教学内容:苏教版第十二册p51教学目标:1、使学生能正确判断应用题中涉及的量成什么比例关系。 2、使学生运用正、反比例的意义正确解答应用题。 3、渗透函数的初步思想,建立事物是相互联系的这一辨 证观点,培养学生的判断推理能力和分析能力。教学重点:让学生能正确判断应用题中的数量之间存在何种比例关系,并能利用正反比例的意义列出含有未知数的等式。教学难点:利用正反比例意义正确列出等式,掌握用比例知识解答应用题的解题思路教学准备:课件教学步骤:(铺垫孕伏,建立表象;创设情境,探究新知;归纳总结,揭示意义;巩固练习,考考自己;分层练习,深化新知)
一、铺垫孕伏,建立表象1、判断下面每题中的两种量成什么比例关系?○1速度一定,路程和时间( ) ○2路程一定,速度和时间( )○3单价一定,总价和数量( ) ○4每小时耕地公顷数一定,耕地的总公顷数和时间○5全校学生做操,每行站的人数和站的行数2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。(2)一列火车行驶360千米,每小时行90千米,要行4小时;每小时行80千米,要行经x小时。指名学生口答,老师板书。
二、创设情境,探究新知从上面可以看出,日常生活生产的一些实际问题,应用比例的知识,也可根据题意列一个等式。我们以前学过的一些应用题,还可以应用比例的知识来解答,这节课我们学习比例的应用(板题)1、教学例1(1)出示例1(课件演示)让学生读题一辆汽车2小时行140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?师:你用什么方法解答,给大家介绍一下如何?(自由回答)(提问:我们怎样解答的?(板式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量)学生解答如下几种:解法一:140÷2×5=70×5=350千米解法二:140×(5÷2)=140×2.5=350千米如果有学生用比例方法解,老师及时给以肯定,如果没有,老师给以引导性的问题:a题中涉及哪三种量?(路程、时间和速度三种量),其中哪两种是相关联的量?b哪一种量是一定的?(固定不变),你是怎么知道的?(照这样的速度,就是说速度是一定的)c它们有什么关系?(行驶的路程和时间成正比例关系)d题中“照这样的速度”就是说 一定,那么 和 成 比例关系?因此 和 的 是相等的。教师板书:速度一定,路程和时间成正比例。 师追问:两次行驶的路程和时间的什么相等(比值相等)解法三:(用比例方法,怎样列式)解:设甲乙两地间的总路长x千米140 x 或 140:2=x:52 5 2x=140×5 x=350答:甲乙两地之间公路长350千米。小结:这一类型题,我们不仅可用过去的归一法、倍比法来解,还可用比例方法来解。2、怎样检验这道题做得是否正确呢?3、变式练习改编题出示改编的问题,让学生说一说题意,请同学们按照例1的方法自己在练习本上解答,指名一人板演,然后集体订证,指名说一说是怎样想的,列等式的依据是什么?4、教学例2(课件演示)(1)出示例2,学生读题例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果4小时到达,每小时要行多少千米?提问:(1)以前我们怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:速度×时间=路程)这道题里哪个数量是不变的量?(2)谁能仿照例1的解题过程,用比例的知识解答例2来试试,指名板演,其余学生做在练习本上,练习后提问怎样想的?速度和时间的对应关系怎样?检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。学生利用以前的方法解答。70×5÷4=350÷4=87.5(千米)(3)提问:按过去的方法先求什么再解答的?先求总路程的应用题现在用什么比例关系解答的?谁来说说,用反比例关系解答这道应用题怎样想,怎样做的?(课件演示)这道题里的路程是一定的, 和 成 比例,所以两次行驶的 和 的 是相等的。指出:解答例2要先按题意列出关系式,判断成反比例,再找出两种关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次行驶相对应数值的乘积相等,列式。(4)设每小时行驶x千米(根据反比例的意义,谁能列出方程4x=70×5 x=70×5/4 x=87.5答:每小时行驶87.5千米。师:a)该题中三个量有什么关系?其中哪两种量是相关联的量?b)题中哪一种是固定不变的?从哪里看出来?c)它们有什么关系?d)这道题的 一定, 和 成 比例关系,所以两次行驶的 和 的 是相等的。(5)变式练习(改编题)出示改变的条件和问题,让学生说一说题意,指名一人板演,其余在练习本上独立解答,集体订证,说说怎样想,根据什么列式。一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果每小时行87.5千米,需要几小时到达?解:设需要x小时到达87.5x=70×5 x=4答:需要4小时到达。
教学内容:苏教版第十二册p51教学目标:1、使学生能正确判断应用题中涉及的量成什么比例关系。 2、使学生运用正、反比例的意义正确解答应用题。 3、渗透函数的初步思想,建立事物是相互联系的这一辨 证观点,培养学生的判断推理能力和分析能力。教学重点:让学生能正确判断应用题中的数量之间存在何种比例关系,并能利用正反比例的意义列出含有未知数的等式。教学难点:利用正反比例意义正确列出等式,掌握用比例知识解答应用题的解题思路教学准备:课件教学步骤:(铺垫孕伏,建立表象;创设情境,探究新知;归纳总结,揭示意义;巩固练习,考考自己;分层练习,深化新知)
一、铺垫孕伏,建立表象1、判断下面每题中的两种量成什么比例关系?○1速度一定,路程和时间( ) ○2路程一定,速度和时间( )○3单价一定,总价和数量( ) ○4每小时耕地公顷数一定,耕地的总公顷数和时间○5全校学生做操,每行站的人数和站的行数2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。(2)一列火车行驶360千米,每小时行90千米,要行4小时;每小时行80千米,要行经x小时。指名学生口答,老师板书。
二、创设情境,探究新知从上面可以看出,日常生活生产的一些实际问题,应用比例的知识,也可根据题意列一个等式。我们以前学过的一些应用题,还可以应用比例的知识来解答,这节课我们学习比例的应用(板题)1、教学例1(1)出示例1(课件演示)让学生读题一辆汽车2小时行140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?师:你用什么方法解答,给大家介绍一下如何?(自由回答)(提问:我们怎样解答的?(板式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量)学生解答如下几种:解法一:140÷2×5=70×5=350千米解法二:140×(5÷2)=140×2.5=350千米如果有学生用比例方法解,老师及时给以肯定,如果没有,老师给以引导性的问题:a题中涉及哪三种量?(路程、时间和速度三种量),其中哪两种是相关联的量?b哪一种量是一定的?(固定不变),你是怎么知道的?(照这样的速度,就是说速度是一定的)c它们有什么关系?(行驶的路程和时间成正比例关系)d题中“照这样的速度”就是说 一定,那么 和 成 比例关系?因此 和 的 是相等的。教师板书:速度一定,路程和时间成正比例。 师追问:两次行驶的路程和时间的什么相等(比值相等)解法三:(用比例方法,怎样列式)解:设甲乙两地间的总路长x千米140 x 或 140:2=x:52 5 2x=140×5 x=350答:甲乙两地之间公路长350千米。小结:这一类型题,我们不仅可用过去的归一法、倍比法来解,还可用比例方法来解。2、怎样检验这道题做得是否正确呢?3、变式练习改编题出示改编的问题,让学生说一说题意,请同学们按照例1的方法自己在练习本上解答,指名一人板演,然后集体订证,指名说一说是怎样想的,列等式的依据是什么?4、教学例2(课件演示)(1)出示例2,学生读题例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果4小时到达,每小时要行多少千米?提问:(1)以前我们怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:速度×时间=路程)这道题里哪个数量是不变的量?(2)谁能仿照例1的解题过程,用比例的知识解答例2来试试,指名板演,其余学生做在练习本上,练习后提问怎样想的?速度和时间的对应关系怎样?检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。学生利用以前的方法解答。70×5÷4=350÷4=87.5(千米)(3)提问:按过去的方法先求什么再解答的?先求总路程的应用题现在用什么比例关系解答的?谁来说说,用反比例关系解答这道应用题怎样想,怎样做的?(课件演示)这道题里的路程是一定的, 和 成 比例,所以两次行驶的 和 的 是相等的。指出:解答例2要先按题意列出关系式,判断成反比例,再找出两种关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次行驶相对应数值的乘积相等,列式。(4)设每小时行驶x千米(根据反比例的意义,谁能列出方程4x=70×5 x=70×5/4 x=87.5答:每小时行驶87.5千米。师:a)该题中三个量有什么关系?其中哪两种量是相关联的量?b)题中哪一种是固定不变的?从哪里看出来?c)它们有什么关系?d)这道题的 一定, 和 成 比例关系,所以两次行驶的 和 的 是相等的。(5)变式练习(改编题)出示改变的条件和问题,让学生说一说题意,指名一人板演,其余在练习本上独立解答,集体订证,说说怎样想,根据什么列式。一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果每小时行87.5千米,需要几小时到达?解:设需要x小时到达87.5x=70×5 x=4答:需要4小时到达。