抽屉原理的应用教学教案设计

抽屉原理的应用 教学教案设计(人教新课标六年级下册)

教学目标

1. 通过观察、猜测、实验、推理等活动,寻找隐藏在实际问题背后的“抽屉问题”的一般模型。体会如何对一些简单的实际问题“模型化”,用“抽屉原理”加以解决。

2.在经历将具体问题“数学化”的过程中,发展数学思维能力和解决问题的能力,感受数学的魅力。同时积累数学活动的经验与方法,在灵活应用中,进一步理解“抽屉原理”。

教学准备

一个盒子、4个红球和4个蓝球为一份,

教学过程

一、创设情境,猜想验证

我们曾经借助摸球游戏探究出许多数学的知识,今天我们还是借助这个游戏,进行抽屉原理的学习。

师:老师的盒子里有同样大小的红球和蓝球各4个,我请同学任意摸两个球。会出现几种情况?

师:如果这位同学再摸一个,可能是什么颜色的?

(在这我想渗透球的颜色一共有两种,如果只取两个球,会出现三种情况:两个红球、一个红球一个蓝球、两个蓝球。如果再取一个球,不管是红球还是蓝球,都能保证三个球中一定有两个同色的。想把难点分散一下)

师:如果老师想这位同学摸出的球,一定有2个同色的,最少要摸出几个球?

二、观察比较,分析推理

1. 想一想,摸一摸。

师:请同学们小组为单位,独立思考后,先在小组内交流自己的想法,再动手操作试一试,验证各自的猜想。

2.说一说,在比较中初步感知。

请一个小组派代表概括地汇报探究的过程与结果。其他小组有不同想法可以补充汇报。汇报时可以借助演示来帮助说明。

这里可能是产生碰撞和质疑的主要阵地,这里老师要做好充分的准备。把空间和

时间给学生,让学生在碰撞质疑中找到解决问题的方法和思路。

师:为什么至少摸出3个球就一定能保证摸出的球中有两个是同色的?

师:为什么有些同学会认为在4个蓝球和4个红球中,要想一定摸出2个同色的球,最少要摸出5个来?请大家猜一猜,他们是怎样想的?

师:你能和前面学习的抽屉原理联系起来吗?

(准备好着三个问题备用,如果学生不能出现和抽屉原理联系起来思考的情况,用这几个问题引发学生思考)

师:这种想法实际上是把今天学习的例题3和我们前面学过的“抽屉问题”联系起来了,把4看成了“抽屉数”,也就是把每种颜色球的个数当成了“抽屉数”。这种想法有没有一点道理?例题3和“抽屉问题”有联系吗?

请学生先独立思考一会,再在小组内讨论,最后全班交流。

师:既然例题3和“抽屉问题”有联系,那么,解决例题3的问题,有没有其它的方法?能否用前面学过的“抽屉问题”的规律来帮忙解决?

请学生先和同桌讨论,再全班交流。

应用前面所学的“抽屉原理”进行反向推理。根据例1中的结论“只要分的物体个数比抽屉数多,就能保证一定有一个抽屉至少有2个球”,就能推断“要保证有一个抽屉至少有2个球,分的物体个数至少要比抽屉数多1”。现在,“抽屉数”就是“颜色数”,结论就变成了:“要保证摸出两个同色的球,摸出的球的数量至少要比颜色种数多1。(这里是让学生明确的重点和精华有学生能想到就更好了) 师:请同学们反过来思考一下,至少摸出5个球,就一定能保证摸出的球中有几个是同色的?

四、对比练习,感悟新知

1.说一说。把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。至少取多少个球,可以保证取到两个颜色相同的球? (完成课本第70页“做一做”第2题。)

教师可以引导学生应用例题3的结论,直接解决“做一做”第2题的问题。

2.算一算。向东小学六年级共有370名学生,其中六(2)班有49名学生。请问下面两人说的对吗?为什么?

(完成课本第70页“做一做”第1题。)

“做一做”第1题是“抽屉原理”的典型例子。其中“370名学生中一定有两人的生日是同一天”与例1中的“抽屉原理”是一类,“49名学生中一定有5人的出生月份相同”则与例2的类型相同。教师要引导学生把“生日问题”转化成“抽屉问题”。因为一年中最多有366天,如果把这366天看作366个抽屉,把370个学生放进366个抽屉,人数大于抽屉数,因此总有一个抽屉里至少有两个人,即他们的生日是同一天。而一年中有12个月,如果把这12个月看作12个抽屉,把49个学生放进12个抽屉,49÷12=4„„1,因此,总有一个抽屉里至少有5(即4+1)个人,也就是他们的生日在同一个月。

五、总结评价

师:这节课你有哪些收获或感想?

抽屉原理的应用 教学教案设计(人教新课标六年级下册)

教学目标

1. 通过观察、猜测、实验、推理等活动,寻找隐藏在实际问题背后的“抽屉问题”的一般模型。体会如何对一些简单的实际问题“模型化”,用“抽屉原理”加以解决。

2.在经历将具体问题“数学化”的过程中,发展数学思维能力和解决问题的能力,感受数学的魅力。同时积累数学活动的经验与方法,在灵活应用中,进一步理解“抽屉原理”。

教学准备

一个盒子、4个红球和4个蓝球为一份,

教学过程

一、创设情境,猜想验证

我们曾经借助摸球游戏探究出许多数学的知识,今天我们还是借助这个游戏,进行抽屉原理的学习。

师:老师的盒子里有同样大小的红球和蓝球各4个,我请同学任意摸两个球。会出现几种情况?

师:如果这位同学再摸一个,可能是什么颜色的?

(在这我想渗透球的颜色一共有两种,如果只取两个球,会出现三种情况:两个红球、一个红球一个蓝球、两个蓝球。如果再取一个球,不管是红球还是蓝球,都能保证三个球中一定有两个同色的。想把难点分散一下)

师:如果老师想这位同学摸出的球,一定有2个同色的,最少要摸出几个球?

二、观察比较,分析推理

1. 想一想,摸一摸。

师:请同学们小组为单位,独立思考后,先在小组内交流自己的想法,再动手操作试一试,验证各自的猜想。

2.说一说,在比较中初步感知。

请一个小组派代表概括地汇报探究的过程与结果。其他小组有不同想法可以补充汇报。汇报时可以借助演示来帮助说明。

这里可能是产生碰撞和质疑的主要阵地,这里老师要做好充分的准备。把空间和

时间给学生,让学生在碰撞质疑中找到解决问题的方法和思路。

师:为什么至少摸出3个球就一定能保证摸出的球中有两个是同色的?

师:为什么有些同学会认为在4个蓝球和4个红球中,要想一定摸出2个同色的球,最少要摸出5个来?请大家猜一猜,他们是怎样想的?

师:你能和前面学习的抽屉原理联系起来吗?

(准备好着三个问题备用,如果学生不能出现和抽屉原理联系起来思考的情况,用这几个问题引发学生思考)

师:这种想法实际上是把今天学习的例题3和我们前面学过的“抽屉问题”联系起来了,把4看成了“抽屉数”,也就是把每种颜色球的个数当成了“抽屉数”。这种想法有没有一点道理?例题3和“抽屉问题”有联系吗?

请学生先独立思考一会,再在小组内讨论,最后全班交流。

师:既然例题3和“抽屉问题”有联系,那么,解决例题3的问题,有没有其它的方法?能否用前面学过的“抽屉问题”的规律来帮忙解决?

请学生先和同桌讨论,再全班交流。

应用前面所学的“抽屉原理”进行反向推理。根据例1中的结论“只要分的物体个数比抽屉数多,就能保证一定有一个抽屉至少有2个球”,就能推断“要保证有一个抽屉至少有2个球,分的物体个数至少要比抽屉数多1”。现在,“抽屉数”就是“颜色数”,结论就变成了:“要保证摸出两个同色的球,摸出的球的数量至少要比颜色种数多1。(这里是让学生明确的重点和精华有学生能想到就更好了) 师:请同学们反过来思考一下,至少摸出5个球,就一定能保证摸出的球中有几个是同色的?

四、对比练习,感悟新知

1.说一说。把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。至少取多少个球,可以保证取到两个颜色相同的球? (完成课本第70页“做一做”第2题。)

教师可以引导学生应用例题3的结论,直接解决“做一做”第2题的问题。

2.算一算。向东小学六年级共有370名学生,其中六(2)班有49名学生。请问下面两人说的对吗?为什么?

(完成课本第70页“做一做”第1题。)

“做一做”第1题是“抽屉原理”的典型例子。其中“370名学生中一定有两人的生日是同一天”与例1中的“抽屉原理”是一类,“49名学生中一定有5人的出生月份相同”则与例2的类型相同。教师要引导学生把“生日问题”转化成“抽屉问题”。因为一年中最多有366天,如果把这366天看作366个抽屉,把370个学生放进366个抽屉,人数大于抽屉数,因此总有一个抽屉里至少有两个人,即他们的生日是同一天。而一年中有12个月,如果把这12个月看作12个抽屉,把49个学生放进12个抽屉,49÷12=4„„1,因此,总有一个抽屉里至少有5(即4+1)个人,也就是他们的生日在同一个月。

五、总结评价

师:这节课你有哪些收获或感想?


相关文章

  • 六年级数学优质课教案及反思
  • 优质课教学设计及反思 抽屉原理 教学目标 1.经历"抽屉原理"的探究过程,初步了解"抽屉原理",会用"抽屉原理"解决简单的实际问题. 2.通过操作发展学生的类推能力,形成比较抽象的 ...查看


  • 抽屉原理教案
  • 抽 屉 原 理 一.教学内容: 专题--抽屉原理,课本68-72 二.教学目的和目标. 目的: 开拓同学们的视野,理解数学问题并不全都是由数量和数量关系组成,解决问题有时却不用算术和几何知识,而是用推理的知识来解答,从而提高同学们解决数学问 ...查看


  • 六年级下册教学反思
  • <圆柱的表面积>教学反思 本节课的教学采用操作和演示,讲解和尝试练习相结合的方法,使新课与练习有机地融为一体,做到讲与练,相结合. 1.把握重点,突破难点,合理利用教材 对于圆柱体侧面面积计算公式的推导,严格遵循主体性原则,让学 ...查看


  • 抽屉原理说课稿和教学设计
  • <抽屉原理>说课稿 张家湾中心小学 任广宏 一.说教材 本单元共有三个例题,例1.例2的内容,教材通过几个直观例子,借助实 际操作向学生介绍抽屉原理.例3则是在学生理解抽屉原理这一数学方法的基础上,会用这一原理解决简单的实际问题 ...查看


  • 抽屉原理教学设计 2
  • "抽屉原理"教学设计 教学目标] 1.经历"抽屉原理"的探究过程,初步了解"抽屉原理",会用"抽屉原理"解决简单的实际问题. 2.通过操作发展学生的类推能力,形 ...查看


  • [抽屉原理]教学设计 1
  • 数学广角---抽屉原理教学设计 榆社县华峪中心学校 韩丽芬 [教学内容] <义务教育课程标准实验教科书·数学>六年级下册第70.71页,例1.例2. [教学目标] 1.经历"抽屉原理"的探究过程,初步了解&q ...查看


  • 抽屉原理教学设计
  • <数学广角--鸽巢问题>教学设计 [教学内容]: 人教版六年级下册第68页. [教学目标]: 1. 初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题. 2. 经历抽屉原理的探究过程,通过动手操作.分析.推理等活动,发现.归纳 ...查看


  • 鸽巢问题教学设计
  • <鸽巢问题>教学设计 中卫九小 张永霞 一.教学内容 教材第68.69页例1和例2 二.教学目标 1.经历"鸽巢问题"的探究过程,初步了解"鸽巢问题",会用"鸽巢问题" ...查看


  • 抽屉原理教学反思(定稿)
  • <抽屉原理>教学反思 阆中师范附属实验小学校 何国锋 新一轮的课程改革,把原本在奥数教材中出现的一些开发智力.开阔视野的数学思维训练内容也加入到数学教材中,以"数学广角"单元的形式出现."抽屉原理& ...查看


热门内容