遗传算法求解TSP问题实验报告

人工智能实验报告 实验六 遗传算法实验II

一、实验目的:

熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。

二、实验原理:

旅行商问题,即TSP问题(Traveling Salesman Problem)是数学领域中著名问题之一。假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路经的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。TSP问题是一个组合优化问题。该问题可以被证明具有NPC计算复杂性。因此,任何能使该问题的求解得以简化的方法,都将受到高度的评价和关注。

遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程。它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体。这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代。后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程。群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解。要求利用遗传算法求解TSP问题的最短路径。

三、实验内容:

1、参考实验系统给出的遗传算法核心代码,用遗传算法求解TSP的优化问题,分析遗传

算法求解不同规模TSP问题的算法性能。

2、对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。 3、增加1种变异策略和1种个体选择概率分配策略,比较求解同一TSP问题时不同变异策略及不同个体选择分配策略对算法结果的影响。 4、上交源代码。

四、实验报告要求:

1、画出遗传算法求解TSP问题的流程图。

2、 分析遗传算法求解不同规模的TSP问题的算法性能。

规模越大,算法的性能越差,所用时间越长。

3、对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。

最大迭代步数:100 交叉概率:0.85 变异概率:0.15

如表所示,显然最短路径为25.1652m,最优路径为1-0-9-1-3-6-7-5-8-4-2或3-1-0-9-2-4-8-5-7-6,注意到这是一圈,顺时针或者逆时针都可以。当种群规模为10,20时,并没有找到最优解。因此并不是种群规模越小越好。

种群规模:25 最大迭代步数:100 变异概率:0.15 实验结果:

(注:红色表示非最优解)

在该情况下,交叉概率过低将使搜索陷入迟钝状态,得不到最优解。

种群规模:25 最大迭代步数:100 交叉概率:0.85 实验结果:

从该表可知,当变异概率过大或过低都将导致无法得到最优解。

4、增加1种变异策略和1种个体选择概率分配策略,比较求解同一TSP问题时不同变异策略及不同个体选择分配策略对算法结果的影响。

不同变异策略和不同个体选择分配策略几乎不影响算法运行的时间,但会影响适应度。

五、实验心得与体会

通过本实验,更加深入体会了参数设置对算法结果的影响。同一个算法,参数值不同,获得的结果可能会完全不同。

同时通过本次实验,使自己对遗传算法有了更进一步的了解。遗传算法是一种智能优化算法,它能较好的近似求解TSP问题,在问题规模比较大的时候,遗传算法的优势就明显体现出来,当然不能完全保证能得到最优解。

人工智能实验报告 实验六 遗传算法实验II

一、实验目的:

熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。

二、实验原理:

旅行商问题,即TSP问题(Traveling Salesman Problem)是数学领域中著名问题之一。假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路经的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。TSP问题是一个组合优化问题。该问题可以被证明具有NPC计算复杂性。因此,任何能使该问题的求解得以简化的方法,都将受到高度的评价和关注。

遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程。它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体。这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代。后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程。群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解。要求利用遗传算法求解TSP问题的最短路径。

三、实验内容:

1、参考实验系统给出的遗传算法核心代码,用遗传算法求解TSP的优化问题,分析遗传

算法求解不同规模TSP问题的算法性能。

2、对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。 3、增加1种变异策略和1种个体选择概率分配策略,比较求解同一TSP问题时不同变异策略及不同个体选择分配策略对算法结果的影响。 4、上交源代码。

四、实验报告要求:

1、画出遗传算法求解TSP问题的流程图。

2、 分析遗传算法求解不同规模的TSP问题的算法性能。

规模越大,算法的性能越差,所用时间越长。

3、对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。

最大迭代步数:100 交叉概率:0.85 变异概率:0.15

如表所示,显然最短路径为25.1652m,最优路径为1-0-9-1-3-6-7-5-8-4-2或3-1-0-9-2-4-8-5-7-6,注意到这是一圈,顺时针或者逆时针都可以。当种群规模为10,20时,并没有找到最优解。因此并不是种群规模越小越好。

种群规模:25 最大迭代步数:100 变异概率:0.15 实验结果:

(注:红色表示非最优解)

在该情况下,交叉概率过低将使搜索陷入迟钝状态,得不到最优解。

种群规模:25 最大迭代步数:100 交叉概率:0.85 实验结果:

从该表可知,当变异概率过大或过低都将导致无法得到最优解。

4、增加1种变异策略和1种个体选择概率分配策略,比较求解同一TSP问题时不同变异策略及不同个体选择分配策略对算法结果的影响。

不同变异策略和不同个体选择分配策略几乎不影响算法运行的时间,但会影响适应度。

五、实验心得与体会

通过本实验,更加深入体会了参数设置对算法结果的影响。同一个算法,参数值不同,获得的结果可能会完全不同。

同时通过本次实验,使自己对遗传算法有了更进一步的了解。遗传算法是一种智能优化算法,它能较好的近似求解TSP问题,在问题规模比较大的时候,遗传算法的优势就明显体现出来,当然不能完全保证能得到最优解。


相关文章

  • 具有变异特征的蚁群算法
  • JOURNAL OF COMPUTER RESEARCH AND DEVELOPMENT 1999年 第36卷 第10期 Vol.36 No.10 1999 具有变异特征的蚁群算法 吴庆洪 张纪会 徐心和 摘 要 蚁群算法是一种新型的模拟进 ...查看


  • 旅行商问题描述及其蚁群优化算法
  • 计算机研究与发展 JournalofComputerResearchandDevelopment ISSN 1000-1239/CN11-1777/TP 47(3):434-444.2010 基于多粒度的旅行商问题描述及其蚁群优化算法 冀俊 ...查看


  • 基于遗传算法解决TSP问题
  • 基于遗传算法解决TSP 问题 摘要 题目要求给出环游全国全部省会的最短路径方案,是传统的TSP 问题,本文将图表数据数字化后,将其转变成为线性规划问题,进而采取遗传算法用Matlab 求解出理论上的最短路径与路线图.通过第一问求出的路线顺序 ...查看


  • 模拟退火算法的旅行商问题的实现
  • 基于模拟退火算法的旅行商问题的实现 摘 要: 主要介绍了模拟退火算法的原理以及应用,并且将遗传算法应用于解决旅行商问题. 关键词:模拟退火算法 旅行商问题 中图分类号: 文献标识码:A 文章编号:1006-7043 (2004) xx-xx ...查看


  • 求解旅行商问题的离散花授粉算法_李前
  • 2016年第7期 0037-072475(2016)07-文章编号:1006- 计算机与现代化 JISUANJI YU XIANDAIHUA 总第251期 求解旅行商问题的离散花授粉算法 李 111,2 贺兴时,杨新社前, (1.西安工程大 ...查看


  • 粒子群算法和蚁群算法的结合及其在组合优化中的应用e
  • 空间电子技术 !"空间电子技术TECHNOLOGYSPACEELECTRONIC2007年第2期粒子群算法和蚁群算法的结合及其在 组合优化中的应用 张长春苏昕易克初 (西安电子科技大学综合业务网国家重点实验室,西安710071) ...查看


  • 自适应蚁群算法
  • 第 卷第 期 年 月 文章编号: ( ) 控制理论与应用 , , 自适应蚁群算法! 张纪会 (东北大学控制仿真中心・沈阳, ) 高齐圣徐心和 (青岛化工学院计算机系・青岛,・沈阳, )(东北大学控制仿真中心 ) 摘要:蚁群算法是由意大利学者 ...查看


  • 智能优化算法求解TSP问题
  • 第21卷第3期 Vol.21No.3 控 制 与 决 策 ControlandDecision 2006年3月 Mar.2006 文章编号:100120920(2006)0320241207 智能优化算法求解TSP问题 高海昌a,冯博琴a, ...查看


  • 考虑工作量平衡的多旅行商问题及其求解
  • Computer Engineering and Applications 计算机工程与应用2010,46(15)47 考虑工作量平衡的多旅行商问题及其求解 2 刘伟民1,,李苏剑1,郑爱云2,赵方庚3 2,LIU Wei-min 1,LI ...查看


热门内容