01[大学物理学]质点运动学练习题(马)

质点运动学学习材料

一、选择题

1.质点沿轨道A B 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C 处的加速度? ( )

(A ) (B ) (C ) (D )

【提示:由于质点作曲线运动,所以,加速度的方向指向曲线的内侧,又速率逐渐减小,所以加速度的切向分量与运动方向相反】

2. 一质点沿x 轴运动的规律是x =t 2-4t +5(SI 制)。则前三秒内它的 ( )

(A ) 位移和路程都是3m ;

(B ) 位移和路程都是-3m ; (C ) 位移是-3m ,路程是3m ; (D ) 位移是-3m ,路程是5m 。

【提示:将t =3代入公式,得到的是t=3时的位置,位移为t =3时的位置减去t =0时的位置;显然运动规律是一个抛物线方程,可利用求导找出极值点:

d x d t

=2t -4,当t =2时,速度υ=

d x d t

=0,所以前两秒退

了4米,后一秒进了1米,路程为5米】

ω为正常数。3.一质点的运动方程是r =R cos ωt i +R sin ωt j ,R 、从t =π/ω到t =2π/ω

时间内

(1) 该质点的位移是 ( )

(A ) -2R i ; (B ) 2R i ; (C ) -2j ; (D ) 0。

(2) 该质点经过的路程是 ( ) (A ) 2R ; (B ) πR ; (C ) 0; (D ) πR ω。

【提示:轨道方程是一个圆周方程(由运动方程平方相加可得圆方程),t =π/ω到t =2π/ω时间内质点沿圆周跑了半圈,位移为直径,路程半周长】

4. 一细直杆AB ,竖直靠在墙壁上,B 端沿水平方向以速度υ滑离墙壁,则当细杆运动到图示位置时,细杆中点C 的速度 ( )

(A ) 大小为(B ) 大小为(C ) 大小为(D ) 大小为

υ

2

,方向与B 端运动方向相同; ,方向与A 端运动方向相同; , 方向沿杆身方向; υ

υ

2

υ

2

2cos θ

,方向与水平方向成 θ 角。

l ⎧l ⎧υ=x C =sin θ⎪cx 2cos θ⎪2【提示:C 点的坐标为⎪,则⎪⎨⎨

l ⎪υ=l sin θ⎪y =cos θ

cy C

⎪⎪2⎩2⎩

⋅⋅

d θd t d θd t

,有中点C 的速度大小:υC =

l

2d t

d θ

考虑到B 的横坐标为x B =l sin θ,知已知条件υ=l cos θ⋅

d θd t

,∴υC =

υ

2cos θ

1-5.如图所示,湖中有一小船,船在离岸边s 距离处, 有人在离水面高度为h 的岸边用绳子拉船靠岸,设该 人以匀速率v 0收绳,绳不伸长且湖水静止,小船的速度 为v ,则小船作 ( ) (A )匀加速运动,υ=(C )变加速运动,υ=

2

υ0

cos θ

; (B )匀减速运动,υ=υ0cos θ; ; (D )变减速运动,υ=υ0cos θ。

2

υ0

cos θ

2

【提示:先由三角关系知x =l -h ,两边对时间求导有x ⋅

d x d t

=l ⋅

d l d t

,考虑到υ=

d x d t

,υ0=

d l d t

且cos θ=

x l

有υ=

υ0

cos θ

6.一质点沿x 轴作直线运动,其υ-t 曲线如图所示, 如t =0时,质点位于坐标原点,则t =4.5s 时,质点在 x 轴上的位置为: ( ) (A )0; (B )5m ;

(C )2m ; (D )-2m 。

【提示:由于是υ-t 曲线图,∴质点的位移为图中所围的面积。梯形面积为中位线乘高】

7.一质点在平面上运动,已知质点位置矢量的表达式为r =at i +bt j (其中a 、b 为常量) , 则该质点作: ( ) (A ) 匀速直线运动;(B )变速直线运动;(C )抛物线运动;(D )一般曲线运动.

⎧υx =2at ⎧a x =2a ⎧x =at 2

【提示:将矢量的表达式改写为⎨的轨迹方程为:y =

-

2

2

⎩y =bt

2

,则⎨

⎩υy =2bt

,⎨

⎩a y =2b

。可见加速度为恒量,考虑到质点

b a

x ,∴质点作直线运动】

2

8.一质点作直线运动,某时刻的瞬时速度为υ=2m /s ,瞬时加速度为a =-2m /s ,则一秒钟后质点的速度: ( ) (A )等于零;(B )等于-2m/s;(C )等于2m/s;(D )不能确定。

【提示:由于质点运动的加速度是瞬时,∴不能判断一秒钟后质点的速度】

1-2.一运动质点在某瞬时位于位矢r (x , y ) 的端点处,对其速度的大小有四点意见,即: (1);(2);(3);(4

( )

d t d t d t (A )只有(1)(2)正确; (B )只有(2)正确; (C )只有(2)(3)正确; (D )只有(3)(4)正确。

【提示:d r /d t 是位矢长度的变化率,d r /d t 是速度的矢量形式,d s /d t 是速率,由分量公式考虑:

d r

d s

d r

d x d y

,υy =

υx = d t d t 1--3.质点作半径为R 的变速圆周运动时,加速度大小为(v 表示任一时刻质点的速率) ( )

(A ); (B ); (C ); (D

+。

d t d t R R d υυ

2

d υυ

2

【提示:半径为R 的变速圆周运动可由自然坐标系的加速公式考虑。即a t =

d υd t

,a n =

υ

2

R

11.一小球沿斜面向上运动,其运动方程为s =5+4t -t 2(SI ),则小球运动到最高点的时刻是: ( ) (A )t =4s ; (B )t =2s ;(C )t =5s ;(D )t =8s 。

【提示:小球运动到最高时速度为0,而将运动方程对时间求导可得速度表达式】

12.质点沿直线运动,加速度a =4-t 2,如果当t =3s 时,x =9m ,υ=2m /s ,质点

的运动方程为 ( ) (A )x =-t +4t -3t +0.75; (B )x =-t +2t -(C )x =-7t +2t -

2

3

2

t

4

12t

+

3

34

t

4

12

+

214

; (D )x =-7t +2t -

2

12

【提示:求两次积分可得结果。(1)υ=得υ0=-1m /s ;(2)x =得x 0=

⎰(4-t

t

3

2

) d t =4t -

2

t

3

3

+v 0,将t =3s ,υ=2m /s 代入可t

4

⎰(-1+4t -

3

) d t =-t +2t -

12

+x 0,将t =3s ,x =9m 代入可

34

m 】

13.一物体从某高度以v 0的速度水平抛出,已知它落地时的速度为υt ,那么它运动的时间是: ( ) (A )

υt -υ0

g

;(B )

υt -υ0

2g

;(C

g

(D

2g

【提示:平抛运动落地时水平分速度仍为υ

0】

14.质点沿半径为R 的圆周作匀速率运动,每t 时间转一周,在2t 时间间隔中,其平均速度大小与平均速率大小分别为: ( )

(A )

2πR t

2πR t

; (B )0,

2πR t

; (C )0,0; (D )

2πR t

,0。

【提示:平均速度大小指的是一段时间的位移与该段时间的比值,平均速率指的是路程与该段时间的比值,显然2t 时间间隔中质点转2周,位移为0,但路程是4πR 】

1-3.质点作曲线运动,r 表示位置矢量,s 表示路程,a t 表示切向加速度,下列表达式中, (1)

d υd t

(2)=a ;

d r d t

(3)=υ;

d s d t

(4)=υ;

d υd t

=a t 。

正确的是: ( ) (A )只有(1)、(4)是正确的;(B )只有(2)、(4)是正确的; (C )只有(2)是正确的; (D )只有(3)是正确的。

【提示:(1)d v /dt 应等于切向加速度;(2)d r /dt 在极坐标系中表示径向速度v r ,而(4)中∣ d v /dt ∣为加速度的大小,所以只有(3)是正确的】

16.质点由静止开始以匀角加速度β沿半径为R 作圆周运动,如果在某一时刻此质点的总加速度a 与切向加速度a t 成45 角,则此时刻质点已转过的角度θ为: ( ) (A )

16

rad ;(B )

14

rad ;(C )

13

rad ;(D )

2

12

rad 。

【由ω=βt 知v =βtR ,则a n =

(βtR )

R

;而a t =βR ,加速度a 与切向加速度a t 成45角意味着

t 0

a t =a n ,有βt 2=1;又质点已转过的角度θ=

d υd t

βd t =

12

βt ,∴θ=

2

12

17.某物体的运动规律为

2

=-k υt ,式中的k 为大于零的常量,当t =0时,初速为υ0,

则速度υ与时间t 的函数关系为: ( ) (A )υ=

12

k t +υ0;(B )υ=-

d υ

2

12

k t +υ0;(C )

υ

2

1

υ

=

k t 2

2

+

+;(D )=-。

υ2υ0υ0

11k t

2

1

【提示:利用积分。考虑

υ

2

=-k td t ,有⎰

d υ

υ0

υ

2

=-⎰k td t 】

t

二、填空题

⎧x =-10t +30t 2

1.质点的运动方程为⎨,(式中x ,y 的单位为m ,t 的单位为s ),则该2

y =15t -20t ⎩

质点的初速度υ0=;加速度a =

【提示:对时间一次导得速度-10i +15j ,两阶导得加速度60i -40j 】

2

2.升降机以加速度为2.2m /s 上升,当上升速度为3m /s 时,有一螺丝自升降机的天花

板上松落,天花板与升降机的底面相距3m ,则螺丝从天花板落到底面所需要的时间为 秒。

【提示:考虑螺丝作初速为0,加速度为9.8+2.2=12m/s

的自由落体运动,则t =

=

1】

3.一物体作如图所示的斜抛运动,测得在轨道P 点处速度大小为角。则物体在P 点的切向加速度 υ,其方向与水平方向成30°

a t =ρ=。

【提示:只要是抛体运动,加速度就一定是竖直向下的重力加速度。考虑自然

坐标系a t =a cos θ(θ为切向和a 之间的夹角)和ρ=

υ

2

a n

,有a t =-g sin 30,a n =g cos 30】

4.试说明质点作何种运动时,将出现下述各种情况(v ≠0): (A )a t ≠0,a n ≠0; (B )a t ≠0,a n =0; (C )a t =0,a n ≠0;

【提示:(A )变速曲线运动;(B )变速直线运动;(C )匀速曲线运动】

5.一质点作直线运动,其坐标与时间的关系如图所示, 则该质点在第 秒时瞬时速度为零;在第 秒 至第 秒间速度与加速度同方向。

【提示:由于速度是曲线的斜率,所以第3秒时斜率为零也就是瞬时速度为零;从第1秒到第3秒,斜率为正,但逐渐变小,表明速度为正但加速度为负,从第3秒到第6秒,斜率为负且逐渐负方向增加,表明速度为负且加速度为负】

6.一质点沿半径为0.2m 的圆周运动, 其角位置随时间的变化规律是θ=6+5t (SI 制)。在t =2时,它的法向加速度a n =a t =。

【由ω=

2

d θd t

知υ=

Rd θd t

,再利用公式a n =

υ

2

R

和a t =

d υd t

可得a n =80m /s ,a t =2m /s 】

22

7.在x y 平面内有一运动质点,其运动学方程为:r =10cos 5t i +10sin 5t j ,则t 时刻其

速度v = ;其切向加速度的大小a t = ;该质点的运动轨迹是: 。

【∵υ=

d r d t

有υ=-50sin 5t i +50cos 5t j ;而υ=

=50(与

时间无关),∴切向加速度a t =0;运动轨迹由⎨

⎧x =10cos 5t ⎩y =10sin 5t

消去时间求得:x +y

22

=0】

8.悬挂在弹簧上的物体在竖直方向上振动, 振动方程为y =A sin ωt ,其中A 、ω均为常量, 则:(1) 物体的速度与时间的函数关系为 ;(2) 物体的速度与坐标的函数关系为 。

【提示:由υ(t ) =

d y d t

有υ(t ) =A ωcos ωt ,与振动方程联立有:υ(y ) =

1--4.在x 轴上作变加速直线运动的质点, 已知其初速度为υ0,初始位置为x 0,加速度为

a =C t (其中C 为常量) ,则其速度与时间的关系υ(t ) =2

x (t ) = 。

【提示:利用积分。

⎰υ

υ

d υ=

4

t 0

2

C t d t ,有υ(t ) =υ0+

C 3

t ,在由⎰d x =

x

3

x

t 0

(υ0+

1C t )

d t 有

3

x (t ) =x 0+υ0t +

C 12

t 】

10.灯距地面高度为h 1, 一个人身高为h 2, 在灯下以匀速率v 沿水平直线行走, 如图 所示。则他的头顶在地上的影子M 点沿 地面移动的速度v m =。

【由三角形相似有

x x -vt

=

h 1h 2

,两边对时间求导,考虑到υm =

d x d t

有υm =

h 1h 1-h 2

υ】

11.如图示,一质点P 从O 点出发以匀速率1m /s 作顺时针 转向的圆周运动,圆的半径为1m ,当它走过

23

圆周时,

走过的路程是 ;这段时间内的平均速度大小为 ; 方向是 。

【由于圆的半径为1m ,所以走过的路程(弧长)即为对应的角度,为

4π3

O

(240);平均速度却为位

4π3

,则=

m /s ;从图中不难看出,平均速

度方向与y 成30角向右下方】

12.一质点沿半径为R 的圆周运动,在t = 0时以v 0的速率经过圆周上的P 点, 此后它的

速率按υ=υ0+b t (υ0、b 为正的已知常量) 变化,则质点沿圆周运动一周再经过P 点时的切向加速度a t = ;法向加速度a n = 。

【利用公式a t =

d v d t

和a n =

υ

2

R

可得a t =b ;a n =

2

υ

2

R

=

(υ0+bt )

R

2

=

υ0+2υ0bt +b t

R

222

,考虑到运动

一周的时间可由2πR =υ0t +

12

b t 得出,代入上式得a n =

υ0R

2

+4πb 】

13.以一定初速度斜向上抛出一个物体,如果忽略空气阻力,当该物体的速度v 与水平面的夹角为θ 时,它的切向加速度的大小为a t =a n =

【见填空第3题提示,得:-g sin θ和g cos θ】

三、计算题

1-14. 一石块从空中由静止下落,由于空气阻力,石块并非作自由落体运动,现已知加速度为a =A -B v(式中A 、B 为常量),求石块的速度和运动方程。

1-22.一质点沿半径为R 的圆周按规律s =v 0t -圆周运行了多少周?

3.在离地面高度为h 的平台,有人用绳子拉小车,当人的速率v 0匀速时,试求小车的速率

和加速度大小。

1--6.已知子弹的轨迹为抛物线,初速为v 0,并且v 0与水平面的夹角为θ。试分别求出抛物线顶点及落地点的曲率半径。

5. 质点P 在水平面内沿一半径为R =1m的圆轨道转动,转动的角速度ω与时间t 的函数关系为ω=kt 2,已知t =2s时,质点P 的速率为16m/s,试求t =1s时,质点P 的速率与加速度的大小。

12

bt 而运动,v 0,b 都是常数。(1)求t

2

时刻质点总的加速度;(2)t 为何值时在数值上等于b ?(3)当加速度达到b 时,质点已沿

1-20.一直立的雨伞,张开后其边缘圆周半径为R ,离地面的高度为h ,当伞绕伞柄以匀角速ω

旋转时,求证水滴沿边缘飞出后落在地面上半径为r =

1-24.一质点在半径为0.10 m 的圆周上运动,其角位置为θ=2+4t 3。(1)求t =2. 0 s 时质点的法向加速度和切向加速度;(2)当切向加速度的大小恰等于总加速度大小的一半时,θ值为多少?(3)t 为何值时,法向加速度和切向加速度的值相等?

解答

一、选择题

1.C 2.D 3.(1) B (2) B 4.D 5.C 6.C 7.B 8.D 9.D 10.D 11.B 12.B 13.C 14.B 15.D 16.D 17.C 三、计算题 1.

解:(1)选石块静止处为原点,竖直向下方向为y 正向。 由a =

d v d t

有A -Bv =

d v d t

,则d t =

d v A -B v

⎰d t =⎰

d v (A -Bv )

积分有t =-

1B

ln A -B v +C 。

1B

ln A ,∴石块的速度为v =

A B (1-e

-B t

考虑到t =0时,v 0=0,有C =

) ;

(2)由v =

d y d t

有d y =

A B

(1-e

-B t

) d t ,则:石块的运动方程为:

y =

⎰B

A

t 0

(1-e

-B t

) d t =

A B A

(t +A B

1B

e

-B t

)

t 0

=

A B

t +

A B

2

(e

-B t

-1) 。

∴石块的运动方程为y =

B

t +

2

(e

-B t

-1)

2.

解:(1)对圆周方程求导得速度大小:v =

ds dt

=v 0-bt (注意圆周方程中是“s ”而不是“r ”)

dv ⎧

a ==-b t ⎪⎪dt

可利用自然坐标系得切向和法向加速度: ⎨

22

⎪a =v =(v 0-bt ) n ⎪⎩R R

则总的加速度:

a ==;

加速度与半径的夹角为:ϕ=arctan

a t a n

=

-Rb (v 0-bt )

2

(2

)由题意应有:

20

=b ⇒(v 0-bt ) 4=0,∴当t =

20

20

v 0b

时,a =b 。

(3)当t =

v 0b

时,s =

v

2b

,∴n =

v

2b

/2πR ,有n =

v

4πRb

3.

解:v 车=

d x d t

,v 人=

d s d t dx dt

=v 0 =

2

由于绳长不变,∴v 车=

2

2

d l d t

又由几何关系:s =l -h ,两边对t 求导有:

2s

ds dt

=

2l

dl dt

,解得:v 车=

v s a =

dv 车dt

=

v 0h

22

32

(s

2

+h

2

)

(类似问题:在离水面高度为h 的岸边,有人用绳子拉船靠岸,船在离岸边s 距离处,当人以速率v 0匀速收绳时,试求船的速率和加速度大小。)

4.

解:(1)抛物线顶点处子弹的速度v x =v 0cos θ,顶点处切向加速度为0,法向加速度为g 。 因此有:

g =

v

2

ρ1

2

=

(v 0cos θ)

2

ρ1

2

ρ1=

v 0cos θ

g

(2)在落地点时子弹的v 0,由抛物线对称性,知法向加速度方向与竖直方向成θ角,则:a n =g cos θ,有:g cos θ=

v 0

2

ρ2

则: ρ2=

v 0

2

g cos θ

5.

解:由线速度公式:υ=R ω=Rkt =1⨯kt ,将已知条件代入求得k :

2

2

k =

υ

t

2

=

162

2

2

=4。P 点的速率:υ=4t 。P 点的切向加速度大小:a t =

d υd t

=8t 。

P 点的法向加速度大小:a n =

υ

2

4

=16t 。所以,t =1时:

R

4222

υ=4t =4(m/s);a t =8t =8(m/s) ,a n =16t =16(m/s) 。

a =

=

=≈17.9(m/s2)

6.

解:由平抛公式,水滴沿边缘飞出后落在地面上所需时间为:t =

则落地距离为,s =ωRt =ω

s

考虑到水滴是沿伞的边缘切线方向飞出,有:r =

则r ==

7.

解:可由角位置求出角速度:ω=

d θd t

=12t ,则速率v =R ω=1.2t 。

22

dv ⎧

a ==2.4t t ⎪⎪dt

可利用自然坐标系得切向和法向加速度: ⎨

24v 1.44t 4⎪a ===14.4t n

⎪R 0.1⎩

总的加速度大小:a =

=

⎧a t =4.8m /s 2

(1)当t =2 s 时,⎨ 2

⎩a n =230.4m /s

(2

)由题意应有:2.4t =

12

2.414.4

16

⇒t =

3

6

,∴θ=2+4⨯

6

=3.15rad 。

(3)令2.4t =14.4t ,得t =相等。

43

=

,∴t =1/

=0.55s 时,法向加速度和切向加速度的值

质点运动学学习材料

一、选择题

1.质点沿轨道A B 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C 处的加速度? ( )

(A ) (B ) (C ) (D )

【提示:由于质点作曲线运动,所以,加速度的方向指向曲线的内侧,又速率逐渐减小,所以加速度的切向分量与运动方向相反】

2. 一质点沿x 轴运动的规律是x =t 2-4t +5(SI 制)。则前三秒内它的 ( )

(A ) 位移和路程都是3m ;

(B ) 位移和路程都是-3m ; (C ) 位移是-3m ,路程是3m ; (D ) 位移是-3m ,路程是5m 。

【提示:将t =3代入公式,得到的是t=3时的位置,位移为t =3时的位置减去t =0时的位置;显然运动规律是一个抛物线方程,可利用求导找出极值点:

d x d t

=2t -4,当t =2时,速度υ=

d x d t

=0,所以前两秒退

了4米,后一秒进了1米,路程为5米】

ω为正常数。3.一质点的运动方程是r =R cos ωt i +R sin ωt j ,R 、从t =π/ω到t =2π/ω

时间内

(1) 该质点的位移是 ( )

(A ) -2R i ; (B ) 2R i ; (C ) -2j ; (D ) 0。

(2) 该质点经过的路程是 ( ) (A ) 2R ; (B ) πR ; (C ) 0; (D ) πR ω。

【提示:轨道方程是一个圆周方程(由运动方程平方相加可得圆方程),t =π/ω到t =2π/ω时间内质点沿圆周跑了半圈,位移为直径,路程半周长】

4. 一细直杆AB ,竖直靠在墙壁上,B 端沿水平方向以速度υ滑离墙壁,则当细杆运动到图示位置时,细杆中点C 的速度 ( )

(A ) 大小为(B ) 大小为(C ) 大小为(D ) 大小为

υ

2

,方向与B 端运动方向相同; ,方向与A 端运动方向相同; , 方向沿杆身方向; υ

υ

2

υ

2

2cos θ

,方向与水平方向成 θ 角。

l ⎧l ⎧υ=x C =sin θ⎪cx 2cos θ⎪2【提示:C 点的坐标为⎪,则⎪⎨⎨

l ⎪υ=l sin θ⎪y =cos θ

cy C

⎪⎪2⎩2⎩

⋅⋅

d θd t d θd t

,有中点C 的速度大小:υC =

l

2d t

d θ

考虑到B 的横坐标为x B =l sin θ,知已知条件υ=l cos θ⋅

d θd t

,∴υC =

υ

2cos θ

1-5.如图所示,湖中有一小船,船在离岸边s 距离处, 有人在离水面高度为h 的岸边用绳子拉船靠岸,设该 人以匀速率v 0收绳,绳不伸长且湖水静止,小船的速度 为v ,则小船作 ( ) (A )匀加速运动,υ=(C )变加速运动,υ=

2

υ0

cos θ

; (B )匀减速运动,υ=υ0cos θ; ; (D )变减速运动,υ=υ0cos θ。

2

υ0

cos θ

2

【提示:先由三角关系知x =l -h ,两边对时间求导有x ⋅

d x d t

=l ⋅

d l d t

,考虑到υ=

d x d t

,υ0=

d l d t

且cos θ=

x l

有υ=

υ0

cos θ

6.一质点沿x 轴作直线运动,其υ-t 曲线如图所示, 如t =0时,质点位于坐标原点,则t =4.5s 时,质点在 x 轴上的位置为: ( ) (A )0; (B )5m ;

(C )2m ; (D )-2m 。

【提示:由于是υ-t 曲线图,∴质点的位移为图中所围的面积。梯形面积为中位线乘高】

7.一质点在平面上运动,已知质点位置矢量的表达式为r =at i +bt j (其中a 、b 为常量) , 则该质点作: ( ) (A ) 匀速直线运动;(B )变速直线运动;(C )抛物线运动;(D )一般曲线运动.

⎧υx =2at ⎧a x =2a ⎧x =at 2

【提示:将矢量的表达式改写为⎨的轨迹方程为:y =

-

2

2

⎩y =bt

2

,则⎨

⎩υy =2bt

,⎨

⎩a y =2b

。可见加速度为恒量,考虑到质点

b a

x ,∴质点作直线运动】

2

8.一质点作直线运动,某时刻的瞬时速度为υ=2m /s ,瞬时加速度为a =-2m /s ,则一秒钟后质点的速度: ( ) (A )等于零;(B )等于-2m/s;(C )等于2m/s;(D )不能确定。

【提示:由于质点运动的加速度是瞬时,∴不能判断一秒钟后质点的速度】

1-2.一运动质点在某瞬时位于位矢r (x , y ) 的端点处,对其速度的大小有四点意见,即: (1);(2);(3);(4

( )

d t d t d t (A )只有(1)(2)正确; (B )只有(2)正确; (C )只有(2)(3)正确; (D )只有(3)(4)正确。

【提示:d r /d t 是位矢长度的变化率,d r /d t 是速度的矢量形式,d s /d t 是速率,由分量公式考虑:

d r

d s

d r

d x d y

,υy =

υx = d t d t 1--3.质点作半径为R 的变速圆周运动时,加速度大小为(v 表示任一时刻质点的速率) ( )

(A ); (B ); (C ); (D

+。

d t d t R R d υυ

2

d υυ

2

【提示:半径为R 的变速圆周运动可由自然坐标系的加速公式考虑。即a t =

d υd t

,a n =

υ

2

R

11.一小球沿斜面向上运动,其运动方程为s =5+4t -t 2(SI ),则小球运动到最高点的时刻是: ( ) (A )t =4s ; (B )t =2s ;(C )t =5s ;(D )t =8s 。

【提示:小球运动到最高时速度为0,而将运动方程对时间求导可得速度表达式】

12.质点沿直线运动,加速度a =4-t 2,如果当t =3s 时,x =9m ,υ=2m /s ,质点

的运动方程为 ( ) (A )x =-t +4t -3t +0.75; (B )x =-t +2t -(C )x =-7t +2t -

2

3

2

t

4

12t

+

3

34

t

4

12

+

214

; (D )x =-7t +2t -

2

12

【提示:求两次积分可得结果。(1)υ=得υ0=-1m /s ;(2)x =得x 0=

⎰(4-t

t

3

2

) d t =4t -

2

t

3

3

+v 0,将t =3s ,υ=2m /s 代入可t

4

⎰(-1+4t -

3

) d t =-t +2t -

12

+x 0,将t =3s ,x =9m 代入可

34

m 】

13.一物体从某高度以v 0的速度水平抛出,已知它落地时的速度为υt ,那么它运动的时间是: ( ) (A )

υt -υ0

g

;(B )

υt -υ0

2g

;(C

g

(D

2g

【提示:平抛运动落地时水平分速度仍为υ

0】

14.质点沿半径为R 的圆周作匀速率运动,每t 时间转一周,在2t 时间间隔中,其平均速度大小与平均速率大小分别为: ( )

(A )

2πR t

2πR t

; (B )0,

2πR t

; (C )0,0; (D )

2πR t

,0。

【提示:平均速度大小指的是一段时间的位移与该段时间的比值,平均速率指的是路程与该段时间的比值,显然2t 时间间隔中质点转2周,位移为0,但路程是4πR 】

1-3.质点作曲线运动,r 表示位置矢量,s 表示路程,a t 表示切向加速度,下列表达式中, (1)

d υd t

(2)=a ;

d r d t

(3)=υ;

d s d t

(4)=υ;

d υd t

=a t 。

正确的是: ( ) (A )只有(1)、(4)是正确的;(B )只有(2)、(4)是正确的; (C )只有(2)是正确的; (D )只有(3)是正确的。

【提示:(1)d v /dt 应等于切向加速度;(2)d r /dt 在极坐标系中表示径向速度v r ,而(4)中∣ d v /dt ∣为加速度的大小,所以只有(3)是正确的】

16.质点由静止开始以匀角加速度β沿半径为R 作圆周运动,如果在某一时刻此质点的总加速度a 与切向加速度a t 成45 角,则此时刻质点已转过的角度θ为: ( ) (A )

16

rad ;(B )

14

rad ;(C )

13

rad ;(D )

2

12

rad 。

【由ω=βt 知v =βtR ,则a n =

(βtR )

R

;而a t =βR ,加速度a 与切向加速度a t 成45角意味着

t 0

a t =a n ,有βt 2=1;又质点已转过的角度θ=

d υd t

βd t =

12

βt ,∴θ=

2

12

17.某物体的运动规律为

2

=-k υt ,式中的k 为大于零的常量,当t =0时,初速为υ0,

则速度υ与时间t 的函数关系为: ( ) (A )υ=

12

k t +υ0;(B )υ=-

d υ

2

12

k t +υ0;(C )

υ

2

1

υ

=

k t 2

2

+

+;(D )=-。

υ2υ0υ0

11k t

2

1

【提示:利用积分。考虑

υ

2

=-k td t ,有⎰

d υ

υ0

υ

2

=-⎰k td t 】

t

二、填空题

⎧x =-10t +30t 2

1.质点的运动方程为⎨,(式中x ,y 的单位为m ,t 的单位为s ),则该2

y =15t -20t ⎩

质点的初速度υ0=;加速度a =

【提示:对时间一次导得速度-10i +15j ,两阶导得加速度60i -40j 】

2

2.升降机以加速度为2.2m /s 上升,当上升速度为3m /s 时,有一螺丝自升降机的天花

板上松落,天花板与升降机的底面相距3m ,则螺丝从天花板落到底面所需要的时间为 秒。

【提示:考虑螺丝作初速为0,加速度为9.8+2.2=12m/s

的自由落体运动,则t =

=

1】

3.一物体作如图所示的斜抛运动,测得在轨道P 点处速度大小为角。则物体在P 点的切向加速度 υ,其方向与水平方向成30°

a t =ρ=。

【提示:只要是抛体运动,加速度就一定是竖直向下的重力加速度。考虑自然

坐标系a t =a cos θ(θ为切向和a 之间的夹角)和ρ=

υ

2

a n

,有a t =-g sin 30,a n =g cos 30】

4.试说明质点作何种运动时,将出现下述各种情况(v ≠0): (A )a t ≠0,a n ≠0; (B )a t ≠0,a n =0; (C )a t =0,a n ≠0;

【提示:(A )变速曲线运动;(B )变速直线运动;(C )匀速曲线运动】

5.一质点作直线运动,其坐标与时间的关系如图所示, 则该质点在第 秒时瞬时速度为零;在第 秒 至第 秒间速度与加速度同方向。

【提示:由于速度是曲线的斜率,所以第3秒时斜率为零也就是瞬时速度为零;从第1秒到第3秒,斜率为正,但逐渐变小,表明速度为正但加速度为负,从第3秒到第6秒,斜率为负且逐渐负方向增加,表明速度为负且加速度为负】

6.一质点沿半径为0.2m 的圆周运动, 其角位置随时间的变化规律是θ=6+5t (SI 制)。在t =2时,它的法向加速度a n =a t =。

【由ω=

2

d θd t

知υ=

Rd θd t

,再利用公式a n =

υ

2

R

和a t =

d υd t

可得a n =80m /s ,a t =2m /s 】

22

7.在x y 平面内有一运动质点,其运动学方程为:r =10cos 5t i +10sin 5t j ,则t 时刻其

速度v = ;其切向加速度的大小a t = ;该质点的运动轨迹是: 。

【∵υ=

d r d t

有υ=-50sin 5t i +50cos 5t j ;而υ=

=50(与

时间无关),∴切向加速度a t =0;运动轨迹由⎨

⎧x =10cos 5t ⎩y =10sin 5t

消去时间求得:x +y

22

=0】

8.悬挂在弹簧上的物体在竖直方向上振动, 振动方程为y =A sin ωt ,其中A 、ω均为常量, 则:(1) 物体的速度与时间的函数关系为 ;(2) 物体的速度与坐标的函数关系为 。

【提示:由υ(t ) =

d y d t

有υ(t ) =A ωcos ωt ,与振动方程联立有:υ(y ) =

1--4.在x 轴上作变加速直线运动的质点, 已知其初速度为υ0,初始位置为x 0,加速度为

a =C t (其中C 为常量) ,则其速度与时间的关系υ(t ) =2

x (t ) = 。

【提示:利用积分。

⎰υ

υ

d υ=

4

t 0

2

C t d t ,有υ(t ) =υ0+

C 3

t ,在由⎰d x =

x

3

x

t 0

(υ0+

1C t )

d t 有

3

x (t ) =x 0+υ0t +

C 12

t 】

10.灯距地面高度为h 1, 一个人身高为h 2, 在灯下以匀速率v 沿水平直线行走, 如图 所示。则他的头顶在地上的影子M 点沿 地面移动的速度v m =。

【由三角形相似有

x x -vt

=

h 1h 2

,两边对时间求导,考虑到υm =

d x d t

有υm =

h 1h 1-h 2

υ】

11.如图示,一质点P 从O 点出发以匀速率1m /s 作顺时针 转向的圆周运动,圆的半径为1m ,当它走过

23

圆周时,

走过的路程是 ;这段时间内的平均速度大小为 ; 方向是 。

【由于圆的半径为1m ,所以走过的路程(弧长)即为对应的角度,为

4π3

O

(240);平均速度却为位

4π3

,则=

m /s ;从图中不难看出,平均速

度方向与y 成30角向右下方】

12.一质点沿半径为R 的圆周运动,在t = 0时以v 0的速率经过圆周上的P 点, 此后它的

速率按υ=υ0+b t (υ0、b 为正的已知常量) 变化,则质点沿圆周运动一周再经过P 点时的切向加速度a t = ;法向加速度a n = 。

【利用公式a t =

d v d t

和a n =

υ

2

R

可得a t =b ;a n =

2

υ

2

R

=

(υ0+bt )

R

2

=

υ0+2υ0bt +b t

R

222

,考虑到运动

一周的时间可由2πR =υ0t +

12

b t 得出,代入上式得a n =

υ0R

2

+4πb 】

13.以一定初速度斜向上抛出一个物体,如果忽略空气阻力,当该物体的速度v 与水平面的夹角为θ 时,它的切向加速度的大小为a t =a n =

【见填空第3题提示,得:-g sin θ和g cos θ】

三、计算题

1-14. 一石块从空中由静止下落,由于空气阻力,石块并非作自由落体运动,现已知加速度为a =A -B v(式中A 、B 为常量),求石块的速度和运动方程。

1-22.一质点沿半径为R 的圆周按规律s =v 0t -圆周运行了多少周?

3.在离地面高度为h 的平台,有人用绳子拉小车,当人的速率v 0匀速时,试求小车的速率

和加速度大小。

1--6.已知子弹的轨迹为抛物线,初速为v 0,并且v 0与水平面的夹角为θ。试分别求出抛物线顶点及落地点的曲率半径。

5. 质点P 在水平面内沿一半径为R =1m的圆轨道转动,转动的角速度ω与时间t 的函数关系为ω=kt 2,已知t =2s时,质点P 的速率为16m/s,试求t =1s时,质点P 的速率与加速度的大小。

12

bt 而运动,v 0,b 都是常数。(1)求t

2

时刻质点总的加速度;(2)t 为何值时在数值上等于b ?(3)当加速度达到b 时,质点已沿

1-20.一直立的雨伞,张开后其边缘圆周半径为R ,离地面的高度为h ,当伞绕伞柄以匀角速ω

旋转时,求证水滴沿边缘飞出后落在地面上半径为r =

1-24.一质点在半径为0.10 m 的圆周上运动,其角位置为θ=2+4t 3。(1)求t =2. 0 s 时质点的法向加速度和切向加速度;(2)当切向加速度的大小恰等于总加速度大小的一半时,θ值为多少?(3)t 为何值时,法向加速度和切向加速度的值相等?

解答

一、选择题

1.C 2.D 3.(1) B (2) B 4.D 5.C 6.C 7.B 8.D 9.D 10.D 11.B 12.B 13.C 14.B 15.D 16.D 17.C 三、计算题 1.

解:(1)选石块静止处为原点,竖直向下方向为y 正向。 由a =

d v d t

有A -Bv =

d v d t

,则d t =

d v A -B v

⎰d t =⎰

d v (A -Bv )

积分有t =-

1B

ln A -B v +C 。

1B

ln A ,∴石块的速度为v =

A B (1-e

-B t

考虑到t =0时,v 0=0,有C =

) ;

(2)由v =

d y d t

有d y =

A B

(1-e

-B t

) d t ,则:石块的运动方程为:

y =

⎰B

A

t 0

(1-e

-B t

) d t =

A B A

(t +A B

1B

e

-B t

)

t 0

=

A B

t +

A B

2

(e

-B t

-1) 。

∴石块的运动方程为y =

B

t +

2

(e

-B t

-1)

2.

解:(1)对圆周方程求导得速度大小:v =

ds dt

=v 0-bt (注意圆周方程中是“s ”而不是“r ”)

dv ⎧

a ==-b t ⎪⎪dt

可利用自然坐标系得切向和法向加速度: ⎨

22

⎪a =v =(v 0-bt ) n ⎪⎩R R

则总的加速度:

a ==;

加速度与半径的夹角为:ϕ=arctan

a t a n

=

-Rb (v 0-bt )

2

(2

)由题意应有:

20

=b ⇒(v 0-bt ) 4=0,∴当t =

20

20

v 0b

时,a =b 。

(3)当t =

v 0b

时,s =

v

2b

,∴n =

v

2b

/2πR ,有n =

v

4πRb

3.

解:v 车=

d x d t

,v 人=

d s d t dx dt

=v 0 =

2

由于绳长不变,∴v 车=

2

2

d l d t

又由几何关系:s =l -h ,两边对t 求导有:

2s

ds dt

=

2l

dl dt

,解得:v 车=

v s a =

dv 车dt

=

v 0h

22

32

(s

2

+h

2

)

(类似问题:在离水面高度为h 的岸边,有人用绳子拉船靠岸,船在离岸边s 距离处,当人以速率v 0匀速收绳时,试求船的速率和加速度大小。)

4.

解:(1)抛物线顶点处子弹的速度v x =v 0cos θ,顶点处切向加速度为0,法向加速度为g 。 因此有:

g =

v

2

ρ1

2

=

(v 0cos θ)

2

ρ1

2

ρ1=

v 0cos θ

g

(2)在落地点时子弹的v 0,由抛物线对称性,知法向加速度方向与竖直方向成θ角,则:a n =g cos θ,有:g cos θ=

v 0

2

ρ2

则: ρ2=

v 0

2

g cos θ

5.

解:由线速度公式:υ=R ω=Rkt =1⨯kt ,将已知条件代入求得k :

2

2

k =

υ

t

2

=

162

2

2

=4。P 点的速率:υ=4t 。P 点的切向加速度大小:a t =

d υd t

=8t 。

P 点的法向加速度大小:a n =

υ

2

4

=16t 。所以,t =1时:

R

4222

υ=4t =4(m/s);a t =8t =8(m/s) ,a n =16t =16(m/s) 。

a =

=

=≈17.9(m/s2)

6.

解:由平抛公式,水滴沿边缘飞出后落在地面上所需时间为:t =

则落地距离为,s =ωRt =ω

s

考虑到水滴是沿伞的边缘切线方向飞出,有:r =

则r ==

7.

解:可由角位置求出角速度:ω=

d θd t

=12t ,则速率v =R ω=1.2t 。

22

dv ⎧

a ==2.4t t ⎪⎪dt

可利用自然坐标系得切向和法向加速度: ⎨

24v 1.44t 4⎪a ===14.4t n

⎪R 0.1⎩

总的加速度大小:a =

=

⎧a t =4.8m /s 2

(1)当t =2 s 时,⎨ 2

⎩a n =230.4m /s

(2

)由题意应有:2.4t =

12

2.414.4

16

⇒t =

3

6

,∴θ=2+4⨯

6

=3.15rad 。

(3)令2.4t =14.4t ,得t =相等。

43

=

,∴t =1/

=0.55s 时,法向加速度和切向加速度的值


相关文章

  • 大学物理练习题_C1-1质点运动学
  • 本习题版权归西南交大理学院物理系所有 <大学物理AI>作业 No.01运动的描述 班级 ________ 学号 ________ 姓名 _________ 成绩 _______ 一.选择题 1.一质点沿x轴作直线运动,其v ~ ...查看


  • 大学物理学(课后答案)第3章
  • 第3章 动量守恒定律和能量守恒定律 习 题 一 选择题 3-1 以下说法正确的是[ ] (A )大力的冲量一定比小力的冲量大 (B )小力的冲量有可能比大力的冲量大 (C )速度大的物体动量一定大 (D )质量大的物体动量一定大 解析:物体 ...查看


  • 第三章大学物理练习题
  • 第三章 动量定理及动量守恒定律(习题) 3.5.1质量为2kg 的质点的运动学方程为 (t为时间,单位为s :长度单位为m). 求证质点受恒力而运动,并求力的方向大小. 解, (恒量) 3.5.2质量为m 的质点在oxy 平面内运动,质点的 ...查看


  • 大学物理平面简谐波波动方程
  • §4-2平面简谐波的波动方程 振动与波动 振动研究一个质点的运动. 区别 波动研究大量有联系的质点振动的集体表现. 联系 振动是波动的根源. 波动是振动的传播. 最简单而又最基本的波动是简谐波! 简谐波:波源以及介质中各质点的振动都是简谐振 ...查看


  • 2014年水平考试复习考点总结01 - 运动的描述
  • 第一章 运动的描述 [考点梳理] 考点1:质点 (1)没有形状.大小,而具有 的点. (2)质点是一个理想化的物理模型,实际并不存在. (3)一个物体能否看成质点,并不取决于这个物体的 大小,而是看在所研究的问题中物体的形状.大小和物体上各 ...查看


  • 大学物理学祝之光版课后练习答案
  • 大学物理学祝之光版课后练习答案 第一章 质点运动 时间 空间 1-1 一质点在平面上作曲线运动,t1 时刻的位置矢量为 r1 2i 6 j ,t2 时刻的位置 矢量为 r2 2i 4 j .求:(1)在 t t2 t1 时间内位移的矢量式: ...查看


  • 速度与时间关系练习题
  • 高一物理课时7 匀变速直线运动的速度与时间关系 班级: 姓名: 2015.10.7 1.在如图所示的速度图象中,图线1.2分别表示质点B运动速度 和时间的函数关系,v01.v02表示A.B质点各自运动的初速度,a1. a2表示A.B质点运动 ...查看


  • 高中物理-微积分题型
  • 高中物理中微积分思想 伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等:另外,在数学上也有伟大的成就,创立了微积分. 微积分(Calculus )是研究函数的微分.积分以及有关概念和应用的数学分支. ...查看


  • 力学课程标准
  • <力学>课程标准 第一部分:课程性质.课程目标 一.课程性质 本课程为物理学专业本科生专业基础课程的必修科目. 力学是物理学其他分支研究的基石和起点.本课程是物理学专业本科学生必修的第一门专业课,本课程中的知识.物理问题的研究方 ...查看


热门内容