预应力钢束损失量计算

预应力损失

随时间的推移,钢束的张拉应力因各种原因变小,这样,作用到混凝土上的预应力也随之变小,其原因如下:

¾ 施加预应力时的瞬时损失(Istantaneous Loss)

1. 2. 3.

¾ 施加预应力以后随时间的推移引起的损失(Time Dependent Loss)

1. 2. 3.

后张法考虑上述六种预应力损失原因,但是先张法不考虑钢束和孔道之间的摩擦。预应力的瞬时损失和随时间的推移引起的损失之和达到初始拉力(Original Jacking Force)的20~30%之多。预应力构件的混凝土应力计算中,最重要的参数为瞬时损失后的拉力P i 和随时间推移引起的损失后的最后作用于钢束的拉力P e (Effective Prestress Force) 。P i 和P e 的关系可以用以下公式表示,

混凝土的徐变 混凝土的收缩

钢束的松弛(Relaxation) 锚固装置的滑动(Anchorange Slip) 钢束和孔道之间的摩擦

混凝土的弹性变形(Elastic Shortening)

P e =RP i

其中,R 为预应力的有效率(Effective Ratio),一般来说,先张法为R 后张法为R

=0.80,

=0.85

以下是对MIDAS/CIVIL考虑的预应力损失的方法的说明:

1. 锚固装置滑动引起的损失

钢束的张拉结束后,随锚固装置的不同,锚固端部会有一些滑动。因此钢束的张拉端部附近会发生张力损失,这称为锚固装置滑动引起的损失(或锚具变形和钢筋内缩) 。这种损失不仅在后张法中发生,也发生在先张法中。不管是什么方式,都可用张拉作业时的超张应力(Overstressing)来校正。

一般来讲,因钢束和孔道之间的存在一定的摩擦,锚固装置的滑动引起的张力的损失只限于锚固装置附近即张拉端部附近,远离张拉端处,几乎没有张力损失的现象。

受锚固装置的滑动影响的张拉构件的长度l set 是摩擦损失的函数,若摩擦损失越大,其长度越小;摩擦损失越小,其长度越长(图2.46所示)。把滑移量(∆l )、钢材截面积(A p ) 、弹性模量(E p ) 三个参数相乘,等于图2.46中的三角形的面积,这样下面等式成立。

(1) 三角形面积 (0.5∆Pl set ) = A p E p ∆l

假设张拉构件单位长度的摩擦损失为知,可以表示为

瞬时损失

p ,张拉力的损失∆p 由图2.46可

∆P =2pl set (2)

由式(1)和(2)可以推导出受锚固装置滑动影响的张拉构件的长度式,

(l set )的公

l set

(3)

张拉构件的张拉

锚固之前的张拉力

l set

离锚固端的距离 锚固之后的张拉力

图2.46 锚固装置的滑动对张拉力的影响

图2.46 中,钢束的张拉力表现为直线,但是实际上是曲线形态的分布,MIDAS/Civil 考虑它的曲线分布,来计算锚固装置滑动引起的预应力的损失。

2. 钢束和孔道的摩擦引起的损失

后张法中,因钢束和孔道之间的摩擦,离构件端部越远,钢材的张力越小。这样的损失有:因张拉构件的角度变化(Curvature Effect)引起的曲率摩擦(Curvature Friction)损失;因张拉构件长度影响(Length Effect)引起的摆动摩擦(Wo b b l e F r i c t i o n ) 损失,可以用单位角度的摩擦系数

µ(/radian )和单位长度的摩擦系数k 来表示。

在张拉端部以P 0张拉时,从张拉端至计算截面的管道长度l 处的总的角变化为α时该点处的张拉力P x 可以用公式(4)来表示。

P x =P 0e −(µα+kl)

(4)

管道成型方式钢丝束、钢绞线

光面钢筋

预埋铁皮管钢管抽芯成型橡胶管抽芯成型

表2.6

µ(/rad )

螺纹钢筋 k 及µ的值(中国公路钢筋混凝土及预应力混凝土桥涵设计规范)

张拉构件的种类PS 钢丝及钢束

管道种类 金属孔道

镀锌金属孔道 黄油或沥青的涂层 镀锌固定索套 镀锌金属孔道

0.0050 0.0066 0.0007

0.0007

0.30 0.25 0.30 0.25 0.15

PS 钢筋

表2.7 k 及µ的值(韩国公路桥及铁路桥设计规范)

3. 混凝土弹性变形引起的损失

给混凝土施加预应力,混凝土受压,其长度变小。这样,锚固于混凝土的钢束的长度也会变小,钢束的张拉应力也随之变小。这样的由弹性变形引起的损失在先张法和后张法都发生,只是其形态略有不同。

采用先张法施工的时候,在把张拉力 (Jacking Force)施加到构件的瞬间,钢束就会发生弹性收缩,随之长度变短,这样就产生了预应力损失。即张拉装置的张拉力所示)。

后张法是与先张法不同,它是没有专门的固定支架的,而是以已经凝固的混凝土为支撑,来张拉钢束。这样,混凝土构件收缩现象是与先张法相同的,只是因为钢束的张力的测量是混凝土构件弹性收缩后进行的,因此不会有混凝土弹性变形引起的张力损失。在MIDAS/Civil中与任意施工阶段生成单元后施加张拉力的后张法不同,先张法在施工阶段内是无法进行建模的,因此不考虑混凝土弹性变形引起的预应力损失效应。这样,输入的荷载是实际作用到构件上的张拉力

(P i )和实际作用到构件上的张拉力(P e )是不同的(如图 2.47

(P e ),而不是支架上的张拉力(P i )。

大部分后张法构件是按预先规定好的顺序,依次张拉、锚固张拉构件的,因此混凝土的弹性收缩也是依次发生的。这样,如图2.48 (b)所示,像Tendon 1那样最先锚固的钢束在锚固时是没有张力损失的,但是一旦锚固第二个钢束,因弹性收缩就会引起第一个钢束的张力损失。MIDAS/CIVIL不仅能够考虑每个阶段由弹性收缩(由钢束张拉引起)引起的预应力损失效应,也可以考虑由外部荷载引起的弹性收缩,以及由此弹性收缩引起的预应力损失效应。

图 2.47 由弹性收缩引起的张力损失(先张法构件)

PS 固定支架

释放张拉力之前

释放张拉力之后

图 2.48 由依次施加预应力引起的张拉力的损失(后张法构件)

首次 Tendon 张拉

2 次Tendon 张拉

时间引起的损失

因混凝土徐变和收缩及钢束的松弛(Relaxation),随时间的推移将发生预应力的损失。MIDAS/CIVIL 在每个施工阶段内考虑混凝土构件的时间依存性来,计算由徐变及收缩引起的变形。然后用计算得到的变形量来考虑钢束张拉应力的损失效应。在每个阶段可以通过图表来确认预应力损失的计算结果。

当钢束施加张拉应力,维持其一定的应变时,作用到钢束上的张拉应力随时间的推移逐渐地减小,这个现象称之为松弛(Relaxation)。由松弛引起的损失随作用到的初始应力的大小、经历的时间、制品的性质,其结果也是各不相同的。MIDA S/CIVIL采用Magura 1 公式,来考虑钢束的松弛。

f s f si

=1−

log t f si

f

−0.55 , 其中 si ≥0.55 (5)

C f y

f y

其中

f si 为初始应力; f s 为荷载作用后, t 小时后的应力; f y 为屈服应力(0.1% Off

set Yield Stress);C 为与钢材有关的常数,一般钢材取值为10,低松弛钢材取值45。

_____________________________________

Magura, D.D., Sozen, M.A., and Siess, C.P., “A Study of Stress Relaxation in Prestressing

Reinforcement,” PCI Journal, Vol. 9, No. 2, April, 1964.

1.

这个公式的前提条件是假设钢束的应力为常数。但是随时间的推移,由徐变、收缩、外部荷载的变化,钢束的张力是不连续变化的,因此,直接使用公式(5)有一些困难。MIDAS/CIVIL 在每个施工阶段,先计算由松弛之外的其它原因引起的钢束的应力变化,然后计算对应于各个施工阶段的假想的初始应力(Fictitious Initial Prestress),最后计算由松弛引起的损失。

预应力荷载

MIDAS/CIVIL 由PS 钢束施加到结构上的预应力荷载转化为等价荷载的方法如图2.49所示。

图 2.49 由钢束预应力引起的等价荷载

_____________________________________

假定为线性

Kan, Y.G ., “Nonlinear Geometric, Material and Time Dependent Analysis of Reinforced and Prestressed Concrete Frames”, Ph. D. Dissertation, Department of Civil Engineering, University of California, Berkeley, June 1977.

2)

图2.49是在一个梁单元上所配置的钢束的形状。为了说明的方便,用xz2维坐标表示,对于单元坐标系xy 平面也采用相同方法计算。由图可知,MIDAS/CIVIL 自动把一个梁单元4等分,计算等价荷载。这时,把4等分单元内的钢束形状假设为线性(如图2.49(b))。因摩擦力的存在,钢束两端施加的张力P i 和P j 大小是不相等的,因此只用i , j 两端的三个集中荷载(p x , m y , p z ) 是不能平衡其内力的。为了满足构件内自行平衡要求,要考虑均布荷载效应。

i p x =p i cos θi p z =p i sin θ (1)

i i

m i y =p x ⋅e z

p x j =p j cos θ

(2) p z j =p j sin θ m y j =p x j ⋅e z j

∑F x =p x i +w x l −p x j =0∑F z =−p z i +w z l +p z j =0

l 2

∑M =m −p l +w z +m y j +m y l =0

j y

i y

i z

(3)

i

p x j −p x

w x =

l i

p −p j

w z =

l

(4)

i

j

l m +m y

m y =p −w z −y

i

z

MIDAS/CIVIL 在各个施工阶段,对于因徐变、收缩、钢束的松弛等预应力的时间性损失效应和由外部荷载或温度变化引起钢束发生的预应力损失效应都进行考虑。施工阶段分析时,先计算由变形引起的钢束张力的变化,然后把张力的变化量用上述方法转换成等价荷载作用到单元上。

预应力损失

随时间的推移,钢束的张拉应力因各种原因变小,这样,作用到混凝土上的预应力也随之变小,其原因如下:

¾ 施加预应力时的瞬时损失(Istantaneous Loss)

1. 2. 3.

¾ 施加预应力以后随时间的推移引起的损失(Time Dependent Loss)

1. 2. 3.

后张法考虑上述六种预应力损失原因,但是先张法不考虑钢束和孔道之间的摩擦。预应力的瞬时损失和随时间的推移引起的损失之和达到初始拉力(Original Jacking Force)的20~30%之多。预应力构件的混凝土应力计算中,最重要的参数为瞬时损失后的拉力P i 和随时间推移引起的损失后的最后作用于钢束的拉力P e (Effective Prestress Force) 。P i 和P e 的关系可以用以下公式表示,

混凝土的徐变 混凝土的收缩

钢束的松弛(Relaxation) 锚固装置的滑动(Anchorange Slip) 钢束和孔道之间的摩擦

混凝土的弹性变形(Elastic Shortening)

P e =RP i

其中,R 为预应力的有效率(Effective Ratio),一般来说,先张法为R 后张法为R

=0.80,

=0.85

以下是对MIDAS/CIVIL考虑的预应力损失的方法的说明:

1. 锚固装置滑动引起的损失

钢束的张拉结束后,随锚固装置的不同,锚固端部会有一些滑动。因此钢束的张拉端部附近会发生张力损失,这称为锚固装置滑动引起的损失(或锚具变形和钢筋内缩) 。这种损失不仅在后张法中发生,也发生在先张法中。不管是什么方式,都可用张拉作业时的超张应力(Overstressing)来校正。

一般来讲,因钢束和孔道之间的存在一定的摩擦,锚固装置的滑动引起的张力的损失只限于锚固装置附近即张拉端部附近,远离张拉端处,几乎没有张力损失的现象。

受锚固装置的滑动影响的张拉构件的长度l set 是摩擦损失的函数,若摩擦损失越大,其长度越小;摩擦损失越小,其长度越长(图2.46所示)。把滑移量(∆l )、钢材截面积(A p ) 、弹性模量(E p ) 三个参数相乘,等于图2.46中的三角形的面积,这样下面等式成立。

(1) 三角形面积 (0.5∆Pl set ) = A p E p ∆l

假设张拉构件单位长度的摩擦损失为知,可以表示为

瞬时损失

p ,张拉力的损失∆p 由图2.46可

∆P =2pl set (2)

由式(1)和(2)可以推导出受锚固装置滑动影响的张拉构件的长度式,

(l set )的公

l set

(3)

张拉构件的张拉

锚固之前的张拉力

l set

离锚固端的距离 锚固之后的张拉力

图2.46 锚固装置的滑动对张拉力的影响

图2.46 中,钢束的张拉力表现为直线,但是实际上是曲线形态的分布,MIDAS/Civil 考虑它的曲线分布,来计算锚固装置滑动引起的预应力的损失。

2. 钢束和孔道的摩擦引起的损失

后张法中,因钢束和孔道之间的摩擦,离构件端部越远,钢材的张力越小。这样的损失有:因张拉构件的角度变化(Curvature Effect)引起的曲率摩擦(Curvature Friction)损失;因张拉构件长度影响(Length Effect)引起的摆动摩擦(Wo b b l e F r i c t i o n ) 损失,可以用单位角度的摩擦系数

µ(/radian )和单位长度的摩擦系数k 来表示。

在张拉端部以P 0张拉时,从张拉端至计算截面的管道长度l 处的总的角变化为α时该点处的张拉力P x 可以用公式(4)来表示。

P x =P 0e −(µα+kl)

(4)

管道成型方式钢丝束、钢绞线

光面钢筋

预埋铁皮管钢管抽芯成型橡胶管抽芯成型

表2.6

µ(/rad )

螺纹钢筋 k 及µ的值(中国公路钢筋混凝土及预应力混凝土桥涵设计规范)

张拉构件的种类PS 钢丝及钢束

管道种类 金属孔道

镀锌金属孔道 黄油或沥青的涂层 镀锌固定索套 镀锌金属孔道

0.0050 0.0066 0.0007

0.0007

0.30 0.25 0.30 0.25 0.15

PS 钢筋

表2.7 k 及µ的值(韩国公路桥及铁路桥设计规范)

3. 混凝土弹性变形引起的损失

给混凝土施加预应力,混凝土受压,其长度变小。这样,锚固于混凝土的钢束的长度也会变小,钢束的张拉应力也随之变小。这样的由弹性变形引起的损失在先张法和后张法都发生,只是其形态略有不同。

采用先张法施工的时候,在把张拉力 (Jacking Force)施加到构件的瞬间,钢束就会发生弹性收缩,随之长度变短,这样就产生了预应力损失。即张拉装置的张拉力所示)。

后张法是与先张法不同,它是没有专门的固定支架的,而是以已经凝固的混凝土为支撑,来张拉钢束。这样,混凝土构件收缩现象是与先张法相同的,只是因为钢束的张力的测量是混凝土构件弹性收缩后进行的,因此不会有混凝土弹性变形引起的张力损失。在MIDAS/Civil中与任意施工阶段生成单元后施加张拉力的后张法不同,先张法在施工阶段内是无法进行建模的,因此不考虑混凝土弹性变形引起的预应力损失效应。这样,输入的荷载是实际作用到构件上的张拉力

(P i )和实际作用到构件上的张拉力(P e )是不同的(如图 2.47

(P e ),而不是支架上的张拉力(P i )。

大部分后张法构件是按预先规定好的顺序,依次张拉、锚固张拉构件的,因此混凝土的弹性收缩也是依次发生的。这样,如图2.48 (b)所示,像Tendon 1那样最先锚固的钢束在锚固时是没有张力损失的,但是一旦锚固第二个钢束,因弹性收缩就会引起第一个钢束的张力损失。MIDAS/CIVIL不仅能够考虑每个阶段由弹性收缩(由钢束张拉引起)引起的预应力损失效应,也可以考虑由外部荷载引起的弹性收缩,以及由此弹性收缩引起的预应力损失效应。

图 2.47 由弹性收缩引起的张力损失(先张法构件)

PS 固定支架

释放张拉力之前

释放张拉力之后

图 2.48 由依次施加预应力引起的张拉力的损失(后张法构件)

首次 Tendon 张拉

2 次Tendon 张拉

时间引起的损失

因混凝土徐变和收缩及钢束的松弛(Relaxation),随时间的推移将发生预应力的损失。MIDAS/CIVIL 在每个施工阶段内考虑混凝土构件的时间依存性来,计算由徐变及收缩引起的变形。然后用计算得到的变形量来考虑钢束张拉应力的损失效应。在每个阶段可以通过图表来确认预应力损失的计算结果。

当钢束施加张拉应力,维持其一定的应变时,作用到钢束上的张拉应力随时间的推移逐渐地减小,这个现象称之为松弛(Relaxation)。由松弛引起的损失随作用到的初始应力的大小、经历的时间、制品的性质,其结果也是各不相同的。MIDA S/CIVIL采用Magura 1 公式,来考虑钢束的松弛。

f s f si

=1−

log t f si

f

−0.55 , 其中 si ≥0.55 (5)

C f y

f y

其中

f si 为初始应力; f s 为荷载作用后, t 小时后的应力; f y 为屈服应力(0.1% Off

set Yield Stress);C 为与钢材有关的常数,一般钢材取值为10,低松弛钢材取值45。

_____________________________________

Magura, D.D., Sozen, M.A., and Siess, C.P., “A Study of Stress Relaxation in Prestressing

Reinforcement,” PCI Journal, Vol. 9, No. 2, April, 1964.

1.

这个公式的前提条件是假设钢束的应力为常数。但是随时间的推移,由徐变、收缩、外部荷载的变化,钢束的张力是不连续变化的,因此,直接使用公式(5)有一些困难。MIDAS/CIVIL 在每个施工阶段,先计算由松弛之外的其它原因引起的钢束的应力变化,然后计算对应于各个施工阶段的假想的初始应力(Fictitious Initial Prestress),最后计算由松弛引起的损失。

预应力荷载

MIDAS/CIVIL 由PS 钢束施加到结构上的预应力荷载转化为等价荷载的方法如图2.49所示。

图 2.49 由钢束预应力引起的等价荷载

_____________________________________

假定为线性

Kan, Y.G ., “Nonlinear Geometric, Material and Time Dependent Analysis of Reinforced and Prestressed Concrete Frames”, Ph. D. Dissertation, Department of Civil Engineering, University of California, Berkeley, June 1977.

2)

图2.49是在一个梁单元上所配置的钢束的形状。为了说明的方便,用xz2维坐标表示,对于单元坐标系xy 平面也采用相同方法计算。由图可知,MIDAS/CIVIL 自动把一个梁单元4等分,计算等价荷载。这时,把4等分单元内的钢束形状假设为线性(如图2.49(b))。因摩擦力的存在,钢束两端施加的张力P i 和P j 大小是不相等的,因此只用i , j 两端的三个集中荷载(p x , m y , p z ) 是不能平衡其内力的。为了满足构件内自行平衡要求,要考虑均布荷载效应。

i p x =p i cos θi p z =p i sin θ (1)

i i

m i y =p x ⋅e z

p x j =p j cos θ

(2) p z j =p j sin θ m y j =p x j ⋅e z j

∑F x =p x i +w x l −p x j =0∑F z =−p z i +w z l +p z j =0

l 2

∑M =m −p l +w z +m y j +m y l =0

j y

i y

i z

(3)

i

p x j −p x

w x =

l i

p −p j

w z =

l

(4)

i

j

l m +m y

m y =p −w z −y

i

z

MIDAS/CIVIL 在各个施工阶段,对于因徐变、收缩、钢束的松弛等预应力的时间性损失效应和由外部荷载或温度变化引起钢束发生的预应力损失效应都进行考虑。施工阶段分析时,先计算由变形引起的钢束张力的变化,然后把张力的变化量用上述方法转换成等价荷载作用到单元上。


相关文章

  • 预应力混凝土预应力损失及计算方法
  • 预应力混凝土预应力损失及计算方法 简介: 对比了新旧混凝土结构规范中关于预应力计算方法的不同,总结了各国学者对总预应力损失近似估算值的研究成果,提出了预应力损失的简化计算方法,为快速合理地进行预应力混凝土结构设计提供了依据. 关键字:预应力 ...查看


  • 10问答题
  • 第十章 预应力混凝土构件 问 答 题 1.何为预应力?预应力混凝土结构的优缺点是什么? 2.为什么预应力混凝土构件所选用的材料都要求有较高的强度? 3.什么是张拉控制应力?为何先张法的张拉控制应力略高于后张法? 4.预应力损失包括哪些?如何 ...查看


  • 后张法预应力钢绞线张拉和锚固过程分析
  • 龙源期刊网 http://www.qikan.com.cn 后张法预应力钢绞线张拉和锚固过程分析 作者:李式雄 来源:<筑路机械与施工机械化>2015 年第 02 期 摘 要:对后张法预应力钢绞线张拉和锚固过程中锚圈口摩阻损失. ...查看


  • 全预应力混凝土简支梁设计算例
  • 全预应力混凝土简支梁设计算例 一.设计资料 1. 桥梁跨径及桥宽 标准跨径:Lk=30m(墩中心距),主梁全长:L=29.96m,计算跨径:Lf=29.16m,桥面净宽:净9+2×1m. 2. 设计荷载 公路-Ⅱ级车辆荷载,人群荷载3.5K ...查看


  • 预应力混凝土简支梁计算
  • 全预应力混凝土简支梁设计算例 一.设计资料 1. 桥梁跨径及桥宽 标准跨径:L k =30m (墩中心距),主梁全长:L =29.96m,计算跨径:L f =29.16m,桥面净宽:净9+2×1m . 2. 设计荷载 公路-Ⅱ级车辆荷载,人 ...查看


  • 预应力摩阻损失测试试验方案
  • 预应力摩阻损失测试 试 验 方 案 山东铁正工程试验检测中心有限公司 二〇一0年十一月八日 目 录 1.概述 ................................................................. ...查看


  • 预应力框架结构作业
  • 框架结构设计任务 一.工程概况 某二层单跨框架结构,开间4m ,共10个开间,跨度21m ,层高6m .不上人屋面,屋面活载0.5KN /m 2,屋面恒载5KN /m 2(不含梁板自重),楼面活荷载3KN /m 2,恒载1.5KN /m 2 ...查看


  • 钢绞线和精轧螺纹钢筋的竖向预应力对比研究_杨胜
  • 文章编号:167324874(2008) 0620001204 钢绞线和精轧螺纹钢筋的竖向预应力对比研究 杨 胜, 钟新谷 (湖南科技大学, 湖南 长沙 411202) 摘 要:文章对箱梁腹板竖向预应力钢绞线和精轧螺纹钢筋进行对 The C ...查看


  • 操作例题_06_预应力箱梁横向分析
  • midas FEA Training Series 预应力箱梁横向分析 ⏹ 恒荷载与活荷载 结构自重由程序内部自动计算,二期荷载(防撞墙.铺装)通过压力荷载施加在整个桥面板上. 将一辆整车荷载添加在主梁跨中顶板上,按悬臂板.顶板中心弯矩最大 ...查看


热门内容