空间面板数据分析--R的splm包

空间面板数据分析——R 的splm 包

(任建辉,暨南大学)

The package provides methods for fitting spatial panel data by maximum likelihood and GM.

安装R 软件及其编辑器Rstudio

网址:

下载好Rstudio 以后,操作都可以Rstudio 中完成了,包括命令的编写、命令运行、图形展示,最方便的要数查看数据了。

R 界面

Rstudio 界面,形如

matlab

下面进入正题,了解splm 包中的数据、命令及结果展示。所有命令都写在编辑窗口(studio 左上区域),可以单独的运行每行命令,也可选取一段一起执行,点run 按钮。

1、首先,安装splm 包并导入,命令如下:

intall.packages(“splm ”) ,选择最近的下载点

library(splm)

> library(splm)

载入需要的程辑包:MASS

载入需要的程辑包:nlme

载入需要的程辑包:spdep

载入需要的程辑包:sp

载入需要的程辑包:Matrix

载入需要的程辑包:plm

载入需要的程辑包:bdsmatrix

载入程辑包:‘bdsmatrix’

下列对象被屏蔽了from ‘package:base’:

backsolve

载入需要的程辑包:Formula

载入需要的程辑包:sandwich

载入需要的程辑包:zoo

载入程辑包:‘zoo’

下列对象被屏蔽了from ‘package:base’:

as.Date, as.Date.numeric

载入需要的程辑包:spam

载入需要的程辑包:grid Spam version 0.40-0 (2013-09-11) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the

suffix '.spam' to the function name, e.g. 'help( chol.spam)'.

载入程辑包:‘spam’

下列对象被屏蔽了from ‘package:bdsmatrix’:

backsolve

下列对象被屏蔽了from ‘package:base’:

backsolve, forwardsolve

载入需要的程辑包:ibdreg

载入需要的程辑包:car

载入需要的程辑包:lmtest

载入需要的程辑包:Ecdat

载入程辑包:‘Ecdat’

下列对象被屏蔽了from ‘package:car’:

Mroz

下列对象被屏蔽了from ‘package:nlme’:

Gasoline

下列对象被屏蔽了from ‘package:MASS’:

SP500

下列对象被屏蔽了from ‘package:datasets’:

Orange

载入需要的程辑包:maxLik

载入需要的程辑包:miscTools Please cite the 'maxLik' package as: Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics 26(3), 443-458. DOI 10.1007/s00180-010-0217-1. If you have questions, suggestions, or comments regarding the 'maxLik' package, please use a forum or 'tracker' at maxLik's R-Forge site: https://r-forge.r-project.org/projects/maxlik/ Warning message:

程辑包‘Matrix’是用R 版本3.0.3 来建造的

注意:在导入splm 时,如果发现还有其他配套的包没有安装,需要先安装。

2、接着,查看数据及结构,命令如下:

data(Produc,package=”Ecdat ”)

View(Produc)

3、引入空间权重矩阵(spatial weights matrix),命令如下

data(usaww)

Views(usaww)

4、空间面板数据的广义矩估计,命令spgm

GM

listw=usaww, moments=”fullweights ”, spatial.error=TRUE)

summary(GM)

> GM

+ listw=usaww,moments="fullweights",spatial.error=TRUE)

> summary(GM)

Spatial panel fixed effects GM model Call: spgm(formula = log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp, data = Produc, listw = usaww, spatial.error = TRUE, moments = "fullweights") Residuals: Min. 1st Qu. Median 3rd Qu. Max.

-0.14000 -0.01950 -0.00316 0.01530 0.16800 Estimated spatial coefficient, variance components and theta: Estimate rho 0.3277625

sigma^2_v 0.0012179 Coefficients: Estimate Std. Error t-value Pr(>|t|) log(pcap) -0.0022435 0.0262646 -0.0854 0.9319295 log(pc) 0.2414979 0.0235826 10.2405

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

5、空间面板极大似然估计,命令spml

fm

## fixed effects panel with spatial errors

Fespaterr

spatial.error=”b ”,hess=FALSE)

summary(Fespaterr)

> fm

> Fespaterr

> summary(Fespaterr)

Spatial panel fixed effects error model Call: spml(formula = fm, data = Produc, listw = mat2listw(usaww), model = "within", spatial.error = "b", hess = FALSE) Residuals: Min. 1st Qu. Median 3rd Qu. Max.

-0.1250 -0.0238 -0.0035 0.0171 0.1880 Coefficients: Estimate Std. Error t-value Pr(>|t|) rho 0.5574013 0.0329554 16.9138

S ignif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##random effects panal with spatial lag

Respatlag

spatial.error=”none ”,lag=TRUE)

summary(Respatlag)

> Respatlag

> summary(Respatlag)

Spatial panel random effects ML model Call: spreml(formula = formula, data = data, index = index, w = listw2mat(listw), w2 = listw2mat(listw2), lag = lag, errors = errors, cl = cl) Residuals: Min. 1st Qu. Median Mean 3rd Qu. Max.

1.38 1.57 1.70 1.70 1.80 2.13 Error variance parameters: Estimate Std. Error t-value Pr(>|t|)

phi 21.3175 8.3017 2.5678 0.01023 *

Spatial autoregressive coefficient:

Estimate Std. Error t-value Pr(>|t|)

lambda 0.161615 0.029099 5.554 2.793e-08 *** Coefficients: Estimate Std. Error t-value Pr(>|t|) (Intercept) 1.65814995 0.15071855 11.0016

S ignif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

6、伴有随机效应和序列误差相关的空间面板模型的极大似然估计,命令speml

##random effects panel with spatial lag and serial error correlation

##optimization method set to “BFGS “

Sarsrmod

summary(Sarsrmod)

> Sarsrmod summary(Sarsrmod)

Spatial panel random effects ML model Call: spreml(formula = fm, data = Produc, w = usaww, lag = TRUE, errors = "sr", method = "BFGS") Residuals: Min. 1st Qu. Median Mean 3rd Qu. Max.

2.66 3.02 3.18 3.18 3.31 3.77 Error variance parameters: Estimate Std. Error t-value Pr(>|t|)

psi 0.99726353 0.00082138 1214.1 |t|)

lambda 0.302942 0.030376 9.973 |t|) (Intercept) 1.23670293 0.22777554 5.4295 5.652e-08 ***

log(pcap) 0.08257977 0.03617371 2.2829 0.02244 *

log(pc) 0.01509919 0.01977324 0.7636 0.44510 log(emp) 0.73882021 0.02934144 25.1801

Signi f. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

7、模型检验

(1)bsjktest ,Baltigi,Song,Jung, and Koh LM test for spatial panels

> bsjktest(fm, data=Produc, listw = usaww, test="C.1")

data: log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp LM = 0.2617, df = 1, p-value = 0.609 alternative hypothesis: spatial dependence in error terms, sub RE and serial corr.

Baltagi, Song, Jung and Koh C.1 conditional test (2)bsktest ,Baltigi,Song and Koh LM test for spatial panels

> bsktest(fm,data=Produc, listw = mat2listw(usaww),

+ test="LM1", standardize=TRUE)

data: log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp SLM1 = 0.083, p-value = 0.9338

alternative hypothesis: Random effects

Baltagi, Song and Koh SLM1 marginal test (3)Covariance extractor method for splm objects

> sarremod

> library(lmtest)

> coeftest(sarremod)

z test of coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 1.65814995 0.15071855 11.0016

log(emp) 0.67081075 0.02642113 25.3892

unemp -0.00579716 0.00089175 -6.5009 7.984e-11 *** ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> library(car)

> lht(sarremod,"log(pcap)=log(pc)")

Linear hypothesis test Hypothesis:

log(pcap) - log(pc) = 0 Model 1: restricted model Model 2: function (x, ...)

UseMethod("formula") Df Chisq Pr(>Chisq) 1 2 1 36.268 1.719e-09 *** ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(更多详情请查看splm 的help 文档以及文后列的参考文献)

参考文献

1.Baltagi,B.H.,Song,S.H.,Jung B. and Koh, W.(2007) Testing panel data regression models with spatial and serial error correlation. Journal of Econometrics,140,5-51

2.Baltagi,B.H.,Song,S.H and Koh, W.(2003) Testing panel data regression models with spatial error correlation. Journal of Econometrics,117,123-150

3.Millo,G.,Piras,G.(2012) splm:Spatial Panel Data Models in R. Journal of Statistical Software,47(1),1-38.URL

4.Elhorst, J.P (2003) Specification and estimation of spatial panel data models, International

Regional Science Review,26,pages 244-268

5.Elhorst, J.P(2009) Spatial panel data models, In Fisher,M.M. and Getis,A.(eds),Handbook of Applied Spatial Analysis Springer,Berlin

6.Giovanni Millo and Gaetano Carmeci,(2011) “Non-life insurance consumption in Italy: a subregional panel data analysis”, Journal of Geographical Systems,13:273-298

7.Qu Feng and William C. Horrace,(2012)”Alternative Measures of Technical Efficiency :Skew,Bias and Scale”, Journal of Applied Econometrics, Forthcoming.

8.Kapoor,M.,Kelejian,H.H. and Prucha,I.R.(2007) Panel data model with spatially correlated error components,Journal of Econometrics,140,pages 97-130

9.Mutl,J.,and Pfaffermayr,M.(2011) The Hausman test in a Cliff and Ord panel model,Econometrics Journal,14,pages 48-76

10.Kelejian,H.H. and Prucha,I.R.(1999) A Generalied Moments Estimator for the Autoregressive Parameter in a Spatial Model, International Economic Reviews,40, pages509-533

11. Kelejian,H.H. and Prucha,I.R.(1999) A Generalied Spatial Two Stage Least Square Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances,Journal of Real Estate Finance and Economics,17,pages99-122

12.Millo,G.(2013) Maximum likelihood estimation of spatially and serially correlated panel with random effects. Computational Statistics and Data Analysis, forthcoming.

13.Zeileis,A(2006)Object-Oriented Computation of Sandwich Estimators. Journal of Statistical Software,16(9),1-16

空间面板数据分析——R 的splm 包

(任建辉,暨南大学)

The package provides methods for fitting spatial panel data by maximum likelihood and GM.

安装R 软件及其编辑器Rstudio

网址:

下载好Rstudio 以后,操作都可以Rstudio 中完成了,包括命令的编写、命令运行、图形展示,最方便的要数查看数据了。

R 界面

Rstudio 界面,形如

matlab

下面进入正题,了解splm 包中的数据、命令及结果展示。所有命令都写在编辑窗口(studio 左上区域),可以单独的运行每行命令,也可选取一段一起执行,点run 按钮。

1、首先,安装splm 包并导入,命令如下:

intall.packages(“splm ”) ,选择最近的下载点

library(splm)

> library(splm)

载入需要的程辑包:MASS

载入需要的程辑包:nlme

载入需要的程辑包:spdep

载入需要的程辑包:sp

载入需要的程辑包:Matrix

载入需要的程辑包:plm

载入需要的程辑包:bdsmatrix

载入程辑包:‘bdsmatrix’

下列对象被屏蔽了from ‘package:base’:

backsolve

载入需要的程辑包:Formula

载入需要的程辑包:sandwich

载入需要的程辑包:zoo

载入程辑包:‘zoo’

下列对象被屏蔽了from ‘package:base’:

as.Date, as.Date.numeric

载入需要的程辑包:spam

载入需要的程辑包:grid Spam version 0.40-0 (2013-09-11) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the

suffix '.spam' to the function name, e.g. 'help( chol.spam)'.

载入程辑包:‘spam’

下列对象被屏蔽了from ‘package:bdsmatrix’:

backsolve

下列对象被屏蔽了from ‘package:base’:

backsolve, forwardsolve

载入需要的程辑包:ibdreg

载入需要的程辑包:car

载入需要的程辑包:lmtest

载入需要的程辑包:Ecdat

载入程辑包:‘Ecdat’

下列对象被屏蔽了from ‘package:car’:

Mroz

下列对象被屏蔽了from ‘package:nlme’:

Gasoline

下列对象被屏蔽了from ‘package:MASS’:

SP500

下列对象被屏蔽了from ‘package:datasets’:

Orange

载入需要的程辑包:maxLik

载入需要的程辑包:miscTools Please cite the 'maxLik' package as: Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics 26(3), 443-458. DOI 10.1007/s00180-010-0217-1. If you have questions, suggestions, or comments regarding the 'maxLik' package, please use a forum or 'tracker' at maxLik's R-Forge site: https://r-forge.r-project.org/projects/maxlik/ Warning message:

程辑包‘Matrix’是用R 版本3.0.3 来建造的

注意:在导入splm 时,如果发现还有其他配套的包没有安装,需要先安装。

2、接着,查看数据及结构,命令如下:

data(Produc,package=”Ecdat ”)

View(Produc)

3、引入空间权重矩阵(spatial weights matrix),命令如下

data(usaww)

Views(usaww)

4、空间面板数据的广义矩估计,命令spgm

GM

listw=usaww, moments=”fullweights ”, spatial.error=TRUE)

summary(GM)

> GM

+ listw=usaww,moments="fullweights",spatial.error=TRUE)

> summary(GM)

Spatial panel fixed effects GM model Call: spgm(formula = log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp, data = Produc, listw = usaww, spatial.error = TRUE, moments = "fullweights") Residuals: Min. 1st Qu. Median 3rd Qu. Max.

-0.14000 -0.01950 -0.00316 0.01530 0.16800 Estimated spatial coefficient, variance components and theta: Estimate rho 0.3277625

sigma^2_v 0.0012179 Coefficients: Estimate Std. Error t-value Pr(>|t|) log(pcap) -0.0022435 0.0262646 -0.0854 0.9319295 log(pc) 0.2414979 0.0235826 10.2405

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

5、空间面板极大似然估计,命令spml

fm

## fixed effects panel with spatial errors

Fespaterr

spatial.error=”b ”,hess=FALSE)

summary(Fespaterr)

> fm

> Fespaterr

> summary(Fespaterr)

Spatial panel fixed effects error model Call: spml(formula = fm, data = Produc, listw = mat2listw(usaww), model = "within", spatial.error = "b", hess = FALSE) Residuals: Min. 1st Qu. Median 3rd Qu. Max.

-0.1250 -0.0238 -0.0035 0.0171 0.1880 Coefficients: Estimate Std. Error t-value Pr(>|t|) rho 0.5574013 0.0329554 16.9138

S ignif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##random effects panal with spatial lag

Respatlag

spatial.error=”none ”,lag=TRUE)

summary(Respatlag)

> Respatlag

> summary(Respatlag)

Spatial panel random effects ML model Call: spreml(formula = formula, data = data, index = index, w = listw2mat(listw), w2 = listw2mat(listw2), lag = lag, errors = errors, cl = cl) Residuals: Min. 1st Qu. Median Mean 3rd Qu. Max.

1.38 1.57 1.70 1.70 1.80 2.13 Error variance parameters: Estimate Std. Error t-value Pr(>|t|)

phi 21.3175 8.3017 2.5678 0.01023 *

Spatial autoregressive coefficient:

Estimate Std. Error t-value Pr(>|t|)

lambda 0.161615 0.029099 5.554 2.793e-08 *** Coefficients: Estimate Std. Error t-value Pr(>|t|) (Intercept) 1.65814995 0.15071855 11.0016

S ignif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

6、伴有随机效应和序列误差相关的空间面板模型的极大似然估计,命令speml

##random effects panel with spatial lag and serial error correlation

##optimization method set to “BFGS “

Sarsrmod

summary(Sarsrmod)

> Sarsrmod summary(Sarsrmod)

Spatial panel random effects ML model Call: spreml(formula = fm, data = Produc, w = usaww, lag = TRUE, errors = "sr", method = "BFGS") Residuals: Min. 1st Qu. Median Mean 3rd Qu. Max.

2.66 3.02 3.18 3.18 3.31 3.77 Error variance parameters: Estimate Std. Error t-value Pr(>|t|)

psi 0.99726353 0.00082138 1214.1 |t|)

lambda 0.302942 0.030376 9.973 |t|) (Intercept) 1.23670293 0.22777554 5.4295 5.652e-08 ***

log(pcap) 0.08257977 0.03617371 2.2829 0.02244 *

log(pc) 0.01509919 0.01977324 0.7636 0.44510 log(emp) 0.73882021 0.02934144 25.1801

Signi f. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

7、模型检验

(1)bsjktest ,Baltigi,Song,Jung, and Koh LM test for spatial panels

> bsjktest(fm, data=Produc, listw = usaww, test="C.1")

data: log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp LM = 0.2617, df = 1, p-value = 0.609 alternative hypothesis: spatial dependence in error terms, sub RE and serial corr.

Baltagi, Song, Jung and Koh C.1 conditional test (2)bsktest ,Baltigi,Song and Koh LM test for spatial panels

> bsktest(fm,data=Produc, listw = mat2listw(usaww),

+ test="LM1", standardize=TRUE)

data: log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp SLM1 = 0.083, p-value = 0.9338

alternative hypothesis: Random effects

Baltagi, Song and Koh SLM1 marginal test (3)Covariance extractor method for splm objects

> sarremod

> library(lmtest)

> coeftest(sarremod)

z test of coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 1.65814995 0.15071855 11.0016

log(emp) 0.67081075 0.02642113 25.3892

unemp -0.00579716 0.00089175 -6.5009 7.984e-11 *** ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> library(car)

> lht(sarremod,"log(pcap)=log(pc)")

Linear hypothesis test Hypothesis:

log(pcap) - log(pc) = 0 Model 1: restricted model Model 2: function (x, ...)

UseMethod("formula") Df Chisq Pr(>Chisq) 1 2 1 36.268 1.719e-09 *** ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(更多详情请查看splm 的help 文档以及文后列的参考文献)

参考文献

1.Baltagi,B.H.,Song,S.H.,Jung B. and Koh, W.(2007) Testing panel data regression models with spatial and serial error correlation. Journal of Econometrics,140,5-51

2.Baltagi,B.H.,Song,S.H and Koh, W.(2003) Testing panel data regression models with spatial error correlation. Journal of Econometrics,117,123-150

3.Millo,G.,Piras,G.(2012) splm:Spatial Panel Data Models in R. Journal of Statistical Software,47(1),1-38.URL

4.Elhorst, J.P (2003) Specification and estimation of spatial panel data models, International

Regional Science Review,26,pages 244-268

5.Elhorst, J.P(2009) Spatial panel data models, In Fisher,M.M. and Getis,A.(eds),Handbook of Applied Spatial Analysis Springer,Berlin

6.Giovanni Millo and Gaetano Carmeci,(2011) “Non-life insurance consumption in Italy: a subregional panel data analysis”, Journal of Geographical Systems,13:273-298

7.Qu Feng and William C. Horrace,(2012)”Alternative Measures of Technical Efficiency :Skew,Bias and Scale”, Journal of Applied Econometrics, Forthcoming.

8.Kapoor,M.,Kelejian,H.H. and Prucha,I.R.(2007) Panel data model with spatially correlated error components,Journal of Econometrics,140,pages 97-130

9.Mutl,J.,and Pfaffermayr,M.(2011) The Hausman test in a Cliff and Ord panel model,Econometrics Journal,14,pages 48-76

10.Kelejian,H.H. and Prucha,I.R.(1999) A Generalied Moments Estimator for the Autoregressive Parameter in a Spatial Model, International Economic Reviews,40, pages509-533

11. Kelejian,H.H. and Prucha,I.R.(1999) A Generalied Spatial Two Stage Least Square Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances,Journal of Real Estate Finance and Economics,17,pages99-122

12.Millo,G.(2013) Maximum likelihood estimation of spatially and serially correlated panel with random effects. Computational Statistics and Data Analysis, forthcoming.

13.Zeileis,A(2006)Object-Oriented Computation of Sandwich Estimators. Journal of Statistical Software,16(9),1-16


相关文章

  • 空间统计及计量方法学习笔记
  • 空间统计及计量方法学习笔记 1. 背景及文献综述 ....................................................... 2 2. 空间效应 ............................. ...查看


  • 实验一 遥感图像处理软件ERDAS的介绍
  • 实验一 遥感图像处理软件ERDAS 的介绍 目的: 初步认识遥感图像处理软件ERDAS 掌握ERDAS 主模块的基本操作 掌握ERDAS 视窗的操作 实验内容: 1.ERDAS 软件介绍 1.1ERDAS IMAGINE软件概述 ERDAS ...查看


  • 音频信号光纤传输技术实验讲义20150918
  • 音 频 信 号 光 纤 传 输 技 术 实 验 请爱惜实验讲义,便于其他同学使用 [目的要求] 1. 熟悉半导体电光/光电器件的基本性能及基本特性曲线的测试方法 2.了解音频信号光纤传输系统的结构及主要部件的选配原则 3.学习分析集成运放电 ...查看


  • 小脑电刺激治疗对脑性瘫痪患儿的康复作用观察
  • [摘要] 目的 观察小脑电刺激治疗对脑性瘫痪患儿的临床康复作用.方法 102例脑瘫患儿按就诊时间随机分为两组:观察组(小脑电刺激+常规康复治疗)和对照组(常规康复治疗),疗程均为3个月.治疗前和治疗后分别应用运动功能测试量表进行康复效果评定 ...查看


  • 空间计量经济学模型归纳
  • 空间计量经济学模型 空间相关性是指 yifyj,ij即yi与yj相关 模型可表示为yifyjxjii,ij其中,f为线性函数,(1)式的具体形式为   1 yiaijyjxii,iN0, ...查看


  • 组合结构在桥梁中的应用
  • 组合结构在桥梁中的应用 两种不同性质的材料组合成一个整体而共同工作的构件称为组合构件, 组合结构是由组合构件组成.例如钢筋混凝土是由钢筋和混凝土两种物理力学性能完全不同的材料组合而成. 50 多年来, 组合结构的研究与应用得到迅速发展, 至 ...查看


  • 五星级酒店精装修施工图图纸会审标准
  • 一. 方案阶段: 1. 是否有封面图纸.图纸内容是否完整. 2. 封面表题是否正确.时间是否正确. 3. 是否有图纸目录.内容是否完整. 4. 图纸目录编号.图纸名称.图号是否正确,与图纸是否一致. 5. 对建筑产品的风格.特点等进行解读是 ...查看


  • 板式家具设计
  • 书柜:立板一般间隔350㎜--800㎜不等层板高度正常为350㎜--400㎜:个性化设计一般摆放32开图书的层板高度为250㎜,摆放16开图书的层板高度为320㎜书柜的中层格板应做些活板,便于主人存放大件物品.衣柜分为被褥区:常规设计在最高 ...查看


  • 最有用的电脑知识
  • 双击"我的电脑"- -右键点C盘--点"属性"--点"磁盘清理"--点"确定"--再点"是"--再点"确定".清理过程中 ...查看


热门内容