1.34)
and
一州+(口一针+南]丢+mo∞.ss,鼢
ThematrkU
depends
onlyonone
parameterp,
whichinturnisdeterⅡlined
by
theratio
p/a.
Inthe
siaIldard
pararnetricrepresentation,the
matri)(element巩3
iss13=sin口13whene16=1,with
theexperimentalbomnfl】
s;。=。.9:::i×l。一2.(-.36)
~(1_18)胁ts一店幽扣硒・炯stkn
stn2兰=独《・.
(1.37)
Thus,byusing(1.29)一(1.31)we
see
that
㈥2《1,
(1.38)
\口/
wllichtogetherwith(1.33)一(1.35)yield
theconclu-
sionthatm1
andm2韶everyclose,forming
a
dou-
blet,andm3iSthesinglet.Theirmassdi能rences
are
given
by印proXimate
expressions:
m。一m,=一兰p十。(譬),u.
m2一m1一J
I=J’
y
l
2一石p十u
(1.39)
‘
\u,
m。一m。=2a+壶卢+。(譬)
c-.4。,
and
m。一去cm。+m。,=2Q一去卢+。(等).c・.4・,
nom
m1<m2,weconclude
卢<o.
(1.42)
FIlrthermore。地isheaⅣierorlighterthanthedoublet
Thus
6m2>罢胪(1.46)
△m2三m;一丢(m;+m;)
(1.47)
We丘nd,neglecting
U(∥),
△m2=4Q(Q+m。)+(去m。一2a)俐.(・.48)
The
e印erimental
valuesfor6m2
and△m2牡e西ven
by[1】
6m2=7.92(1士o.09)×lo一5eV2
(1.49)
M观4(1二㈦舢。3驴n㈣罱-s.3(・拦)舢一.∽5・,
Next,、耽analyze
flr8tthe
case
thatthesinglet均
isof
a
lowermassthanthedoubletma8ses;i.e.,a<0.
Inthatcause,sincem3>o,(1.26)yields
m。=m。一2
I口|一去lpI+。(等)>。;
therefbre
mo>2川.
(1.52)
NedectiI培0∞/a)coHectio璐in(1.45)and(1.48),
wehave
l器蚓引南,
I丽l
2五吲诵’∽㈣¨句驯
whichgives
淄>l黑I>甜
∽昀
第7期R.niedberg等:中微子质量矩阵和中微子转换矩阵间的一种可能的关系
Comb聪ng
thi8
expression诚强(王.5王),we蠡nd
4.4×lo一2>I笔l>2.2×,o一2.
8I
(1.55)
Ontheother
haIld,f)叼m(1.29)and
to
thesaⅡlea◇
curacy,wehave
sl舻移=器,
∞器6)
Whichonaccount
of(1.36)gives
等=(o.72:㈦×加~.
∽57,
while(1。55)isba糟ly
consiste娃毫w涟(圭.57Lt&eo静
patibiHtydepends
on
that,within
one
8tandardofde—
viation’(1.57)i8
also
co瑚istent
with
p2/a2=o(i息,
si3=o).Tks,this‘‘eoⅡlpa乇ibili桫’betWee珏(1。51)and(1.57)isde丘Ilitely
nota
comfortableone.Amore
accura土e
determin8.tion
of矾3
mayWellruleoutthe
ease
that强ea珏belig醵er擒an侥e纛oublet致,觇。
Within
our
Inodel,wealsomade
a
8iInilar
analy8is
fbr诅le瑚嚼etha主戗le8iI塔let刍,3isheaⅣier七hanthe
dollblet魄,地。狐thatease,a>0and
tk
situatlon
isquitedi往bren七;thereis
no
inco切-patibilitybetween
(1.51)aIld(1.57).
Remark.w.e箍ote磕atif黟=o溉(1.21)t№娃
therei8
onk矿oneterm
80瓦+歹强)(妖◆椎)(1。5国
耻㈥卜㈣
…=㈠)…鼬,
㈠),
∞叫
一0+。
(1.62)
屹= ̄/丢(蚝十‰一h)
(1。63)
磁=雕卜崩,
whichis
a
rotation。f则e=sin以、/言.Forp/a
2
Neutrinomappingma毫rixwith至乙
violationW.e
generalizetheneutrinomas8
operator么‘by
iIl8erting
ph88e
f诎orse蜘into(1.6),replacingitby
8限一取)(洗一‰)+舂(-≯一玩)(强一毪)+
c(e一”玩一玩)(e‘”心一收)
(2.1)
wbere穆,6,cand雄a£e
a融z.e采。、Ⅳhen零=o,(2。1)
becomes(1.6),and
is
inv甜iant
underthesymmetry
(1.5).nrthermore,ife1”≠士1,T—invariance
isalso
viol皴ed。As嫩(1,6),i珏order
to
eo歉勤rm专。毛heS专羽}
dard
fo凇oftheneutrino
mappingmatri)cUgiVenby
thep盯ticled舭agroup【^J,we
makethepha8e
tralls—
高能物理与核物瑷(HEP&NP)
第30卷
c(e一54-e◆弱)(e11蚝十块)+m。∑玩玖,(2.2)
慨=∞》∞6,
一弛,掰㈦,
G||
0
Ol
O1
协3,
腹=∽≯法7,
“…‘:—一T一▲
知趣(王。25)~(1.27),黼鑫躐per妇mtk玩tr基嚣sI
25
一
O一
l—
l—
一—
厂扣4c酬狮-w忆2e咱)躯-桫”)、鹾三玩舰醌=l躲t舻喇”)扣酬舟圭妒)1.
k三锯(t憎)
Nex七,靴apply
the仉trallsform舭ion
given
泣8)
q’28爻则鼍M%阢:哳矗
矾砺M%矾一凰+e矗
by
滗9,舻m+(8一辨+番卜。。
(2.9)
\
二/L
℃二珏一移,。J
by‘磊■———————————————一
In(2・9)
锯(小一)
主
夕
where风is
diagonal,given
%豫∞
竺三竺
∽埘黜一二兰:协啪t。竺
塘轳“∥
1
滔瑚
一Ⅲ一(8一辨◆番]壹诋,
坠12
w妇e
rL
。
 ̄/主c。s罢+ ̄/丢stn罢
。
一 ̄/三
。
、
扭14,
磊7蚓歉霉l一锯eos兰一店s;《
锯
一店渊兰手锯惑《l
/
艉cos兰一锯s;《
第7期
R.n女edberg等:中微子质量矩阵和中微子转换矩阵间的一种可能的关系
眦d
the
ma土ri)【elementsof九儿are百Venby磕=言[2+三cosp+ct+cosp,c。s叩]+ ̄/丢(三+cos叩)咖口,
磕。言(1一cos,7),
^曼=三(2+c。st7)一丢(1+2c。s叼)c。8口一
三 ̄/三(1+2c唧)si以
(2.15)
境=磕=积(cos罢一佤n加一砒
^磊=九蠹2去(锯c。sp—sin口)(1+2c。8,7)
and
蜘蜘一 ̄/丢ccos兰+击stn知一刚.
Thepr髑enceof^,violat髑21-inva盯iance.
wbnote丘om(2.14)that
theelement
i地一i、/言sin叩
(2.16)
isof
p盯ticul缸importancefor
testing
Dinvari8J1ce.
F\】rthermore.there
are
atleastthree
cases
tobe
con一
8idered:
i)Icl《16l;then正violation
isI玎_ucb
jmauer
than
thepr鹤entupper1imit,reg盯dl朗sof卵.
ii)IcI—D叫】butsin77I《1;then口violation
isagainVerysmaUonaccoun七oftheprefactorsin叩in
(2.14).
iii)IcI—D[|6|】andIsin叩l—D【1】;thenBViolation
can
beclosetothepreseIltupperlimit.ThediagonaUzationofthe3×3
matri)((2.9)issim_
pli乱dinc嬲e
i).In
that
c嬲e,lcI
ismuchlessthan
|6I
and
I口I.Them嬲seigenstatesandthecorrection
totheneutrino
m印pingmatri)(canbereadilyob
tailledbyusingthestandard丘rstorderperturbationfbrmuIa.
AnothersiⅡlplec船e
is…《l,whjch
includesthe
aboye
c嬲eii).Decompose(2.7)into
a
sm
腹=(耽)o+厶
(2.17)
witb
c叫㈣
亿㈣
written踮
M=%+c△
(2.20)
眠=口尥+6坛+c(尥)o+mo.
(2.21)
can
bediagonahzedbythe
s锄e
lu血t龇ymatri)(
the
an舀e口givenby(1.29)一(1.31),in
aand
p
are
given
by(1.20).For…《1,厶small;theneutrinom印pingmatri)(Vcanthenbe
byllsing(2.20)and
treatingc△鹪asmall
117匆妇^tD饶口n七W,.Q.Z危口o,or^e豇d也f口ss妇一
ond,Dr{码加rm{唧啪巧冼eptD礼ee而哪p印e鸺
Dt‘r∞唧把托D佗盯琥妇ma佗t‘sc却£
Correspondingly,(2.4)ca肛bewith
朋0
(1.18),with
w11ichi8derived
Derturba七ion.
t口nce
D,R咖.忍劫妒er∞cept,Dr泓r毪厂e他竹ces.
高能物理与核物瑷(HEP&NP)
第30卷
R,e&re鞋ces
Eidelmanset越(ParticleDataGroup).Phys.Lett.,2004,
B592:l
4
Xi珏gZ
Z.p酾.王詹坻。,2002,B533:8鼋薹王e
Se88ion
XG,ZeeA。
phys.Lett.,2003,B560:87
1
LeeTD.Chinese至cal
P
Phy8ic8,2006,15:1125(AmericanPhy8-
on
Socie坶Mee乇i醒,Fir8t
22,2006)
50Year8Sincethe
2王壬蝌i80n
3
F,S∞ttWG.phy8。毛ett.,2∞2,B535:l∞
D淑Ⅺverv《P解i专yKo黼。璐erv8圭io歉泌t沁W如瓤l珏te穗昏
tionl,April
W^01fensteinL.Phys.R启v.,1978,D18:958;Ha盯isonpF,PerkinsDH,ScottWG.Phys.Lett.,2002,B530:167;
中微子质量矩阵和中微子转换矩阵间的一种可能的关系
R.niedber91李政道112
l《Phy8ic8
D印a砖檄e斌,Gol聃坟氇UniVe秘ity,NewY&k,NY
2(中国高等科学技术中心jE京100080)
l∞27,u。S。A,)
攘要我镧探讨了泼v。,7#,掣。受基的,吴有一秘麓避对穗性鼗孛微予质量矩阵掰.首先在没有?(砖闺)破坏的前提下,假定该质量矩阵具有一个筒单的三参数形武.这一矩阵确定了3种中微子的质落m,,m。,ma以及使M对角化的转换矩阵U.因为无T破坏的U给出3个可测量参数s。。,s。。,8,。,我们的形式用3个参数表示6个鼍测量的物理量,荬结果与实验数据替合褥很好。更精确翡测量将对模型给窭严格的检验,并确定这3个参数的值.本文还推广讨论了包含T破坏的情况.关键词中徽子质案算符
串擞予转换短阵T(时阍)破螺
2006一06一07牧稿
中微子质量矩阵和中微子转换矩阵间的一种可能的关系
作者:作者单位:
R.Friedberg, 李政道, R.Friedberg, T.D. Lee1
R.Friedberg,R.Friedberg(Physics Department, Columbia University, New York, NY10027, U.S.A.), 李政道,T.D. Lee1(Physics Department, Columbia University, NewYork, NY 10027, U.S.A.;中国高等科学技术中心,北京,100080)高能物理与核物理
HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS2006,30(7)
刊名:英文刊名:年,卷(期):
参考文献(7条)
1.Eidelman S 查看详情 2004
2.Lee T D 查看详情[期刊论文]-Chinese Physics 20063.He X G;Zee A 查看详情 20034.Xing Z Z 查看详情 2002
5.Harrison P F;Perkins D H;Scott W G 查看详情 20026.Wolfenstein L 查看详情 1978
7.Harrison P F;Scott W G 查看详情 2002
本文链接:http://d.g.wanfangdata.com.cn/Periodical_gnwlyhwl200607001.aspx
第30卷第7期2006年7月
HIGH
高能物理与核物理
ENERGY
PHYSICS
AND
NUCLEAR
PHYSICS
v01.30,No.7
Jul.,2006
APossibleR凳la-tionbetweentheNeutrino
andthe
MassMa-trix
NeutrinoMappingMatrix
R.niedber91
T.D.Leel,2
1(P11ysicsDepartment,columbiauniversity,NewYbrk,NY10027,u.S.A.)
2(chinacenterofAd、,ancedsdence蚰dTechnolo酊(CCAsT/wbrldLab.),Beijing100080,china)
AbstractWb
explorethecoIlse(1uencesof嬲suming
a
8iⅡlple
a
3_par锄eter
new
form,arstwithoutT・Vi01ation,
the
fortheneutrinoma鹃matri)【埘’intheb嬲isve,v¨,vfwiththreeneutrinom嬲8esm1,m2,m3,嬲weU嬲the,乙violation,yieldsthreeme鹪urabktermsofthree
symInetry-Thismatri)(determines
m印ping
matri】(Uthat
diagonaLliz鹤M.Since
U,without
par锄eters
in
812,823,s13,01lr
formexpressessi)【me踮urablequaIltitiesin
par眦eters,丽thr鹤ults
is
agreementwiththeexperimentaldata.Morepreciseme嬲urement8
c龇l西ve8tringenttests
ofthemodel鹅weU踮determiningthevaluesofitsthree
alsodi8cussed.
p缸锄eters.
Anexten8ion
in∞rporatingnvi01ation
Key、Ⅳords
neutrino
m嬲s
operator,neutrillo
m印ping
matri】(,21-Violation
l
Neutrinomapping
j—violation
nlatrixwithouttionmatri)(uthattheneutrino
case
brings—∥丘om(1.2)to(1.1)is
for
m印pingmatrix6=o.(The
general
when
6≠o
willbediscussedinthe
ne)(七section.)
Inthispaper
1v矿e
wishtoexplorefhrtherthe
con・
Throughoutthepaper,wedenote
nectionbetweentheneu-trinomassoperator彳彩whichcontainsthreeneutrinomassesm1,m2,m3andtheneutrino
耽=妒(耽)
and_t=妒+(阮)讯
Dirac
field
(1.3)
mappingmatri)(U,characterized1bythe
with妒(耽)a冬component
deIloting让Let=l,2,3
or
operator,t
standardfburparaⅡleter8口12,口23,p13ande坩.Fbr
herIllitiane,“,下.
conjugation
andtheindeX
cl盯ity,we6rsteXaminethespecial
case
thattheT—
SincetheIleutrinomappingmatri)【Uisindepen_dentoftheo、陀raUmass—shiRtermmo,inorderfor
our
violatingphaseparameter6=0.Intermsofthemass
eigeIl8tates王,1,耽and地theneutrinoma8s
is
operator
hypothesis
to
besuccessful,theremu8tbesome
.,∥=m1可1正,1+m2可2屹+m3-3的.(1.1)
8pecialfbaturesaboutthe6rsttwotermsin(1.2):
(1.4)
Ourassumptionisthatthe8ame‘,∥,whenexpressed
intermsof%,∥“and收,ha8new8y工【u11etryproperty:
a
simpleformwith
a
Q(珥一瓦)(蚱一‰)+p(现一-e)(咋一%)
wb
tion
note
that(1.4)is
invariantunderthetransforma-
Q(玩一可“)(蜥一z,¨)+卢(可恤一-e)(L,斗一%)+mo(_e%+巩‰+玩蜘)
alsowith
(1.2)
Q,卢andmo.These
by
the
v。_v。+名,
V¨_÷Vp+z
and
VT_VT+z(1.5)
constant
thee
real
par锄eters
are
threenewparameters
to
bedeterminedwith彳aspace—tiIneindependent
element
masseigen、,alueSm1,m2andm3.
Thetransforma—
oftheGrassmannalgebra,anticomInutingwiththe
Received7June2006
591—598
592
高能物理与核物理(HEP&NP)
第30卷
neutrino6eldoperators%.
Thus,theusualequal—Thes01epurposeofusingthisless8ymmetriceXpres—sionof—∥istohaⅣethere8ultingneutrino
timea11ticommutationrela七jonsbetw-eentheneutrino
flelds
地
andtheir
are
m印piI埒
zero—mass矗ee
particle
actior卜
matrixUinthestandardformgivenbythepaurticle
data
i】1tegral
in、,alria舶t
under(1.5).This
mo—dependentterm
symmetryisgroup‘1。.wbwrite(1.10)as
violatedbythelastweU
as
in(1.2),as
byPvi01ation,as
ca8e
weshalldiscusslater.The
∥=(_e秒p玩)(mo+丽)
where
卜、
\‰/,
interesting
that
z
mightbe8pace—timedependent
I‰I,
(1.11)
wiUnotbediscussedintllispaper.
Expression(1.4)can
begeneralizedto
an
equiva-
c:
1entformwiththreerealparameterso,6and
o(-下—巩)(‰一‰)+6(_p—_e)(1,斗一蚝)+c(_e—%)(%一班).
(1.6)
Thecorre8pondingneutrinomassoperatoris
砑=㈢羹
Theneutrinomappingmatri)(Uisdefined
(1.12)
by
o(玩一可斗)(蜥一工,恤)+6(可¨一_e)(Ⅳp一%)+
U+(mo+砑)u=
(1.7)
Introduce
a
c(_e一-下)(%一‰)+m。∑玩耽.
Itisclear
that(1.6)is
alsoinVa工iantunderthetrans-
can
3×1c011lIDI】
formation(1.5).The
co瑚taIlts
s锄ein、御iance
alsobe
eX_
pressedintermsofthetransfbrmationbet‘weenthe
o,6andc,with
R
≯。三V亏
0necan
啡n∽均㈡.
∽均
o_n+A,6_6+A,
and
c_c+A
(1.8)
readilyveri矽that
AsweshaUpro、陀,theformoftheneutrinomapping
郦2=o;
i.e.,≯2
is
an
(1.15)
ma七r仅UremaillsunchangedunderthetraIlsforma-
eigellvectorof』订witheigenValueO.Let
tion(1.8).
Sincetherelati、他phasesbetweenV。,V“andV下
are
西1and咖3
tors
betheothertwDrealnormalizedeigenVec—
of丽.Since
审t中j=6砑,
unphysic以,wemay
tra璐form
(1.16)
Ve_一Ve,
so
V仙_一V恤
writtenin
a
and
V下_V下,(1.9)
with~denotingthetranspose,theneutrinomapping
that(1.7)is
lesssymmetricform,with
matri)cUis
∥=口(玩+可“)(收+工,弘)+6(可“一-e)(∥斗一%)+
u=(≯-咖。咖s),
which,onaccount
(1.17)
c(_e+玩)(%+坎)+m。∑玩耽.
9
(1.10)
of(1.14)and(1.16),isgivenby
c08互
U=
∞
p一2
出
锯一锯曲罢
锯店st《+锯c。s罢
V百
|1|1.ej|1
8
(1.18)
镛居
傩
p一2
镀居
洫
一V石8m互+V互c08互
in
the印proximation
of西1,毋3
thattheT—Vi01atingparameter
denotingtheazimuthalori—
isthesameexpression丘rstobtainedbyHarrisonand
6=0,withtheenta越on
angle目/2
Scott【2】.
Ne)(tweretIlrntothe
aroundthef泌ed
eigenVector≯2.
aboveU
tra瑚formation(1.8),under
as
Exceptforminornotationaldi髓rences,thewhich五孑of(1.12)tra璐forms
第7期
R.№iedberg等:中微子质量矩阵和中微予转换矩阵间的一种可戆的关系
593
砑_砑+A(÷;三
陵n∞
一J2
l|也:o,j》
2_ll
2夕
垃屺neutr纽omappingmatri)cUreInainsgiVenby
(王。18)。Setting
A=一c.
(1.19)
weh8ve
n_口=8~C.6_筘=易一c,(1.20)
e_0。
Thecorrespondingneutrinomas8
operator么7of(1.7)
beco磁es(1。2)。W量瞧t&ad鑫itio珏蘸p魏ase∞溉哦量。毪
(1.9),∥of(1.10)reduces
to
∥=a陬+秽≯)(玫+‰)+
p(-p一玩)(‰一蚝)+m。∑玩魄,
(1.21)
t
w毯chhasonlythreep甜a勰eters&,∥越通mo.Of
collrse,themass
operator(1.21)is
a
speci啦easeof
thema88
operator(1.10),whichhas4parameter8
a,
坟ea丑dmo。毪isofi娥erest攮at镪ey8haresthes溯∞
neut西no
m印pingmatri)[F
given
by(1.18)’provid磋
that8一c=aand
6一c=卢.、,et,the
neutrinoma8ses
ml,m2赫d嫩3主n
the专wo
cases
ea薹l
be
d疆套re娥,
as
can
be
readily
8een
by
ex毡幽ning
thetrace
of膨
given
by(1。12).Therefore,the“l
phy8ical
contents
of(1.2王)8珏d(1。10)8re珏ott&sa班e.圜1isis瓣
pecial垮important
whenwe黧pneralize娃地modeltoinclu(1e
nviolation
inthenextsection.
融t鹣re班越瓤瓣gp嚣toft辍8sect呈。戤黼s地珏eX_
plore矗lrtherthephysicalcon8equencesofourmodel,
using
only
themorerestrictive
form(1.21)with
tllree
砖采p戤濑et日s&,移褪dm。。
ItisiIlstructive
to静derive(1.18)in
a
moreel伊
mentary
Wa弘w}ite(1.21)a8
∥=(玩瓦瓦)(a耽+p%+mo)
眠=(|;;)∽矧
晦=㈠》∞㈣
matrb【‘3’41骗by
setting口=o
in(1.18);ile.,
醌一聪斟
(1。25)
一一2(|;;)'(i.㈣A%=哪砒%玩=壶(一羹圣一}丐).c・.2力
玩一(:三喜三t篓]
el。2国
sin9一卜卅。埘。r向,(1.29)c。sp一[(2a—p)2+3p2]一麦(2a一卢),
(1.3。)
tanp一盏。
(1.31)
工,1
andz,2depending
a>0
forfor
on
thesignofQ,with
(蒌)=u(囊),
m3>m1o。m2,m3<m1
Or
(1.43)
c・.32,
Q<0
Ne91ecting
m2.
D(p/a)corrections,ⅥrehaⅣe丘om(1.34),
m1positive,
(1.39)and
一Q伊0一钟+南r+螂粥,ana
mo>昙蚓
(1.44)
6m2三m;一m;=(m。一兰lpl)3吲.
(1.45)
m2=mo
(1.34)
and
一州+(口一针+南]丢+mo∞.ss,鼢
ThematrkU
depends
onlyonone
parameterp,
whichinturnisdeterⅡlined
by
theratio
p/a.
Inthe
siaIldard
pararnetricrepresentation,the
matri)(element巩3
iss13=sin口13whene16=1,with
theexperimentalbomnfl】
s;。=。.9:::i×l。一2.(-.36)
~(1_18)胁ts一店幽扣硒・炯stkn
stn2兰=独《・.
(1.37)
Thus,byusing(1.29)一(1.31)we
see
that
㈥2《1,
(1.38)
\口/
wllichtogetherwith(1.33)一(1.35)yield
theconclu-
sionthatm1
andm2韶everyclose,forming
a
dou-
blet,andm3iSthesinglet.Theirmassdi能rences
are
given
by印proXimate
expressions:
m。一m,=一兰p十。(譬),u.
m2一m1一J
I=J’
y
l
2一石p十u
(1.39)
‘
\u,
m。一m。=2a+壶卢+。(譬)
c-.4。,
and
m。一去cm。+m。,=2Q一去卢+。(等).c・.4・,
nom
m1<m2,weconclude
卢<o.
(1.42)
FIlrthermore。地isheaⅣierorlighterthanthedoublet
Thus
6m2>罢胪(1.46)
△m2三m;一丢(m;+m;)
(1.47)
We丘nd,neglecting
U(∥),
△m2=4Q(Q+m。)+(去m。一2a)俐.(・.48)
The
e印erimental
valuesfor6m2
and△m2牡e西ven
by[1】
6m2=7.92(1士o.09)×lo一5eV2
(1.49)
M观4(1二㈦舢。3驴n㈣罱-s.3(・拦)舢一.∽5・,
Next,、耽analyze
flr8tthe
case
thatthesinglet均
isof
a
lowermassthanthedoubletma8ses;i.e.,a<0.
Inthatcause,sincem3>o,(1.26)yields
m。=m。一2
I口|一去lpI+。(等)>。;
therefbre
mo>2川.
(1.52)
NedectiI培0∞/a)coHectio璐in(1.45)and(1.48),
wehave
l器蚓引南,
I丽l
2五吲诵’∽㈣¨句驯
whichgives
淄>l黑I>甜
∽昀
第7期R.niedberg等:中微子质量矩阵和中微子转换矩阵间的一种可能的关系
Comb聪ng
thi8
expression诚强(王.5王),we蠡nd
4.4×lo一2>I笔l>2.2×,o一2.
8I
(1.55)
Ontheother
haIld,f)叼m(1.29)and
to
thesaⅡlea◇
curacy,wehave
sl舻移=器,
∞器6)
Whichonaccount
of(1.36)gives
等=(o.72:㈦×加~.
∽57,
while(1。55)isba糟ly
consiste娃毫w涟(圭.57Lt&eo静
patibiHtydepends
on
that,within
one
8tandardofde—
viation’(1.57)i8
also
co瑚istent
with
p2/a2=o(i息,
si3=o).Tks,this‘‘eoⅡlpa乇ibili桫’betWee珏(1。51)and(1.57)isde丘Ilitely
nota
comfortableone.Amore
accura土e
determin8.tion
of矾3
mayWellruleoutthe
ease
that强ea珏belig醵er擒an侥e纛oublet致,觇。
Within
our
Inodel,wealsomade
a
8iInilar
analy8is
fbr诅le瑚嚼etha主戗le8iI塔let刍,3isheaⅣier七hanthe
dollblet魄,地。狐thatease,a>0and
tk
situatlon
isquitedi往bren七;thereis
no
inco切-patibilitybetween
(1.51)aIld(1.57).
Remark.w.e箍ote磕atif黟=o溉(1.21)t№娃
therei8
onk矿oneterm
80瓦+歹强)(妖◆椎)(1。5国
耻㈥卜㈣
…=㈠)…鼬,
㈠),
∞叫
一0+。
(1.62)
屹= ̄/丢(蚝十‰一h)
(1。63)
磁=雕卜崩,
whichis
a
rotation。f则e=sin以、/言.Forp/a
2
Neutrinomappingma毫rixwith至乙
violationW.e
generalizetheneutrinomas8
operator么‘by
iIl8erting
ph88e
f诎orse蜘into(1.6),replacingitby
8限一取)(洗一‰)+舂(-≯一玩)(强一毪)+
c(e一”玩一玩)(e‘”心一收)
(2.1)
wbere穆,6,cand雄a£e
a融z.e采。、Ⅳhen零=o,(2。1)
becomes(1.6),and
is
inv甜iant
underthesymmetry
(1.5).nrthermore,ife1”≠士1,T—invariance
isalso
viol皴ed。As嫩(1,6),i珏order
to
eo歉勤rm专。毛heS专羽}
dard
fo凇oftheneutrino
mappingmatri)cUgiVenby
thep盯ticled舭agroup【^J,we
makethepha8e
tralls—
高能物理与核物瑷(HEP&NP)
第30卷
c(e一54-e◆弱)(e11蚝十块)+m。∑玩玖,(2.2)
慨=∞》∞6,
一弛,掰㈦,
G||
0
Ol
O1
协3,
腹=∽≯法7,
“…‘:—一T一▲
知趣(王。25)~(1.27),黼鑫躐per妇mtk玩tr基嚣sI
25
一
O一
l—
l—
一—
厂扣4c酬狮-w忆2e咱)躯-桫”)、鹾三玩舰醌=l躲t舻喇”)扣酬舟圭妒)1.
k三锯(t憎)
Nex七,靴apply
the仉trallsform舭ion
given
泣8)
q’28爻则鼍M%阢:哳矗
矾砺M%矾一凰+e矗
by
滗9,舻m+(8一辨+番卜。。
(2.9)
\
二/L
℃二珏一移,。J
by‘磊■———————————————一
In(2・9)
锯(小一)
主
夕
where风is
diagonal,given
%豫∞
竺三竺
∽埘黜一二兰:协啪t。竺
塘轳“∥
1
滔瑚
一Ⅲ一(8一辨◆番]壹诋,
坠12
w妇e
rL
。
 ̄/主c。s罢+ ̄/丢stn罢
。
一 ̄/三
。
、
扭14,
磊7蚓歉霉l一锯eos兰一店s;《
锯
一店渊兰手锯惑《l
/
艉cos兰一锯s;《
第7期
R.n女edberg等:中微子质量矩阵和中微子转换矩阵间的一种可能的关系
眦d
the
ma土ri)【elementsof九儿are百Venby磕=言[2+三cosp+ct+cosp,c。s叩]+ ̄/丢(三+cos叩)咖口,
磕。言(1一cos,7),
^曼=三(2+c。st7)一丢(1+2c。s叼)c。8口一
三 ̄/三(1+2c唧)si以
(2.15)
境=磕=积(cos罢一佤n加一砒
^磊=九蠹2去(锯c。sp—sin口)(1+2c。8,7)
and
蜘蜘一 ̄/丢ccos兰+击stn知一刚.
Thepr髑enceof^,violat髑21-inva盯iance.
wbnote丘om(2.14)that
theelement
i地一i、/言sin叩
(2.16)
isof
p盯ticul缸importancefor
testing
Dinvari8J1ce.
F\】rthermore.there
are
atleastthree
cases
tobe
con一
8idered:
i)Icl《16l;then正violation
isI玎_ucb
jmauer
than
thepr鹤entupper1imit,reg盯dl朗sof卵.
ii)IcI—D叫】butsin77I《1;then口violation
isagainVerysmaUonaccoun七oftheprefactorsin叩in
(2.14).
iii)IcI—D[|6|】andIsin叩l—D【1】;thenBViolation
can
beclosetothepreseIltupperlimit.ThediagonaUzationofthe3×3
matri)((2.9)issim_
pli乱dinc嬲e
i).In
that
c嬲e,lcI
ismuchlessthan
|6I
and
I口I.Them嬲seigenstatesandthecorrection
totheneutrino
m印pingmatri)(canbereadilyob
tailledbyusingthestandard丘rstorderperturbationfbrmuIa.
AnothersiⅡlplec船e
is…《l,whjch
includesthe
aboye
c嬲eii).Decompose(2.7)into
a
sm
腹=(耽)o+厶
(2.17)
witb
c叫㈣
亿㈣
written踮
M=%+c△
(2.20)
眠=口尥+6坛+c(尥)o+mo.
(2.21)
can
bediagonahzedbythe
s锄e
lu血t龇ymatri)(
the
an舀e口givenby(1.29)一(1.31),in
aand
p
are
given
by(1.20).For…《1,厶small;theneutrinom印pingmatri)(Vcanthenbe
byllsing(2.20)and
treatingc△鹪asmall
117匆妇^tD饶口n七W,.Q.Z危口o,or^e豇d也f口ss妇一
ond,Dr{码加rm{唧啪巧冼eptD礼ee而哪p印e鸺
Dt‘r∞唧把托D佗盯琥妇ma佗t‘sc却£
Correspondingly,(2.4)ca肛bewith
朋0
(1.18),with
w11ichi8derived
Derturba七ion.
t口nce
D,R咖.忍劫妒er∞cept,Dr泓r毪厂e他竹ces.
高能物理与核物瑷(HEP&NP)
第30卷
R,e&re鞋ces
Eidelmanset越(ParticleDataGroup).Phys.Lett.,2004,
B592:l
4
Xi珏gZ
Z.p酾.王詹坻。,2002,B533:8鼋薹王e
Se88ion
XG,ZeeA。
phys.Lett.,2003,B560:87
1
LeeTD.Chinese至cal
P
Phy8ic8,2006,15:1125(AmericanPhy8-
on
Socie坶Mee乇i醒,Fir8t
22,2006)
50Year8Sincethe
2王壬蝌i80n
3
F,S∞ttWG.phy8。毛ett.,2∞2,B535:l∞
D淑Ⅺverv《P解i专yKo黼。璐erv8圭io歉泌t沁W如瓤l珏te穗昏
tionl,April
W^01fensteinL.Phys.R启v.,1978,D18:958;Ha盯isonpF,PerkinsDH,ScottWG.Phys.Lett.,2002,B530:167;
中微子质量矩阵和中微子转换矩阵间的一种可能的关系
R.niedber91李政道112
l《Phy8ic8
D印a砖檄e斌,Gol聃坟氇UniVe秘ity,NewY&k,NY
2(中国高等科学技术中心jE京100080)
l∞27,u。S。A,)
攘要我镧探讨了泼v。,7#,掣。受基的,吴有一秘麓避对穗性鼗孛微予质量矩阵掰.首先在没有?(砖闺)破坏的前提下,假定该质量矩阵具有一个筒单的三参数形武.这一矩阵确定了3种中微子的质落m,,m。,ma以及使M对角化的转换矩阵U.因为无T破坏的U给出3个可测量参数s。。,s。。,8,。,我们的形式用3个参数表示6个鼍测量的物理量,荬结果与实验数据替合褥很好。更精确翡测量将对模型给窭严格的检验,并确定这3个参数的值.本文还推广讨论了包含T破坏的情况.关键词中徽子质案算符
串擞予转换短阵T(时阍)破螺
2006一06一07牧稿
中微子质量矩阵和中微子转换矩阵间的一种可能的关系
作者:作者单位:
R.Friedberg, 李政道, R.Friedberg, T.D. Lee1
R.Friedberg,R.Friedberg(Physics Department, Columbia University, New York, NY10027, U.S.A.), 李政道,T.D. Lee1(Physics Department, Columbia University, NewYork, NY 10027, U.S.A.;中国高等科学技术中心,北京,100080)高能物理与核物理
HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS2006,30(7)
刊名:英文刊名:年,卷(期):
参考文献(7条)
1.Eidelman S 查看详情 2004
2.Lee T D 查看详情[期刊论文]-Chinese Physics 20063.He X G;Zee A 查看详情 20034.Xing Z Z 查看详情 2002
5.Harrison P F;Perkins D H;Scott W G 查看详情 20026.Wolfenstein L 查看详情 1978
7.Harrison P F;Scott W G 查看详情 2002
本文链接:http://d.g.wanfangdata.com.cn/Periodical_gnwlyhwl200607001.aspx