高中数学必修3[随机事件的概率]

高中数学必修3《随机事件的概率》说课稿

尊敬的各位专家、评委:

大家好,

我说课的题目是《随机事件的概率》,内容选自于高中教材新课程人教A 版必修3第三章第一节,课时安排为三个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析四大方面来阐述我对这节课的分析和设计:

一、教材分析

1. 教材所处的地位和作用

“随机事件的概率”是第三章《概率》的第一节课,是学生学习《概率》的入门课,也是一堂概念课。现实生活中存在大量不确定事件,而概率正是研究不确定事件的一门学科。概率也是每年高考的必查内容之一,主要是对基础知识的运用以及生活中的随机事件的概率的计算,这些都是学生今后的学习、工作与生活中必备的数学素养,所以它在教材中处于非常重要的位置。

2. 教学的重点和难点

重点:①事件的分类;

②了解随机事件发生的不确定性和概率的稳定性;

③正确理解概率的定义。

难点:随机事件的概率的统计定义.

3. 多媒体课件

二、教学目标分析

1. 知识与技能目标:

(1)了解随机事件、必然事件、不可能事件的概念;

(2)正确理解事件A 出现的频率的意义;

(3)正确理解概率的概念和意义,明确事件A 发生的频率fn(A)与事件A 发生的概率P(A)的区别与联系;

(4)利用概率知识正确理解现实生活中的实际问题.

2、过程与方法:

(1)发现法教学,经历抛硬币试验获取数据的过程,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;

(2)通过三种事件的区分及用统计算法计算随机事件的概率,提高学生分析问题、解决问题的能力;

(3)通过概念的提炼和小结的归纳提高学生的语言表达和归纳能力。

3、情感态度与价值观:

(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;

(2)通过动手实验,培养学生的“做”数学的精神,享受“做”数学带来的成功喜悦。

三、教学方法与手段分析

1. 教学方法:本节课我主要采用实验发现式的教学方法,引导学生对身边的事件加以注意、分析,指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;

2. 教学手段:利用硬币及多媒体等设备辅助教学

四、教学过程分析

(一) 创设情境,引入新课(多媒体展示)

给学生讲一个故事--《1名数学家=10个师》:这是一个真实的事例,数学家运用自己的知识和方法解决了英美海军无力解决的问题,这便是数学知识的魅力所在。它告诉我们数学知识在实际生活中的作用是巨大的,特别是当今社会,随着信息时代的到来, 知识正改变着我们周围的一切,改变着世界, 改变着未来。今天, 我们一起来学习和探索当初那位数学家所运用的数学知识----------随机事件的概率问题。 「设计意图」通过故事激发学生学习本课的兴趣,并由此引出我们今天将要学习的主要内容。

(二) 讲解新课

1、开奖游戏:双色球是我国福利彩票,彩票由7个号码组成,先从“红色球号码区”的1-33个号码中选择6个号码,从“蓝色球号码区”的1-16个号码中选择1个号码组成一注进行投注。7个号码相符(6个红色球号码和1个蓝色球号码,红色球号码顺序不限) 则中头奖。

(1)请同学们每个人选取一组号码,看看你会不会中头奖。

(2)提问:你有机会中头奖吗?

2、判断下列事件是否会发生:(多媒体展示)

(1)导体通电时,发热;

(2)抛一石块,下落;

(3)在标准大气压下且温度低于0°C 时, 冰融化;

(4)在常温下,铁熔化;

「设计意图」通过动手实验,让学生参与到数学中去,引导学生对身边的事件加以注意、分析, 从而引出三个事件的定义。

3、概念提炼:

通过小组讨论,由学生代表发言,教师总结:在一定条件下必然发生的事件,叫做必然事件; 在一定条件下不可能发生的事件,叫做不可能事件; 在一定条件下可能发生也可能不发生的事件,叫做随机事件。(请同学们举出生活中的这三种事件的例子)

「设计意图」通过学生分类总结,提炼出概念,使概念更严密; 让学生自己举例子加深对概念的理解,充分发挥学生的想象力和创新力,有利于学生发散思维的培养

4、提问:由于随机事件具有不确定性,因而从表面看似乎偶然性在起支配作用,没有什么必然性。但是,人们经过长期的实践并深入研究后,发现随机事件虽然就每次试验结果来说具有不确定性,然而在大量重复实验中,它却呈现出一种完全确定的规律性。这是真的吗? 让我们用事实说话

「设计意图」创设疑问,激发学生好奇心,引出本节课突破重难点的环节。

5、实验操作:

(根据上面的提问,我设计了以下投硬币的实验)

第一步:请全班同学拿出事先就准备好的硬币,每人做10次掷硬币的试验并记录下试验结果

并提出问题1:与其他同学的试验结果比较,你的结果和他们一致吗? 为什么会出现这样的情况?

第二步:请各组的小组长把本组同学的试验结果进行统计

提出问题2:与其他各组的试验结果比较,各组的结果一致吗? 为什么?

教师总结:(1)以上试验中,正面朝上的次数叫做频数,事件A 出现的次数与总试验次数的比例叫做频率。

(2)频率的取值范围:(0,1)

第三步:请两位同学上讲台进行电脑模拟实验,一名同学负责动手实验,另一名同学负责记录实验结果,以作对比。

教师总结:我们可以看到,当试验次数很多时,出现正面的频率值在0.5附近摆动,我们可以用这个常数0.5来估计正面朝上的概率。即P(正面朝上)=0.5。因此,对于给定的事件A ,由于事件A 发生的频率随着试验次数的增加而稳定于概率P(A),因此可以用频率来估计概率P(A)。 「设计意图」根据提问一,让学生知道随机事件一次发生具有偶然性; 针对提问二,发现实验次数越多,频率数值就越有规律性,而这种规律性就反映出事件发生的可能性大小; 让学生通过第三步实验验证第二步实验得到的猜想,并从正面引出随机事件的概率的统计定义; 通过整个实验可以培养学生“做”数学的精神,享受“做”数学带来的成功喜悦。并在此通过实例、实验突破教学难点。

6、根据上面的实验总结出随机事件概率的统计定义。

「屏幕显示」对于概率的统计定义,应注意以下几点:

①求一个事件的概率的基本方法是通过大量的重复试验。

②只有当频率在某个常数附近摆动时,这个常数才叫做事件A 的概率。

③概率是频率的稳定值,而频率是概率的近似值。

④概率反映了随机事件发生的可能性的大小。

「设计意图」充分的发挥学生的主体地位,让学生学会分析问题,体验合作精神。通过教师的补充使学生对概念更清晰、理解更透彻。

(三) 拓展应用,思维升华

思考:在进行乒乓球比赛前,裁判如何决定由谁先发球的,为什么?(课前让学生准备好) 「设计意图」让学生感受到数学源于生活,而又回到生活当中去。同时也能增强学生课外知识的积累.

(四) 加强训练,及时巩固

「设计意图」根据学生的举例和自身的基础,我设计了两道关于三种事件的训练题,帮助学生对所学概念进行理解。第(3)题充分发挥学生的主体地位,让学生学会分析,引导学生仔细观察,应选取哪一个频率作为概率的近似值。

(五) 反思小结、培养能力

提问:本课学习的主要内容是什么? 它们之间有怎样的区别和联系?

①事件的分类:随机事件; 必然事件; 不可能事件.

②随机事件的概念:在一定条件下可能发生也可能不发生的事件,叫做随机事件。 ③随机事件的概率的定义:在大量重复进行同一试验时,事件A 发生是频率m/n总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率。

④概率的性质。

「设计意图」小结是引导学生对问题进行回味与深化,使知识成为系统。让学生尝试小结,提高学生的总结能力和语言表达能力。教师补充帮助学生全面地理解,掌握新知识。

(六) 课后作业,自主学习

课本练习1、2

「设计意图」布置作业让学生温故知新,同时针对学生的解答情况及时弥补和调整。

五、板书设计

课题 1、事件的分类 2、概率的定义表一 表二 表三 课堂小结

以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。

谢谢!

高中数学必修3《随机事件的概率》说课稿

尊敬的各位专家、评委:

大家好,

我说课的题目是《随机事件的概率》,内容选自于高中教材新课程人教A 版必修3第三章第一节,课时安排为三个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析四大方面来阐述我对这节课的分析和设计:

一、教材分析

1. 教材所处的地位和作用

“随机事件的概率”是第三章《概率》的第一节课,是学生学习《概率》的入门课,也是一堂概念课。现实生活中存在大量不确定事件,而概率正是研究不确定事件的一门学科。概率也是每年高考的必查内容之一,主要是对基础知识的运用以及生活中的随机事件的概率的计算,这些都是学生今后的学习、工作与生活中必备的数学素养,所以它在教材中处于非常重要的位置。

2. 教学的重点和难点

重点:①事件的分类;

②了解随机事件发生的不确定性和概率的稳定性;

③正确理解概率的定义。

难点:随机事件的概率的统计定义.

3. 多媒体课件

二、教学目标分析

1. 知识与技能目标:

(1)了解随机事件、必然事件、不可能事件的概念;

(2)正确理解事件A 出现的频率的意义;

(3)正确理解概率的概念和意义,明确事件A 发生的频率fn(A)与事件A 发生的概率P(A)的区别与联系;

(4)利用概率知识正确理解现实生活中的实际问题.

2、过程与方法:

(1)发现法教学,经历抛硬币试验获取数据的过程,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;

(2)通过三种事件的区分及用统计算法计算随机事件的概率,提高学生分析问题、解决问题的能力;

(3)通过概念的提炼和小结的归纳提高学生的语言表达和归纳能力。

3、情感态度与价值观:

(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;

(2)通过动手实验,培养学生的“做”数学的精神,享受“做”数学带来的成功喜悦。

三、教学方法与手段分析

1. 教学方法:本节课我主要采用实验发现式的教学方法,引导学生对身边的事件加以注意、分析,指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;

2. 教学手段:利用硬币及多媒体等设备辅助教学

四、教学过程分析

(一) 创设情境,引入新课(多媒体展示)

给学生讲一个故事--《1名数学家=10个师》:这是一个真实的事例,数学家运用自己的知识和方法解决了英美海军无力解决的问题,这便是数学知识的魅力所在。它告诉我们数学知识在实际生活中的作用是巨大的,特别是当今社会,随着信息时代的到来, 知识正改变着我们周围的一切,改变着世界, 改变着未来。今天, 我们一起来学习和探索当初那位数学家所运用的数学知识----------随机事件的概率问题。 「设计意图」通过故事激发学生学习本课的兴趣,并由此引出我们今天将要学习的主要内容。

(二) 讲解新课

1、开奖游戏:双色球是我国福利彩票,彩票由7个号码组成,先从“红色球号码区”的1-33个号码中选择6个号码,从“蓝色球号码区”的1-16个号码中选择1个号码组成一注进行投注。7个号码相符(6个红色球号码和1个蓝色球号码,红色球号码顺序不限) 则中头奖。

(1)请同学们每个人选取一组号码,看看你会不会中头奖。

(2)提问:你有机会中头奖吗?

2、判断下列事件是否会发生:(多媒体展示)

(1)导体通电时,发热;

(2)抛一石块,下落;

(3)在标准大气压下且温度低于0°C 时, 冰融化;

(4)在常温下,铁熔化;

「设计意图」通过动手实验,让学生参与到数学中去,引导学生对身边的事件加以注意、分析, 从而引出三个事件的定义。

3、概念提炼:

通过小组讨论,由学生代表发言,教师总结:在一定条件下必然发生的事件,叫做必然事件; 在一定条件下不可能发生的事件,叫做不可能事件; 在一定条件下可能发生也可能不发生的事件,叫做随机事件。(请同学们举出生活中的这三种事件的例子)

「设计意图」通过学生分类总结,提炼出概念,使概念更严密; 让学生自己举例子加深对概念的理解,充分发挥学生的想象力和创新力,有利于学生发散思维的培养

4、提问:由于随机事件具有不确定性,因而从表面看似乎偶然性在起支配作用,没有什么必然性。但是,人们经过长期的实践并深入研究后,发现随机事件虽然就每次试验结果来说具有不确定性,然而在大量重复实验中,它却呈现出一种完全确定的规律性。这是真的吗? 让我们用事实说话

「设计意图」创设疑问,激发学生好奇心,引出本节课突破重难点的环节。

5、实验操作:

(根据上面的提问,我设计了以下投硬币的实验)

第一步:请全班同学拿出事先就准备好的硬币,每人做10次掷硬币的试验并记录下试验结果

并提出问题1:与其他同学的试验结果比较,你的结果和他们一致吗? 为什么会出现这样的情况?

第二步:请各组的小组长把本组同学的试验结果进行统计

提出问题2:与其他各组的试验结果比较,各组的结果一致吗? 为什么?

教师总结:(1)以上试验中,正面朝上的次数叫做频数,事件A 出现的次数与总试验次数的比例叫做频率。

(2)频率的取值范围:(0,1)

第三步:请两位同学上讲台进行电脑模拟实验,一名同学负责动手实验,另一名同学负责记录实验结果,以作对比。

教师总结:我们可以看到,当试验次数很多时,出现正面的频率值在0.5附近摆动,我们可以用这个常数0.5来估计正面朝上的概率。即P(正面朝上)=0.5。因此,对于给定的事件A ,由于事件A 发生的频率随着试验次数的增加而稳定于概率P(A),因此可以用频率来估计概率P(A)。 「设计意图」根据提问一,让学生知道随机事件一次发生具有偶然性; 针对提问二,发现实验次数越多,频率数值就越有规律性,而这种规律性就反映出事件发生的可能性大小; 让学生通过第三步实验验证第二步实验得到的猜想,并从正面引出随机事件的概率的统计定义; 通过整个实验可以培养学生“做”数学的精神,享受“做”数学带来的成功喜悦。并在此通过实例、实验突破教学难点。

6、根据上面的实验总结出随机事件概率的统计定义。

「屏幕显示」对于概率的统计定义,应注意以下几点:

①求一个事件的概率的基本方法是通过大量的重复试验。

②只有当频率在某个常数附近摆动时,这个常数才叫做事件A 的概率。

③概率是频率的稳定值,而频率是概率的近似值。

④概率反映了随机事件发生的可能性的大小。

「设计意图」充分的发挥学生的主体地位,让学生学会分析问题,体验合作精神。通过教师的补充使学生对概念更清晰、理解更透彻。

(三) 拓展应用,思维升华

思考:在进行乒乓球比赛前,裁判如何决定由谁先发球的,为什么?(课前让学生准备好) 「设计意图」让学生感受到数学源于生活,而又回到生活当中去。同时也能增强学生课外知识的积累.

(四) 加强训练,及时巩固

「设计意图」根据学生的举例和自身的基础,我设计了两道关于三种事件的训练题,帮助学生对所学概念进行理解。第(3)题充分发挥学生的主体地位,让学生学会分析,引导学生仔细观察,应选取哪一个频率作为概率的近似值。

(五) 反思小结、培养能力

提问:本课学习的主要内容是什么? 它们之间有怎样的区别和联系?

①事件的分类:随机事件; 必然事件; 不可能事件.

②随机事件的概念:在一定条件下可能发生也可能不发生的事件,叫做随机事件。 ③随机事件的概率的定义:在大量重复进行同一试验时,事件A 发生是频率m/n总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率。

④概率的性质。

「设计意图」小结是引导学生对问题进行回味与深化,使知识成为系统。让学生尝试小结,提高学生的总结能力和语言表达能力。教师补充帮助学生全面地理解,掌握新知识。

(六) 课后作业,自主学习

课本练习1、2

「设计意图」布置作业让学生温故知新,同时针对学生的解答情况及时弥补和调整。

五、板书设计

课题 1、事件的分类 2、概率的定义表一 表二 表三 课堂小结

以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。

谢谢!


相关文章

  • 第一学期计划高中数学必修一和必修三
  • 高一数学第一学期教学工作计划 (2013-2014学年度) 李 海 燕 太原市第五十九中学校 2013.09 高一数学第一学期教学工作计划 2013.9-2013.1 一.学情分析 高一131班全班50人,男生20人,女生30人,高一132 ...查看


  • 人教版高中数学必修说课稿:概率的基本性质
  • 人教版高中数学必修说课稿:概率的基本性质 各位老师: 大家好! 我叫周婷婷,来自湖南科技大学.我说课的题目是<概率的基本性质>,内容选自于高中教材新课程人教A 版必修3第三章第一节,课时安排为三个课时,本节课内容为第三课时.下面 ...查看


  • 人教版高中数学必修说课稿
  • 人教版高中数学必修说课稿:概率的意义 各位老师: 大家好! 我叫周婷婷,来自龙山中学.我说课的题目是<概率的意义>,内容选自于高中教材新课程人教A 版必修3第三章第一节,课时安排为三个课时,本节课内容为第二课时.下面我将从教材分 ...查看


  • 高中数学必修三概率知识点
  • 第三章 概 率 3.1.1 -3.1.2随机事件的概率及概率的意义 1.基本概念: (1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件: (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件: ( ...查看


  • 高中数学必修三
  • 芜湖启东辅导学校--高考数学一轮复习章节分类汇编 (文|理) 编辑:王玉国 高中数学必修三 第二章.统计 2.1随机抽样 1.简单随机抽样 (1)简单随机抽样的概念 一般地,设总体中有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ...查看


  • 高中数学必修三 练习题(包含答案)
  • 必修三测试题 参考公式: 1. 回归直线方程方程: ,其中 , . 2. 样本方差: 一.填空 1. 在下列各图中,每个图的两个变量具有相关关系的图是( ) (1) (2) (3) (4) A .(1)(2) B .(1)(3) C .(2 ...查看


  • 高中理科数学课时内容安排与目录
  • 高中理科数学课时内容安排与目录 必修1_必修4_必修5_必修2_必修3及选修2-1_2-2_2-3 必修1:(13+14+9 = 约36课时) 第一章:集合与函数概念(4+4+3+1+1= 约13课时) 1.1集合 (约4课时) 1.1.1 ...查看


  • 高中数学必修三:知识点
  • 必修3:知识点 一:算法初步 1:算法的概念 (1)算法概念:通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的, 而且能够在有限步之内完成. (2)算法的特点: ①有限性:一个算法的步骤序列是有限的,必须 ...查看


  • 高一数学必修三期末测试题1
  • 高一数学期末试题 (总分:100分 时间:90分钟 ) 一. 选择题 :(每小题3分,共36分) 1.计算机执行下面的程序段后,输出的结果是( ) a =1 b =3 a =a +b b = a -b PRINT a ,b A .1,3 B ...查看


热门内容