“东方所”转子动平衡实验
一、实验目的
1. 加深对转子动平衡概念的理解。
2. 掌握刚性转子动平衡试验的原理及基本方法。 二、实验设备
1. INV1612 型动平衡试验台 2. 转子试件 3. 平衡块
4. 百分表0~10mm
三、INV1612型动平衡试验台的工作原理与结构 动平衡试机的结构
动平衡机的简图如图1、图2、所示。待平衡的试件3安放在框形摆架子的支承滚轮上,摆架的左端固结在工字形板簧2中,右端呈悬臂。电动机9通过皮带10带动试件旋转;当试件有不平衡质量存在时,则产生离心惯性力使摆架绕工字形板簧上下周期性地振动,通过百分表5可观察振幅的大小。
通过转子的旋转和摆架的振动,可测出试件的不平衡量(或平衡量)的大小和方位。这个测量系统由差速器4和补偿盘6组成。差速器安装在摆架的右端,它的左端为转动输入端(n1)通过柔性联轴器与试件3联接;右端为输出端(n3)与补偿盘相联接。
差速器是由齿数和模数相同的三个圆锥齿轮和一个外壳为蜗轮的转臂H 组成的周转轮系。
(1)当差速器的转臂蜗轮不转动时nH=0,则差速器为定轴轮系,其传动比为:
i 31=
n 3Z
=-1=-1
n =-n 1 (1) n 1Z 3
,3
3
(1)
(2)
3
N 1 N 3
2 1
1
2
7
4
5
6
10 9 8
摆架 2、工字形板簧座 3、转子试件 4、差速器 5、百分表 6、补偿盘 7、蜗杆 8、弹簧 9、电机 10、皮带
图1
这时补偿盘的转速n3与试件的转速n1大小相等转向相反。
(2)当n1和nH 都转动则为差动轮系,传动比周转轮系公式计算:
H i 31=
n 3-n H Z
=-1=-1
n =2n H -n 1 (2) n 1-n H Z 3
;3
蜗轮的转速nH 是通过手柄摇动蜗杆7,经蜗杆蜗轮副在大速比的减速后得到。因此蜗轮的转速nH
2、转子动平衡的力学条件 由于转子材料的不均匀、制造的误差、结构的不对称等诸因素保存转子存在不平衡质量。因此当转子旋转后就会产生离心惯性力 组成一个空间力系,使转子动不平衡。要使转子达到动平衡,则必须满足空间力系的平衡条件
⎧⎪∑F =0⎨⎪⎩∑M =0 或 ⎧⎪∑M A =0
⎨⎪⎩∑M B =0 (3)
这就是转子动平衡的力学条件
3、动平衡机的工作原理
2
F =ωmr ,他当试件上有不平衡质量存在时(图2),试件转动后则生产离心惯性力
可分解成垂直分力Fy 和水平分力Fx ,由于平衡机的工字形板簧和摆架在水平方向(绕y 轴)
抗弯刚度很大,所以水平分力Fx 对摆架的振动影响很小可忽略不计。而在垂直方向(绕x 轴)的抗弯刚度小,因此垂直分力产生的力矩M=Fy·L=ω2mrcos φ·L 的作用下,使摆架产生周期性的上下振动 (摆架振幅大小) 的惯性力矩为
M 1=0,M 2=ω2m 2r 2l 2cos ϕ2
要使摆架不振动必须要平衡力矩M2。在试件上选择圆盘作为平衡平面,加平衡质量mp 。则绕x 轴的惯性力矩Mp=ω2mprplpcos φp ;要使这些力矩得到平衡可根据公式(3)来解决。
∑M
A
=0
M 2+M p =0
(4)
ω2m 2r 2l 2cos ϕ2+ω2m p r p l p cos ϕp =0
(4)式消去ω2得
m 2r 2l 2cos ϕ2+m p r p l p cos ϕp =0
要使(5)式为零必须满足
(5)
m 2r 2l 2=m p r p l p ⎧
⎨0cos ϕ=-cos ϕ=cos(180+ϕp ) 2p ⎩
(6)
满足上式(6)的条件摆架就不振动了。式中m (质量)和r (矢径)之积称为质径积,mrL 称为质径矩,
ϕ称为相位角。
转子不平衡质量的分布是有很大的随机性,而无法直观判断他的大小和相位。因此很难公式来计算平衡量,但可用实验的方法来解决,其方法如下:
选补偿盘作为平衡平面,补偿盘的转速与试件的转速大小相等但转向相反,这时的平衡条件也可按上述方法来求得。在补偿盘上加
F ’p
y
F p
p r p φ 2
m’p
r’p
ωp
φ1
F 1 m 1
r 2
m 2 F 2
l 2 l p
l’p
r 1
ω
x
图2 一个质量
m p
'
(图2),则产生离心惯性力对x 轴的力矩
'''''
M p =ω2m p r p l p cos ϕp
根据力系平衡公式(3)
∑M A =0
'
M 2+M p =0
''''
m 2r 2l 2cos ϕ2+m p r p l p cos ϕp =0
要使上式成立必须有
'''⎧m 2r 2l 2=m p r p l p ⎪
⎨''0cos ϕ=-cos ϕ=cos(180-ϕ⎪2p p ) ⎩ (7)
公式(7)与(6)基本是一样,只有一个正负号不同。从图3可进一步比较两种平衡面进行平衡的特点。图3是满足平衡条件平衡质量与不平衡质量之间的相位关系。
图3—a 为平衡平面在试件上的平衡情况,在试件放旋转时平衡质量与不平衡质量始终在一个轴平面内,但矢径方向相反。
y
F p m p
F’p m’p
y
F’p m’p
ωp
y
ωp
φ’p
φp
r p
φ2
x
r’p
r’p
φ2
x
ω m 2
r 2
r 2
ω
φ2
x
r 2
ω
m 2 F 2
m 2 F 2
F 2
a) φ2=180°+ φp c) ϕ2=180°-ϕp ’ b) ϕ2=180° 图3
图3—b) 是补偿盘为平衡平面,m2和mp ′在各自的旋转中只有到在 φp'=0°或180°,φ2=180°或0°时它们处在垂直轴平面内与图3—a) 一样达到完全平衡。其它位置时它们的相对位置关系如图3—c) 所示为 φ2=180°—φp' ,图3-c) 这种情况,y 分力矩是满足平衡条件的,而x 分力矩未满足平衡条件。
用补偿盘作为平衡平面来实现摆架的平衡可这样来操作。在补偿盘的任何位置(最好选择在靠近缘处)试加一个适当的质量,在试件旋转的状态下摇动蜗杆手柄使蜗轮转动(正转或反转)这时补偿盘减速或加速转动。摇动手柄同时观察百分表的振幅使其达到最小,这时停止转动手柄。停机后在原位置再加一些平衡质量,再开机左右转动手柄如振幅已很小可认为摆架已达到平衡。最后将调整到好的平衡质量转到最高位置,这时的垂直轴平面就是mp ′和m2同时存在的轴平面。
摆架平衡不等于试件平衡,还必须把补偿盘上的平衡质量转换到试件的平衡面上,选试件圆盘2为待平衡面,根据平衡条件
'''
m p r p l p =m p r p l p
'l ''p
m p r p =m p r p
l p ''r p l p r p l p
(8)
m p =m 'p
或
''r p l p
若取
r p l p
=1
则
m p =m p
'
(8)式中
''m p r p
是所加的补偿盘上平衡量质径积,
m 'p
为平衡块质量,
'r p
是平衡块所
处位置的半径(有刻度指示);
l p
:
l p
'
是平衡面至板簧的距离这些参数都是已知的,这样
就求得了在待平衡面2上应加的平衡量质径积衡面2上,其位置在
m p r p
。一般情况先选择半径r 求出m 加到平
m p
'
最高位置的垂直轴平面中,本动平衡机及试件在设计时已取
''
r p l p r p l p
=1
,所以,这样可取下补偿盘上平衡块(平衡块)直接加到待平衡面
相应的位置,这样就完成了第一步平衡工作。根据力系平衡条件(3),到此才完成一项
m p =m p
'
m p
'
∑M
A
=0
,还必须做
∑M
B
=0
的平衡工作,这样才能使试件达到完全平衡。
第二步工作:将试件从平衡机上取下重新安装成以圆盘2为驱动轮,再按上述方法求出平衡面1上的平衡量(质径积
m p r p
或
m p
)。这样整个平衡工作全部完成。更具体的实验方
法请看第四部分。
四、实验方法和步骤
1、将平衡试件装到摆架的滚轮上,把试件右端的联轴器盘与差速器轴端的联轴器盘,用弹性柱销柔性联成一体。装上传动皮带。
2、用手转动试件和摇动蜗杆上的手柄,检查动平衡机各部分转动是否正常。松开摆架最右端的两对锁紧螺母,调节摆架上面的安放在支承杆上的百分表,使之与摆架有一定的接触,并随时注意振幅大小。
3、开机前将试件右端圆盘上装上适当的待平衡质量(四块平衡块),接上电源启动电机,待摆架振动稳定后,调整好百分表的位置并记录下振幅大小y0(格),百分表的位置以后不要再变动,停机。
4、在补偿盘的槽内距轴心最远处加上一个适当的平衡质量(二块平衡块)。开机后摇动手柄观察百分表振幅变化,手柄摇到振幅最小时手柄停止摇动。记录下振幅大小y1和蜗轮位置角β1(差速器外壳上有刻度指示),停机。(摇动手柄要讲究方法:蜗杆安装在机架上,蜗轮安装在摆架上两者之间有很大的间隙。蜗杆转动到适当位置可与蜗杆不接触,这样才能使摆架自由地振动,这时观察的振幅才是正确的。摇动手柄蜗杆接触蜗轮使蜗轮转动,这时摆动振动受阻,反摇手柄使蜗杆脱离与蜗轮接触,使摆架自由地振动,再观察振幅。这样间歇性地使蜗轮向前转动位和观察振幅变化,最终找到振幅最小值的位置)。在不改变蜗轮位置情况下,停机后,按试件转动方向用手转动试件使补偿盘上的平衡块转到最高位置。取下平衡块安装到试件的平衡面(圆盘2)中相应的最高位置槽内。
5、在补偿盘内再加一点平衡量(1~2平衡块)。按上述方法再进行一次测试。测得的振幅y2蜗轮位置β2,若y2<y1<y0;β1与β2相同或略有改变,则表示实验进行正确。若y2已很小可视为已达到平衡。停机、按步骤4方法将补偿盘上的平衡块移到试件圆盘2上。解开联轴器开机让试件自由转动若振幅依然很小则第一步平衡工作结束。若还存在一些振
幅,可适当地调节一下平衡块的相位,即在圆周方向左右移动一个平衡块进行微调相位和大小。
6、将试件两端180°对调,即这时圆盘2为驱动盘,圆盘1为平衡面。再按上述方法找出圆盘1上应加的平衡量。这样就完成了试件的全部平衡工作。
“东方所”转子动平衡实验
一、实验目的
1. 加深对转子动平衡概念的理解。
2. 掌握刚性转子动平衡试验的原理及基本方法。 二、实验设备
1. INV1612 型动平衡试验台 2. 转子试件 3. 平衡块
4. 百分表0~10mm
三、INV1612型动平衡试验台的工作原理与结构 动平衡试机的结构
动平衡机的简图如图1、图2、所示。待平衡的试件3安放在框形摆架子的支承滚轮上,摆架的左端固结在工字形板簧2中,右端呈悬臂。电动机9通过皮带10带动试件旋转;当试件有不平衡质量存在时,则产生离心惯性力使摆架绕工字形板簧上下周期性地振动,通过百分表5可观察振幅的大小。
通过转子的旋转和摆架的振动,可测出试件的不平衡量(或平衡量)的大小和方位。这个测量系统由差速器4和补偿盘6组成。差速器安装在摆架的右端,它的左端为转动输入端(n1)通过柔性联轴器与试件3联接;右端为输出端(n3)与补偿盘相联接。
差速器是由齿数和模数相同的三个圆锥齿轮和一个外壳为蜗轮的转臂H 组成的周转轮系。
(1)当差速器的转臂蜗轮不转动时nH=0,则差速器为定轴轮系,其传动比为:
i 31=
n 3Z
=-1=-1
n =-n 1 (1) n 1Z 3
,3
3
(1)
(2)
3
N 1 N 3
2 1
1
2
7
4
5
6
10 9 8
摆架 2、工字形板簧座 3、转子试件 4、差速器 5、百分表 6、补偿盘 7、蜗杆 8、弹簧 9、电机 10、皮带
图1
这时补偿盘的转速n3与试件的转速n1大小相等转向相反。
(2)当n1和nH 都转动则为差动轮系,传动比周转轮系公式计算:
H i 31=
n 3-n H Z
=-1=-1
n =2n H -n 1 (2) n 1-n H Z 3
;3
蜗轮的转速nH 是通过手柄摇动蜗杆7,经蜗杆蜗轮副在大速比的减速后得到。因此蜗轮的转速nH
2、转子动平衡的力学条件 由于转子材料的不均匀、制造的误差、结构的不对称等诸因素保存转子存在不平衡质量。因此当转子旋转后就会产生离心惯性力 组成一个空间力系,使转子动不平衡。要使转子达到动平衡,则必须满足空间力系的平衡条件
⎧⎪∑F =0⎨⎪⎩∑M =0 或 ⎧⎪∑M A =0
⎨⎪⎩∑M B =0 (3)
这就是转子动平衡的力学条件
3、动平衡机的工作原理
2
F =ωmr ,他当试件上有不平衡质量存在时(图2),试件转动后则生产离心惯性力
可分解成垂直分力Fy 和水平分力Fx ,由于平衡机的工字形板簧和摆架在水平方向(绕y 轴)
抗弯刚度很大,所以水平分力Fx 对摆架的振动影响很小可忽略不计。而在垂直方向(绕x 轴)的抗弯刚度小,因此垂直分力产生的力矩M=Fy·L=ω2mrcos φ·L 的作用下,使摆架产生周期性的上下振动 (摆架振幅大小) 的惯性力矩为
M 1=0,M 2=ω2m 2r 2l 2cos ϕ2
要使摆架不振动必须要平衡力矩M2。在试件上选择圆盘作为平衡平面,加平衡质量mp 。则绕x 轴的惯性力矩Mp=ω2mprplpcos φp ;要使这些力矩得到平衡可根据公式(3)来解决。
∑M
A
=0
M 2+M p =0
(4)
ω2m 2r 2l 2cos ϕ2+ω2m p r p l p cos ϕp =0
(4)式消去ω2得
m 2r 2l 2cos ϕ2+m p r p l p cos ϕp =0
要使(5)式为零必须满足
(5)
m 2r 2l 2=m p r p l p ⎧
⎨0cos ϕ=-cos ϕ=cos(180+ϕp ) 2p ⎩
(6)
满足上式(6)的条件摆架就不振动了。式中m (质量)和r (矢径)之积称为质径积,mrL 称为质径矩,
ϕ称为相位角。
转子不平衡质量的分布是有很大的随机性,而无法直观判断他的大小和相位。因此很难公式来计算平衡量,但可用实验的方法来解决,其方法如下:
选补偿盘作为平衡平面,补偿盘的转速与试件的转速大小相等但转向相反,这时的平衡条件也可按上述方法来求得。在补偿盘上加
F ’p
y
F p
p r p φ 2
m’p
r’p
ωp
φ1
F 1 m 1
r 2
m 2 F 2
l 2 l p
l’p
r 1
ω
x
图2 一个质量
m p
'
(图2),则产生离心惯性力对x 轴的力矩
'''''
M p =ω2m p r p l p cos ϕp
根据力系平衡公式(3)
∑M A =0
'
M 2+M p =0
''''
m 2r 2l 2cos ϕ2+m p r p l p cos ϕp =0
要使上式成立必须有
'''⎧m 2r 2l 2=m p r p l p ⎪
⎨''0cos ϕ=-cos ϕ=cos(180-ϕ⎪2p p ) ⎩ (7)
公式(7)与(6)基本是一样,只有一个正负号不同。从图3可进一步比较两种平衡面进行平衡的特点。图3是满足平衡条件平衡质量与不平衡质量之间的相位关系。
图3—a 为平衡平面在试件上的平衡情况,在试件放旋转时平衡质量与不平衡质量始终在一个轴平面内,但矢径方向相反。
y
F p m p
F’p m’p
y
F’p m’p
ωp
y
ωp
φ’p
φp
r p
φ2
x
r’p
r’p
φ2
x
ω m 2
r 2
r 2
ω
φ2
x
r 2
ω
m 2 F 2
m 2 F 2
F 2
a) φ2=180°+ φp c) ϕ2=180°-ϕp ’ b) ϕ2=180° 图3
图3—b) 是补偿盘为平衡平面,m2和mp ′在各自的旋转中只有到在 φp'=0°或180°,φ2=180°或0°时它们处在垂直轴平面内与图3—a) 一样达到完全平衡。其它位置时它们的相对位置关系如图3—c) 所示为 φ2=180°—φp' ,图3-c) 这种情况,y 分力矩是满足平衡条件的,而x 分力矩未满足平衡条件。
用补偿盘作为平衡平面来实现摆架的平衡可这样来操作。在补偿盘的任何位置(最好选择在靠近缘处)试加一个适当的质量,在试件旋转的状态下摇动蜗杆手柄使蜗轮转动(正转或反转)这时补偿盘减速或加速转动。摇动手柄同时观察百分表的振幅使其达到最小,这时停止转动手柄。停机后在原位置再加一些平衡质量,再开机左右转动手柄如振幅已很小可认为摆架已达到平衡。最后将调整到好的平衡质量转到最高位置,这时的垂直轴平面就是mp ′和m2同时存在的轴平面。
摆架平衡不等于试件平衡,还必须把补偿盘上的平衡质量转换到试件的平衡面上,选试件圆盘2为待平衡面,根据平衡条件
'''
m p r p l p =m p r p l p
'l ''p
m p r p =m p r p
l p ''r p l p r p l p
(8)
m p =m 'p
或
''r p l p
若取
r p l p
=1
则
m p =m p
'
(8)式中
''m p r p
是所加的补偿盘上平衡量质径积,
m 'p
为平衡块质量,
'r p
是平衡块所
处位置的半径(有刻度指示);
l p
:
l p
'
是平衡面至板簧的距离这些参数都是已知的,这样
就求得了在待平衡面2上应加的平衡量质径积衡面2上,其位置在
m p r p
。一般情况先选择半径r 求出m 加到平
m p
'
最高位置的垂直轴平面中,本动平衡机及试件在设计时已取
''
r p l p r p l p
=1
,所以,这样可取下补偿盘上平衡块(平衡块)直接加到待平衡面
相应的位置,这样就完成了第一步平衡工作。根据力系平衡条件(3),到此才完成一项
m p =m p
'
m p
'
∑M
A
=0
,还必须做
∑M
B
=0
的平衡工作,这样才能使试件达到完全平衡。
第二步工作:将试件从平衡机上取下重新安装成以圆盘2为驱动轮,再按上述方法求出平衡面1上的平衡量(质径积
m p r p
或
m p
)。这样整个平衡工作全部完成。更具体的实验方
法请看第四部分。
四、实验方法和步骤
1、将平衡试件装到摆架的滚轮上,把试件右端的联轴器盘与差速器轴端的联轴器盘,用弹性柱销柔性联成一体。装上传动皮带。
2、用手转动试件和摇动蜗杆上的手柄,检查动平衡机各部分转动是否正常。松开摆架最右端的两对锁紧螺母,调节摆架上面的安放在支承杆上的百分表,使之与摆架有一定的接触,并随时注意振幅大小。
3、开机前将试件右端圆盘上装上适当的待平衡质量(四块平衡块),接上电源启动电机,待摆架振动稳定后,调整好百分表的位置并记录下振幅大小y0(格),百分表的位置以后不要再变动,停机。
4、在补偿盘的槽内距轴心最远处加上一个适当的平衡质量(二块平衡块)。开机后摇动手柄观察百分表振幅变化,手柄摇到振幅最小时手柄停止摇动。记录下振幅大小y1和蜗轮位置角β1(差速器外壳上有刻度指示),停机。(摇动手柄要讲究方法:蜗杆安装在机架上,蜗轮安装在摆架上两者之间有很大的间隙。蜗杆转动到适当位置可与蜗杆不接触,这样才能使摆架自由地振动,这时观察的振幅才是正确的。摇动手柄蜗杆接触蜗轮使蜗轮转动,这时摆动振动受阻,反摇手柄使蜗杆脱离与蜗轮接触,使摆架自由地振动,再观察振幅。这样间歇性地使蜗轮向前转动位和观察振幅变化,最终找到振幅最小值的位置)。在不改变蜗轮位置情况下,停机后,按试件转动方向用手转动试件使补偿盘上的平衡块转到最高位置。取下平衡块安装到试件的平衡面(圆盘2)中相应的最高位置槽内。
5、在补偿盘内再加一点平衡量(1~2平衡块)。按上述方法再进行一次测试。测得的振幅y2蜗轮位置β2,若y2<y1<y0;β1与β2相同或略有改变,则表示实验进行正确。若y2已很小可视为已达到平衡。停机、按步骤4方法将补偿盘上的平衡块移到试件圆盘2上。解开联轴器开机让试件自由转动若振幅依然很小则第一步平衡工作结束。若还存在一些振
幅,可适当地调节一下平衡块的相位,即在圆周方向左右移动一个平衡块进行微调相位和大小。
6、将试件两端180°对调,即这时圆盘2为驱动盘,圆盘1为平衡面。再按上述方法找出圆盘1上应加的平衡量。这样就完成了试件的全部平衡工作。