(人教版九年级上册数学)概念定义公式归纳

九年级上册数学概念、定义、公式归纳

一、二次根式 1.

2. 二次根式的被开方数为非负数。所有二次根式都是非负数。 3.

4.

二次根式乘法法则: 反过来也适用。

5.

二次根式除法法则:,反过来也适用。

6. 被开方数不含分母、不含能开得尽方的因数或因式的二次根式,称为最简二次根式。

7. 二次根式加减法则:先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。

二、一元二次方程

8. 等号的两边都是整式,只含有一个未知数,并且未知数的最高次数是2,这样的方程叫一元二次方程。

9. 一元二次方程的一般形式:ax ²+bx+c=0(a ≠0),其中a 叫做二次项系数,b 叫做一次项系数,c 是常数项。

10. 解一元二次方程的基本思路是“降次”。方法有四种:

①直接开平方法。如果方程能化成x ²=p或(mx+n)²=p(p ≥0)的形式,那么x=±√p ,或mx+n=±√p 。

②配方法:(1)移项,把常数项移到等号右边。(2)系数化为1,方程两边同除以二次项系数。(3)配方,等号两边同加一次项系数一半的平方。(4)直接开平方。

③公式法。(1)运用根的判别式b ²-4ac 判断根的情况。若判别式△小于0,则方程无实数根;若等于0,则有两个相等的实数根;若大于0,则有两个不相等的实数根。(2)△≥0时,运用一元二次方程的求根公式“-b ±√b ²-4ac /2a”来解方程。

④因式分解法。把方程化为mn=0的形式。

11. 求两个单位时间段平均增长(减少)率公式:a(1±x) ²=b

三、旋转

12. 把一个平面图形绕着平面内某一点O 转动一个角度,叫做图形的旋转。点O 叫旋转中心,转动的角叫旋转角,转动方向有顺时针和逆时针两种。

13. 旋转的性质:①对应点到旋转中心距离相等。②对应点与旋转中心所连线段的夹角等于旋转角。③旋转前后图形全等。

14. 把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形中心对称。这个点叫对称中心,对应点叫做关于中心的对称点。

15. 中心对称性质:①中心对称的两个图形全等。②中心对称的两个图形,对称点所连线段都经过对称中心,且被对称中心所平分。

16. 把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。

17. 平面直角坐标系中,A 点(x,y )关于原点对称的B 点坐标为(-x ,-y )。

四、圆

18. 在一个平面内,线段OA 绕它固定的一个断点O 旋转一周,另一个端点A 所形成的图形叫做圆,O 叫做圆心,线段OA 叫做半径。圆也可以看成是所有到定点的距离等于定长的点的集合。

19. 连接圆上任意两点的线段叫做弦。经过圆心的弦是直径,直径是最长的弦。

20. 圆上任意两点间的部分叫做弧。弧分三种:①大于半圆的弧,叫做优弧;②小于半圆的弧,叫做劣弧;③圆的直径所对的每一条弧,叫半圆。

21. 能够重合的两个圆叫等圆。半径相等的圆是等圆,同圆或等圆半径相等。在同圆或等圆中,能够互相重合的弧叫做等弧。

22. 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。垂径定理的推论:平分不是直径的弦的直径垂直于弦,并且平分弦所对的两条弧。

23. 顶点在圆心的角叫圆心角。在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等。

24. 顶点在圆上,并且两边都与圆相交的角叫圆周角。圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。圆周角定理的推论:①在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等。②直径所对的圆周角是直角,90°的圆周角所对的弦是直径。

25. 如果一个多边形的所有顶点都在同一个圆上,这个多边形叫圆内接多边形,这个圆叫做多边形的外接圆。

26. 圆内接四边形对角互补。

27. 如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形。

28. 如果圆O 半径为r ,点P 到圆心距离为d ,则:

点P 在圆外d>r ;点P 在圆上d=r;点P 在圆内d<r ;

29. 不在同一直线上的三个点确定一个圆。

30. 三角形三条边垂直平分线的交点叫做三角形的外心。

切线的性质定理:圆的切线垂直于过切点的半径。

33. 经过圆外一点作圆的切线,这个点和切点之间的线段的长,叫做这个点到圆的切线长。

34. 切线长定理:从圆外一点可以引圆的两条切线,他们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

35. 与三角形各边都相切的圆叫做三角形的内切圆。内切圆的圆心是三角形的内心,即三角形三条角平分线的交点。

37. 各边相等、各角也相等的多边形叫正多边形。正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距。

38. 弧长公式:L=nπR/180

扇形面积公式:S 扇形=nπR ²/360=1/2LR

圆锥侧面积公式:S 侧=πrl

圆锥全面积公式:S 全=πrl+πr ²

五、概率

39. 在一定条件下,必然发生的事件叫必然事件;必然不会发生的事件叫不可能事件;有可能发生也有可能不发生的事件,叫做随机事件,也叫不确定事件。必然事件和不可能事件统称确定性事件。

40. 对于一个随机事件A ,我们把刻画其发生可能性大小的数值,称为随机事件A 的概率,记为P (A )。P (必然事件)=1,P (不可能事件)=0,0<P (随机事件)<1。

41. 在一次试验中,有n 种可能的结果,并且他们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P(A)=m/n。

42. 求概率的方法:

①列表法。

②树形图法。

③频率法。(随着试验次数的增加,频率稳定在概率附近)

《一元二次方程》期末复习精选

1.随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.

(1)若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?

(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.

2.有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器:

(1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少?

(2)若此单位恰好花费7 500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?

3.2009年4月7日,国务院公布了《医药卫生体制改革近期重点实施方案(2009~2011年》,某市政府决定2009年投入6000万元用于改善医疗卫生服务,比2008年增加了1250万元.投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),预计2009年投入“需方”的资金将比2008年提高30%,投入“供方”的资金将比2008年提高20%.

(1)该市政府2008年投入改善医疗卫生服务的资金是多少万元?

(2)该市政府2009年投入“需方”和“供方”的资金各多少万元?

(3)该市政府预计2011年将有7260万元投入改善医疗卫生服务,若从2009~2011年每年的资金投入按相同的增长率递增,求2009~2011年的年增长率.

17、如图⊙O 中,弦AB ,CD 相交于点P ,若∠A=30 º,∠APD=70º, 则∠B 等于度

17题图 C 19题图 B C ' 20题图

18、已知关于x 的一元二次方程(k+1)x 2+x+k2-1=0的一个根是0,则k= 。

19、如图,AC 是⊙O 的直径,∠ACB =60°,连结AB ,过A 、B 两点分别作⊙O 的切线,两切线交于点P ,若已知⊙O 的半径为1,则△PAB 的周长为________;

20、如图,△ABC 以点A 为旋转中心,按逆时针方向旋转60︒,得△AB 'C ',则△ABB '是 三角形。

22、有一人患了流感,经过两轮传染后共有144人患了流感,每轮传染中平均一个人传染了几个人?

23、如图AB 是⊙o 的直径,C 是⊙o 上的一点,若AC=8㎝,AB=10㎝,OD ⊥BC 于点D ,求BD 的长?

24、已知如图,DC 是非直径的弦,且∠ABD=BCD 求证AB 是⊙O 的切线

C

25、不透明的袋中装有3个大小相同的小球,其中两个为白色,一个为红色,随机地从袋中摸取一个小球后放回,再随机地摸取一个小球,(用列表或树形图求下列事件的概率)

(1)两次取的小球都是红球的概率

(2)两次取的小球是一红一白的概率

26、某水果商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,出售价格每涨价1元,日销售量将减少20千克,

(1)现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?

(2)、每千克的水果价格多少元时商场的利润最大。

27、一个小球以5m /s 的速度开始向前滚动,并且均匀减速,4s 后小球停止滚动。

(1)、平均每秒的滚动速度减少多少。

(2)、小球滚动到5m 约用了多少时间(结果保留小数点后第一位)

九年级上册数学概念、定义、公式归纳

一、二次根式 1.

2. 二次根式的被开方数为非负数。所有二次根式都是非负数。 3.

4.

二次根式乘法法则: 反过来也适用。

5.

二次根式除法法则:,反过来也适用。

6. 被开方数不含分母、不含能开得尽方的因数或因式的二次根式,称为最简二次根式。

7. 二次根式加减法则:先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。

二、一元二次方程

8. 等号的两边都是整式,只含有一个未知数,并且未知数的最高次数是2,这样的方程叫一元二次方程。

9. 一元二次方程的一般形式:ax ²+bx+c=0(a ≠0),其中a 叫做二次项系数,b 叫做一次项系数,c 是常数项。

10. 解一元二次方程的基本思路是“降次”。方法有四种:

①直接开平方法。如果方程能化成x ²=p或(mx+n)²=p(p ≥0)的形式,那么x=±√p ,或mx+n=±√p 。

②配方法:(1)移项,把常数项移到等号右边。(2)系数化为1,方程两边同除以二次项系数。(3)配方,等号两边同加一次项系数一半的平方。(4)直接开平方。

③公式法。(1)运用根的判别式b ²-4ac 判断根的情况。若判别式△小于0,则方程无实数根;若等于0,则有两个相等的实数根;若大于0,则有两个不相等的实数根。(2)△≥0时,运用一元二次方程的求根公式“-b ±√b ²-4ac /2a”来解方程。

④因式分解法。把方程化为mn=0的形式。

11. 求两个单位时间段平均增长(减少)率公式:a(1±x) ²=b

三、旋转

12. 把一个平面图形绕着平面内某一点O 转动一个角度,叫做图形的旋转。点O 叫旋转中心,转动的角叫旋转角,转动方向有顺时针和逆时针两种。

13. 旋转的性质:①对应点到旋转中心距离相等。②对应点与旋转中心所连线段的夹角等于旋转角。③旋转前后图形全等。

14. 把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形中心对称。这个点叫对称中心,对应点叫做关于中心的对称点。

15. 中心对称性质:①中心对称的两个图形全等。②中心对称的两个图形,对称点所连线段都经过对称中心,且被对称中心所平分。

16. 把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。

17. 平面直角坐标系中,A 点(x,y )关于原点对称的B 点坐标为(-x ,-y )。

四、圆

18. 在一个平面内,线段OA 绕它固定的一个断点O 旋转一周,另一个端点A 所形成的图形叫做圆,O 叫做圆心,线段OA 叫做半径。圆也可以看成是所有到定点的距离等于定长的点的集合。

19. 连接圆上任意两点的线段叫做弦。经过圆心的弦是直径,直径是最长的弦。

20. 圆上任意两点间的部分叫做弧。弧分三种:①大于半圆的弧,叫做优弧;②小于半圆的弧,叫做劣弧;③圆的直径所对的每一条弧,叫半圆。

21. 能够重合的两个圆叫等圆。半径相等的圆是等圆,同圆或等圆半径相等。在同圆或等圆中,能够互相重合的弧叫做等弧。

22. 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。垂径定理的推论:平分不是直径的弦的直径垂直于弦,并且平分弦所对的两条弧。

23. 顶点在圆心的角叫圆心角。在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等。

24. 顶点在圆上,并且两边都与圆相交的角叫圆周角。圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。圆周角定理的推论:①在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等。②直径所对的圆周角是直角,90°的圆周角所对的弦是直径。

25. 如果一个多边形的所有顶点都在同一个圆上,这个多边形叫圆内接多边形,这个圆叫做多边形的外接圆。

26. 圆内接四边形对角互补。

27. 如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形。

28. 如果圆O 半径为r ,点P 到圆心距离为d ,则:

点P 在圆外d>r ;点P 在圆上d=r;点P 在圆内d<r ;

29. 不在同一直线上的三个点确定一个圆。

30. 三角形三条边垂直平分线的交点叫做三角形的外心。

切线的性质定理:圆的切线垂直于过切点的半径。

33. 经过圆外一点作圆的切线,这个点和切点之间的线段的长,叫做这个点到圆的切线长。

34. 切线长定理:从圆外一点可以引圆的两条切线,他们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

35. 与三角形各边都相切的圆叫做三角形的内切圆。内切圆的圆心是三角形的内心,即三角形三条角平分线的交点。

37. 各边相等、各角也相等的多边形叫正多边形。正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距。

38. 弧长公式:L=nπR/180

扇形面积公式:S 扇形=nπR ²/360=1/2LR

圆锥侧面积公式:S 侧=πrl

圆锥全面积公式:S 全=πrl+πr ²

五、概率

39. 在一定条件下,必然发生的事件叫必然事件;必然不会发生的事件叫不可能事件;有可能发生也有可能不发生的事件,叫做随机事件,也叫不确定事件。必然事件和不可能事件统称确定性事件。

40. 对于一个随机事件A ,我们把刻画其发生可能性大小的数值,称为随机事件A 的概率,记为P (A )。P (必然事件)=1,P (不可能事件)=0,0<P (随机事件)<1。

41. 在一次试验中,有n 种可能的结果,并且他们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P(A)=m/n。

42. 求概率的方法:

①列表法。

②树形图法。

③频率法。(随着试验次数的增加,频率稳定在概率附近)

《一元二次方程》期末复习精选

1.随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.

(1)若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?

(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.

2.有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器:

(1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少?

(2)若此单位恰好花费7 500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?

3.2009年4月7日,国务院公布了《医药卫生体制改革近期重点实施方案(2009~2011年》,某市政府决定2009年投入6000万元用于改善医疗卫生服务,比2008年增加了1250万元.投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),预计2009年投入“需方”的资金将比2008年提高30%,投入“供方”的资金将比2008年提高20%.

(1)该市政府2008年投入改善医疗卫生服务的资金是多少万元?

(2)该市政府2009年投入“需方”和“供方”的资金各多少万元?

(3)该市政府预计2011年将有7260万元投入改善医疗卫生服务,若从2009~2011年每年的资金投入按相同的增长率递增,求2009~2011年的年增长率.

17、如图⊙O 中,弦AB ,CD 相交于点P ,若∠A=30 º,∠APD=70º, 则∠B 等于度

17题图 C 19题图 B C ' 20题图

18、已知关于x 的一元二次方程(k+1)x 2+x+k2-1=0的一个根是0,则k= 。

19、如图,AC 是⊙O 的直径,∠ACB =60°,连结AB ,过A 、B 两点分别作⊙O 的切线,两切线交于点P ,若已知⊙O 的半径为1,则△PAB 的周长为________;

20、如图,△ABC 以点A 为旋转中心,按逆时针方向旋转60︒,得△AB 'C ',则△ABB '是 三角形。

22、有一人患了流感,经过两轮传染后共有144人患了流感,每轮传染中平均一个人传染了几个人?

23、如图AB 是⊙o 的直径,C 是⊙o 上的一点,若AC=8㎝,AB=10㎝,OD ⊥BC 于点D ,求BD 的长?

24、已知如图,DC 是非直径的弦,且∠ABD=BCD 求证AB 是⊙O 的切线

C

25、不透明的袋中装有3个大小相同的小球,其中两个为白色,一个为红色,随机地从袋中摸取一个小球后放回,再随机地摸取一个小球,(用列表或树形图求下列事件的概率)

(1)两次取的小球都是红球的概率

(2)两次取的小球是一红一白的概率

26、某水果商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,出售价格每涨价1元,日销售量将减少20千克,

(1)现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?

(2)、每千克的水果价格多少元时商场的利润最大。

27、一个小球以5m /s 的速度开始向前滚动,并且均匀减速,4s 后小球停止滚动。

(1)、平均每秒的滚动速度减少多少。

(2)、小球滚动到5m 约用了多少时间(结果保留小数点后第一位)


相关文章

  • 函数概念梳理
  • 函数概念梳理--王雪 1. 小学涉及函数思想的内容 1.1北师大版小学教材 北师大版教材,四年级下册,第七章<方程的认识> 北师大版教材,六年级下册,第二章<正比例和反比例> 1.2人教版小学教材 人教版教材,五年级 ...查看


  • 若水情的图书馆小学二年级数学文章集
  • 小学二年级数学两位数乘法的巧算 小学二年级数学两位数乘法的巧算.对乘法要求以乘数是两位数的为主,一般不超过三位数.下面归纳总结出一些两位数乘法的巧算方法,以便提高学生的计算能力,增加灵活性.2. 两尾数相乘,作后两位数.6×4=24 作后两 ...查看


  • 人教版八年级上册数学轴对称说课稿
  • <轴对称>说课稿 李智敏 尊敬的各位评委.各位老师大家好! 我今天说课的内容是八年级数学上册第十三单元第一节的第一课时--轴对称.下面我将从教材分析.教学目标.教学重难点.教法和学法.教学准备.教学过程以及板书设计这七个方面进行 ...查看


  • 人教版初中数学九年级上册[图形的旋转]课件 教案
  • <23.1图形的旋转第1课时>教案设计 [教学内容]:新人教版九年级上册23章23.1图形的旋转(P59-P 61) [教学目标]: 1. 经历对生活中与旋转现象有关的图形进行观察.思考.分析.概括.抽象等过程,进一步发展学生的 ...查看


  • 数学课中蕴含的数学思想
  • 数学课中蕴含的数学思想 一.数形结合的思想方法 数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题.解决问题,就是数形结合思想."数形结合"可以借助简单的图形.符号和文字所作的示意图,促进学生形象 ...查看


  • 小学数学四五年级重点说课稿
  • 各位评委老师早上好! 今天我说课的内容是三角形面积计算.三角形面积计算是小学人教版第九册69-73页的内容.是在学习了三角形的认识以及长方形.平行四边形的基础上安排本课.在学习平行四边形面积计算时学生们 已经初步感受到可以用剪切.平移.旋转 ...查看


  • 因式分解说课稿
  • 八年级数学说课稿:<因式分解复习课> 蔡川九年制学校 屈婷 尊敬的各位领导.各位老师: 大家好!今天我说课的题目是:<因式分解复习>,是人教版八年级上册第十四章的一节内容,我准备从教材分析,教法指导.学法分析,教学程 ...查看


  • 人教版六年级上册数学科第二单元教学反思
  • 六年级上册数学科第二单元教学反思 陈志坚 第二单元<倒数的认识>教学反思 "倒数的认识"是在学习了分数乘法的基础上进行教学的,主要是为后面学习分数除法做准备.这一课时的内容主要是让学生理解倒数的意义和会求一个 ...查看


  • 基于"经验之塔"理论的教学设计
  • [摘 要] 本文从戴尔的"经验之塔"以及布鲁纳的"经验之塔"出发,以人教版九年级数学"图形的旋转"为例,详述了"经验之塔"下的教学设计,以期教学效果更上一层楼. ...查看


热门内容