模式识别答案

模式识别试题二 答案 问答第1题

答:在模式识别学科中,就“模式”与“模式类”而言,模式类是一类事物的代表,概念或典型,而“模式”则是某一事物的具体体现,如“老头”是模式类,而王先生则是“模式”,是“老头”的具体化。 问答第2题

答:Mahalanobis距离的平方定义为:

其中x,u

为两个数据,

是一个正定对称矩阵(一般为协方差矩阵)。根据定义,距某一点的

Mahalanobis距离相等点的轨迹是超椭球,如果是单位矩阵Σ,则Mahalanobis距离就是通常的欧氏距离。 问答第3题

答:监督学习方法用来对数据实现分类,分类规则通过训练获得。该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。

非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。

就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。

使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。 问答第4题

答:动态聚类是指对当前聚类通过迭代运算改善聚类;

分级聚类则是将样本个体,按相似度标准合并,随着相似度要求的降低实现合并。 问答第5题

答:在给定观察序列

条件下分析它由某个状态序列S产生的概率似后验概率,写成

P(S|O),而通过O求对状态序列的最大似然估计,与贝叶斯决策的最小错误率决策相当。 问答第6题

答:协方差矩阵为,则

1) 对角元素是各分量的方差,非对角元素是各分量之间的协方差。

2)

主分量,通过求协方差矩阵的特征值,用得,则,相

应的特征向量为:,对应特征向量为,对应。

这两个特征向量即为主分量。 3) K-L变换的最佳准则为:

对一组数据进行按一组正交基分解,在只取相同数量分量的条件下,以均方误差计算截尾误差最小。 4) 在经主分量分解后,协方差矩阵成为对角矩阵,因而各主分量间相关消除。 问答第7题

答:

1、求数据集的主分量是非监督学习方法;

2、汉字识别对待识别字符加上相应类别号——有监督学习方法;

3、自组织特征映射——将高维数组按保留近似度向低维映射——非监督学习; 4、CT图像分割——按数据自然分布聚类——非监督学习方法; 问答第8题

答:线性分类器三种最优准则:

Fisher准则:根据两类样本一般类内密集, 类间分离的特点,寻找线性分类器最佳的法线向量方向,使两类样本在该方向上的投影满足类内尽可能密集,类间尽可能分开。 该种度量通过类内离散矩阵Sw和类间离散矩阵Sb实现。

感知准则函数:准则函数以使错分类样本到分界面距离之和最小为原则。

其优点是通过错分类样本提供的信息对分类器函数进行修正,这种准则是人工神经元网络多层感知器的基础。

支持向量机:基本思想是在两类线性可分条件下,所设计的分类器界面使两类之间的间隔为最大, 它的基本出发点是使期望泛化风险尽可能小。 问答第9题

答:按题意要求

1) H1与H2将空间划分成四个部分,按使H1与H2大于零与小于零表示成四个区域,而第一类属于(-+)区域,为方便起见,

则第一类在(++)区域。用双层感知器,

神经元用

域值,则在第一类样本输入时,两隐层结点的输出均为+1,其余则分别为(+-),(――),(-+), 故可按图设置域值。

2) 用凹函数的并表示:否则

或表示成

,如

问答第10题

答:设待求 由于

,待求

,先验概率相等。

则基于最小错误率的Bayes决策规则,在两类决策面分界面上的样本X应满足

(1)

其中按题意,(注:为方便起见,在下面计算中先去掉系数4/3)。

按题意分界面由x1=3及x2=0两条直线构成,则分界面方程为

对(1)式进行分解有

(2)

由(3)式第一项得

(3)

将(4)式与(2)式对比可知 a=1,c=1 又由c=1与

(4)

,得b2=1/4,b有两种可能,即b=1/2或b=-1/2,

如果b=1/2,则表明

则(4)式为:2X1X2 (5)

,此时分界面方程应为线性,与题意不符,只有b=-1/2

将相应结果带入(3)式第二项有

则结合(5)(2)应有

(6)

,则

(7)

解得,

由得

模式识别试题一 答案 问答第1题

答:模式类:老年人

模式:王老太,老头,老太。 模式类:年青人

模式:王明(清华大学本科生),周强(年轻教师) 模式类:老头 模式:王老头 模式类:老太 模式:王老太 问答第2题

答:由分布系数可知,A与B在空间呈圆形分布,故fisher准则中使用的投影直线应该为两圆心的连线方向,则法线应该垂直于这个方向,应为(-3,2)。 问答第3题

答:第一种方法中标记了两类样本的标号,需要人手工干预训练过程,属于监督学习方法; 第二种方法只是依照数据的自然分布,把它们划分成两类,属于非监督学习方法。 问答第4题

答:对角阵形式为:是每一维向量的自相关系数。

,只有在对角线上元素非零。根据协方差矩阵的含义,a,b,c分别

则Mahalanobis距离的展开形式是:

是三维空间的一个椭球。 问答第5题

答:近邻法分类器的每条分界线必然由两个分别属于两类的样本点决定,故一定是线性的。这些分界面拼接起来,就得到了分段线性的近邻法分类器。本题的分类器以在原图上标出。 问答第6题

答:(a)由于分类器由三个线性方程式决定,可用三个感知器

按题意,阴影部分决策域要求 因此可设计的四个神经元进行运算,为 由此可以得到神经元网络为

(b)图(b)的决策域与图(a)的差异只在于决策域要求

即构及参数是

运算函数的一种方案为

此时的网络结

问答第7题

答:按Hebb规则,有

该Hopfield网络只有1与2,以及3与4之间有联接,其联接权值都为-1。

而外触发信号(-1,1,1,1)消失后,稳态为(-1,1,-1,1) 外触发信号(1,-1,1,1)消失后,稳态为(1,-1,1,-1)或(1,-1,-1,1) 它们分别是两个存储信号的反相。 模式识别试题三 答案

问答第4题

答:设次二次曲面为

故广义权向量:

广义样本向量: 维数为9。

问答第5题

答:

由于两类样本分布形状是相同的(只是方向不同),因此w0应为两类均值的中点

下图中的绿线为最佳线性分界面。

问答第6题

答:第一类的均值向量为

问答第7题

答:求该八个数据的协方差距离,先求该八个点的均值向量,得

均方距离

由于它已是一个对角矩阵,且主对角线元素值相等,因此无需进一步做K-L变换,原坐标系的基已经是K-L变换的基, 并且任何一组正交基都可作为其K-L变换的基。

问答第8题

证明:先验概率相等条件下,基于最小错误率贝叶斯决策的分界面上两类条件概率密度函数相等。

因此有:

化简为

问答第9题 解: (1)

,是一个圆的方程。

这是一个超球的方程。 (2) 由

可以推出

是m距离下的超球。

(3)从上式可以看出

模式识别 试卷一

问答题

一、 试从模式类与模式概念分析以下词之间的关系: 王老头,王老太,王明(清华大学本科生),周强(年轻教师),老年人,老头,老太,年青人。

二、 已知A类与B类样本在空间的分布为离散分布

其中

试问:按Fisher准则设计线性分类器的法线向量。

三、 对一副道路图像,希望把道路部分划分出来,可以采用以下两种方法:

1. 在该图像中分别在道路部分与非道路部分画出一个窗口,把在这两个窗口中的象素数据作为训练集,用Fisher准则方法求得分类器参数,再用该分类器对整幅图进行分类。

2. 将整幅图的每个象素的属性记录在一张数据表中,然后用某种方法将这些数据按它们的自然分布状况划分成两类。因此每个象素就分别得到相应的类别好,从而实现了道路图像的分割。 试问以上两种方法哪一种是监督学习,哪个是非监督学习?

四、 知一数据集的协方差矩阵是一个对角阵,数据集的维数为3,试问该协方差矩阵中每个元素的含义,并说明Mahalanobis距离为常数的数据点的轨迹的特点。

五、 为什么说近邻法的分类器是线性分类器,试以以下样本数据集说明,并画出用近邻法得到的分类器

第一类样本:(0,1)T,(0,1)T 第二类样本:(0,0)T,(-1,0)T

六、设在二维特征空间中有三个线性分类器,其分界面方程分别为 X1=0.5 X2=0.5 X1+X2=0 现欲由该三个线性方程构造两个分类器,分别如下图(a)与(b)所示

试设计两个多层感知器,分别实现这两个分类器,神经元网络采用域值函数,即输出函数 y=f(h)为

七、现欲利用离散Hopfield模型存储两个四维的数据 (-1 1 1 -1)及(-1 1 -1 1) 试求该Hopfield模型的联接参数,并求

1. 触发信号为(-1,1,1,1)撤销后的输出状态

2. 触发信号为(1,-1,1,1)撤销后的输出状态

模式识别 试卷二

问答题

一、 试问“模式”与“模式类”的含义。如果一位姓王的先生是位老年人,试问“王先生”和“老头”谁是模式,谁是模式类?

二、试说明Mahalanobis距离平方的定义,到某点的Mahalanobis距离平方为常数的轨迹的几何意义,它与欧氏距离的区别与联系。

三、试说明用监督学习与非监督学习两种方法对道路图像中道路区域的划分的基本做法,以说明这两种学习方法的定义与它们间的区别。

四、试述动态聚类与分级聚类这两种方法的原理与不同。

五、如果观察一个时序信号时在离散时刻序列得到的观察量序列表示为

该时序信号的内在状态序列表示成,而。如果计算在给定O条件下出现S的概率,试问

此概率是何种概率。如果从观察序列来估计状态序列的最大似然估计,这与Bayes决策中基于最小错误率的决策有什么关系。

六、已知一组数据的协方差矩阵为

1. 协方差矩阵中各元素的含义。

2. 求该数组的两个主分量。 ,试问

3. 主分量分析或称K-L变换,它的最佳准则是什么?

4. 为什么说经主分量分析后,消除了各分量之间的相关性。

七、试说明以下问题求解是基于监督学习或是非监督学习:

1. 求数据集的主分量

2. 汉字识别

3. 自组织特征映射

4. CT图像的分割

八、试列举线性分类器中最著名的三种最佳准则以及它们各自的原理。

九、在一两维特征空间,两类决策域由两条直线H1和H2分界,

其中

而包含H1与H2的锐角部分为第一类,其余为第二类。

试求:

1.用一双层感知器构造该分类器

2.用凹函数的并构造该分类器

十、设有两类正态分布的样本基于最小错误率的贝叶斯决策分界面,分别为X2=0,以及X1=3,其中两类的协方差矩阵 试求:以及。

,先验概率相等,并且有, 。

问答题

一、由McCulloch-Pitts模型组成的神经元网络的结构与参数如图所示。

已知X0, X1与X2都属于{0,1},试求的真值表。

(McCulloch-Pitts)使用的模型参数为:

二、如标准数字1在5×7的方格中表示成如图所示的黑白图像,黑为1,白为0,现若有一数字1在5×7网格中向左错了一列。试用分别计算要与标准模板之间的欧氏距离、绝对值偏差、偏差的夹角表示,以及用“异或”计算两者差异。

三、证明在Σ正定或半正定时,mahalanobis距离r符合距离定义的三个条件,即

(1) r(a,b)=r(b,a)

(2) 当且仅当a=b时,有r(a,b)=0

(3) r(a,c)≤r(a,b)+r(b,c)

四、设在三维空间中一个类别分类问题拟采用二次曲面。如欲采用广义线性方程求解。试向其广义样本向量与广义权向量的表达式,其维数是多少?

五、设两类样本的类内离散矩阵分别为

试用fisher准则求其决策面方程。

六、已知有两类数据,分别为

试求:该组数据的类内及类间离散矩阵及。

模式识别试题二 答案 问答第1题

答:在模式识别学科中,就“模式”与“模式类”而言,模式类是一类事物的代表,概念或典型,而“模式”则是某一事物的具体体现,如“老头”是模式类,而王先生则是“模式”,是“老头”的具体化。 问答第2题

答:Mahalanobis距离的平方定义为:

其中x,u

为两个数据,

是一个正定对称矩阵(一般为协方差矩阵)。根据定义,距某一点的

Mahalanobis距离相等点的轨迹是超椭球,如果是单位矩阵Σ,则Mahalanobis距离就是通常的欧氏距离。 问答第3题

答:监督学习方法用来对数据实现分类,分类规则通过训练获得。该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。

非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。

就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。

使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。 问答第4题

答:动态聚类是指对当前聚类通过迭代运算改善聚类;

分级聚类则是将样本个体,按相似度标准合并,随着相似度要求的降低实现合并。 问答第5题

答:在给定观察序列

条件下分析它由某个状态序列S产生的概率似后验概率,写成

P(S|O),而通过O求对状态序列的最大似然估计,与贝叶斯决策的最小错误率决策相当。 问答第6题

答:协方差矩阵为,则

1) 对角元素是各分量的方差,非对角元素是各分量之间的协方差。

2)

主分量,通过求协方差矩阵的特征值,用得,则,相

应的特征向量为:,对应特征向量为,对应。

这两个特征向量即为主分量。 3) K-L变换的最佳准则为:

对一组数据进行按一组正交基分解,在只取相同数量分量的条件下,以均方误差计算截尾误差最小。 4) 在经主分量分解后,协方差矩阵成为对角矩阵,因而各主分量间相关消除。 问答第7题

答:

1、求数据集的主分量是非监督学习方法;

2、汉字识别对待识别字符加上相应类别号——有监督学习方法;

3、自组织特征映射——将高维数组按保留近似度向低维映射——非监督学习; 4、CT图像分割——按数据自然分布聚类——非监督学习方法; 问答第8题

答:线性分类器三种最优准则:

Fisher准则:根据两类样本一般类内密集, 类间分离的特点,寻找线性分类器最佳的法线向量方向,使两类样本在该方向上的投影满足类内尽可能密集,类间尽可能分开。 该种度量通过类内离散矩阵Sw和类间离散矩阵Sb实现。

感知准则函数:准则函数以使错分类样本到分界面距离之和最小为原则。

其优点是通过错分类样本提供的信息对分类器函数进行修正,这种准则是人工神经元网络多层感知器的基础。

支持向量机:基本思想是在两类线性可分条件下,所设计的分类器界面使两类之间的间隔为最大, 它的基本出发点是使期望泛化风险尽可能小。 问答第9题

答:按题意要求

1) H1与H2将空间划分成四个部分,按使H1与H2大于零与小于零表示成四个区域,而第一类属于(-+)区域,为方便起见,

则第一类在(++)区域。用双层感知器,

神经元用

域值,则在第一类样本输入时,两隐层结点的输出均为+1,其余则分别为(+-),(――),(-+), 故可按图设置域值。

2) 用凹函数的并表示:否则

或表示成

,如

问答第10题

答:设待求 由于

,待求

,先验概率相等。

则基于最小错误率的Bayes决策规则,在两类决策面分界面上的样本X应满足

(1)

其中按题意,(注:为方便起见,在下面计算中先去掉系数4/3)。

按题意分界面由x1=3及x2=0两条直线构成,则分界面方程为

对(1)式进行分解有

(2)

由(3)式第一项得

(3)

将(4)式与(2)式对比可知 a=1,c=1 又由c=1与

(4)

,得b2=1/4,b有两种可能,即b=1/2或b=-1/2,

如果b=1/2,则表明

则(4)式为:2X1X2 (5)

,此时分界面方程应为线性,与题意不符,只有b=-1/2

将相应结果带入(3)式第二项有

则结合(5)(2)应有

(6)

,则

(7)

解得,

由得

模式识别试题一 答案 问答第1题

答:模式类:老年人

模式:王老太,老头,老太。 模式类:年青人

模式:王明(清华大学本科生),周强(年轻教师) 模式类:老头 模式:王老头 模式类:老太 模式:王老太 问答第2题

答:由分布系数可知,A与B在空间呈圆形分布,故fisher准则中使用的投影直线应该为两圆心的连线方向,则法线应该垂直于这个方向,应为(-3,2)。 问答第3题

答:第一种方法中标记了两类样本的标号,需要人手工干预训练过程,属于监督学习方法; 第二种方法只是依照数据的自然分布,把它们划分成两类,属于非监督学习方法。 问答第4题

答:对角阵形式为:是每一维向量的自相关系数。

,只有在对角线上元素非零。根据协方差矩阵的含义,a,b,c分别

则Mahalanobis距离的展开形式是:

是三维空间的一个椭球。 问答第5题

答:近邻法分类器的每条分界线必然由两个分别属于两类的样本点决定,故一定是线性的。这些分界面拼接起来,就得到了分段线性的近邻法分类器。本题的分类器以在原图上标出。 问答第6题

答:(a)由于分类器由三个线性方程式决定,可用三个感知器

按题意,阴影部分决策域要求 因此可设计的四个神经元进行运算,为 由此可以得到神经元网络为

(b)图(b)的决策域与图(a)的差异只在于决策域要求

即构及参数是

运算函数的一种方案为

此时的网络结

问答第7题

答:按Hebb规则,有

该Hopfield网络只有1与2,以及3与4之间有联接,其联接权值都为-1。

而外触发信号(-1,1,1,1)消失后,稳态为(-1,1,-1,1) 外触发信号(1,-1,1,1)消失后,稳态为(1,-1,1,-1)或(1,-1,-1,1) 它们分别是两个存储信号的反相。 模式识别试题三 答案

问答第4题

答:设次二次曲面为

故广义权向量:

广义样本向量: 维数为9。

问答第5题

答:

由于两类样本分布形状是相同的(只是方向不同),因此w0应为两类均值的中点

下图中的绿线为最佳线性分界面。

问答第6题

答:第一类的均值向量为

问答第7题

答:求该八个数据的协方差距离,先求该八个点的均值向量,得

均方距离

由于它已是一个对角矩阵,且主对角线元素值相等,因此无需进一步做K-L变换,原坐标系的基已经是K-L变换的基, 并且任何一组正交基都可作为其K-L变换的基。

问答第8题

证明:先验概率相等条件下,基于最小错误率贝叶斯决策的分界面上两类条件概率密度函数相等。

因此有:

化简为

问答第9题 解: (1)

,是一个圆的方程。

这是一个超球的方程。 (2) 由

可以推出

是m距离下的超球。

(3)从上式可以看出

模式识别 试卷一

问答题

一、 试从模式类与模式概念分析以下词之间的关系: 王老头,王老太,王明(清华大学本科生),周强(年轻教师),老年人,老头,老太,年青人。

二、 已知A类与B类样本在空间的分布为离散分布

其中

试问:按Fisher准则设计线性分类器的法线向量。

三、 对一副道路图像,希望把道路部分划分出来,可以采用以下两种方法:

1. 在该图像中分别在道路部分与非道路部分画出一个窗口,把在这两个窗口中的象素数据作为训练集,用Fisher准则方法求得分类器参数,再用该分类器对整幅图进行分类。

2. 将整幅图的每个象素的属性记录在一张数据表中,然后用某种方法将这些数据按它们的自然分布状况划分成两类。因此每个象素就分别得到相应的类别好,从而实现了道路图像的分割。 试问以上两种方法哪一种是监督学习,哪个是非监督学习?

四、 知一数据集的协方差矩阵是一个对角阵,数据集的维数为3,试问该协方差矩阵中每个元素的含义,并说明Mahalanobis距离为常数的数据点的轨迹的特点。

五、 为什么说近邻法的分类器是线性分类器,试以以下样本数据集说明,并画出用近邻法得到的分类器

第一类样本:(0,1)T,(0,1)T 第二类样本:(0,0)T,(-1,0)T

六、设在二维特征空间中有三个线性分类器,其分界面方程分别为 X1=0.5 X2=0.5 X1+X2=0 现欲由该三个线性方程构造两个分类器,分别如下图(a)与(b)所示

试设计两个多层感知器,分别实现这两个分类器,神经元网络采用域值函数,即输出函数 y=f(h)为

七、现欲利用离散Hopfield模型存储两个四维的数据 (-1 1 1 -1)及(-1 1 -1 1) 试求该Hopfield模型的联接参数,并求

1. 触发信号为(-1,1,1,1)撤销后的输出状态

2. 触发信号为(1,-1,1,1)撤销后的输出状态

模式识别 试卷二

问答题

一、 试问“模式”与“模式类”的含义。如果一位姓王的先生是位老年人,试问“王先生”和“老头”谁是模式,谁是模式类?

二、试说明Mahalanobis距离平方的定义,到某点的Mahalanobis距离平方为常数的轨迹的几何意义,它与欧氏距离的区别与联系。

三、试说明用监督学习与非监督学习两种方法对道路图像中道路区域的划分的基本做法,以说明这两种学习方法的定义与它们间的区别。

四、试述动态聚类与分级聚类这两种方法的原理与不同。

五、如果观察一个时序信号时在离散时刻序列得到的观察量序列表示为

该时序信号的内在状态序列表示成,而。如果计算在给定O条件下出现S的概率,试问

此概率是何种概率。如果从观察序列来估计状态序列的最大似然估计,这与Bayes决策中基于最小错误率的决策有什么关系。

六、已知一组数据的协方差矩阵为

1. 协方差矩阵中各元素的含义。

2. 求该数组的两个主分量。 ,试问

3. 主分量分析或称K-L变换,它的最佳准则是什么?

4. 为什么说经主分量分析后,消除了各分量之间的相关性。

七、试说明以下问题求解是基于监督学习或是非监督学习:

1. 求数据集的主分量

2. 汉字识别

3. 自组织特征映射

4. CT图像的分割

八、试列举线性分类器中最著名的三种最佳准则以及它们各自的原理。

九、在一两维特征空间,两类决策域由两条直线H1和H2分界,

其中

而包含H1与H2的锐角部分为第一类,其余为第二类。

试求:

1.用一双层感知器构造该分类器

2.用凹函数的并构造该分类器

十、设有两类正态分布的样本基于最小错误率的贝叶斯决策分界面,分别为X2=0,以及X1=3,其中两类的协方差矩阵 试求:以及。

,先验概率相等,并且有, 。

问答题

一、由McCulloch-Pitts模型组成的神经元网络的结构与参数如图所示。

已知X0, X1与X2都属于{0,1},试求的真值表。

(McCulloch-Pitts)使用的模型参数为:

二、如标准数字1在5×7的方格中表示成如图所示的黑白图像,黑为1,白为0,现若有一数字1在5×7网格中向左错了一列。试用分别计算要与标准模板之间的欧氏距离、绝对值偏差、偏差的夹角表示,以及用“异或”计算两者差异。

三、证明在Σ正定或半正定时,mahalanobis距离r符合距离定义的三个条件,即

(1) r(a,b)=r(b,a)

(2) 当且仅当a=b时,有r(a,b)=0

(3) r(a,c)≤r(a,b)+r(b,c)

四、设在三维空间中一个类别分类问题拟采用二次曲面。如欲采用广义线性方程求解。试向其广义样本向量与广义权向量的表达式,其维数是多少?

五、设两类样本的类内离散矩阵分别为

试用fisher准则求其决策面方程。

六、已知有两类数据,分别为

试求:该组数据的类内及类间离散矩阵及。


相关文章

  • 认知心理学平时作业答案集(2015)
  • 认知心理学 1:[多选题]把拼图的过程比作知觉的假设检验过程,通过比较几片形状不一样的拼图从而知道某一片拼图是什么,这是: A:自上而下加工 B:自下而上加工 C:概念驱动过程 D:数据驱动过程 E:整体加工 参考答案:BD 2:[论述题] ...查看


  • 2013年继续教育公需科目答案
  • 2013年继续教育公需科目答案 注意:本试题有多套,注意较对一下题目,如不同,可关闭当前试题,重新考试,一般会换成另一套题. 信息化建设与信息安全(一)3 考试时间:30分钟 1.企业信息化内容包括( ). 多选 A 采购管理信息化 B 库 ...查看


  • 2017环保工程师考试真题及答案解析(十二)
  • 2017环保工程师考试真题及答案解析(十二) 1201.<危险废物填埋污染控制标准>规定的填埋场场址选择的要求有( ABD ). A .填埋场场址不应选在城市工农业发展规划区.农业保护区.自然保护区.风景名胜区.文物(考古) 保 ...查看


  • 第八章质量管理体系标准(2011年新版)
  • 第八章 质量管理体系标准 一.内容提要: 二.考试内容.在教材中的位置及大纲要求 第一节 概 述 1987年ISO/TCl76发布了举世瞩目的ISO 9000系列标准,我国于1988年发布了与之相应的GB/T 10300系列标准,并&quo ...查看


  • 市场营销学第二次作业
  • 市场营销学2014年下半年第二次作业 ∙ 问题 1 ∙ 得 4 分,满分 4 分 ∙ 购买决策过程:引起需要.收集信息.评价方案.决心购买.买后行为.( ) 答案 所选答案: 对 正确答案: 对 ∙ ∙ 问题 2 ∙ 得 4 分,满分 4 ...查看


  • 2014二级建造师职业资格考试绝密真题
  • 2014二级建造师职业资格绝密真题(一) 一.单选题(共170题,每题1分.每题的备选项中,只有1个最符合题意) 1. 在施工组织设计的基本内容中,能反映最佳施工方案在时间上的安排的是( ). A. 施工部署 B. 施工方案 C. 施工进度 ...查看


  • 认知心理学期末考试试题及部分答案
  • 单选题(每题1分,共10分) 答案:D 答案:A 1( )是由有关知觉对象的一般知识开始的加工,由此可以形成期望或对知觉态度的假设,这种期望或假设制约着加工的所有阶段或水平. A.自下而上加工 B.局部加工 C.整体加工 D.自上而下加工 ...查看


  • 第九章 竞争性市场营销战略
  • 第九章 竞争性市场营销战略 习题参考答案 一.单项选择题(在下列每小题中,选择一个最合适的答案.) [参考答案] 1. C 2. D 3. A 4. B 5. D 6. D 7. B 8. C 9. C 10. D 11. D 12. A ...查看


  • 2015年广西会计继续教育
  • 1. 公允价值模式全部资产采用原始成本计价. A. 对 B. 错 正确答案:B 判断题 ( 所属课程:财务报表分析案例解析 ) 页首 2. 财务报表的核心是资产计价,资产的计价模式决定了赢利的计量模式. A. 对 B. 错 正确答案:A 判 ...查看


热门内容