2015年安徽中考相似三角形中考题归纳
(2010•安徽)23.(2010•安徽)如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.
(1)若c=a1,求证:a=kc;
(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;
(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.
(2011安徽)22.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°
<θ<180°),得到△A1B1C.
AAA
E
B C 1 CB CPB
1图1 图2 1 1图3
(1)如图1,当AB∥CB1时,设A1B1与BC相交于点D.证明:△A1CD是等边三角形;
【证】
(2)如图2,连接AA1、BB1,设△ACA1和△BCB1的面积分别为S1、S2.求证:S1∶S2=1∶3;
【证】
(3)如图3,设AC的中点为E,A1B1的中点为P,AC=a,连接EP.当θ= °时,EP
的长度 1
最大,最大值为 .
(2012•安徽)22.如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG的周长相等,设BC=a、AC=b、AB=c.
(1)求线段BG的长;
(2)求证:DG平分∠EDF;
(3)连接CG,如图2,若△BDG与△DFG相似,求证:BG⊥CG.
(2013安徽)23.如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,E为 BC边上的一个动点(不与B、C重合).过E作直线AB的垂线,垂足为F. FE与DC的延长线相交于点G,连结DE,DF..
(1) 求证:ΔBEF ∽ΔCEG.
(2) 当点E在线段BC上运动时,△BEF和△CEG的周长之间有什么关系?并说明你的理由.
(3)设BE=x,△DEF的面积为 y,请你求出yAD
和x之间的函数关系式,并求出当x为何值时,yF
有最大值,最大值是多少?
M
B CxE
2
(2014安徽)17.(8分)(2014•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).
(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;
(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比不为1.
3
2015年安徽中考相似三角形中考题归纳
(2010•安徽)23.(2010•安徽)如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.
(1)若c=a1,求证:a=kc;
(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;
(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.
(2011安徽)22.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°
<θ<180°),得到△A1B1C.
AAA
E
B C 1 CB CPB
1图1 图2 1 1图3
(1)如图1,当AB∥CB1时,设A1B1与BC相交于点D.证明:△A1CD是等边三角形;
【证】
(2)如图2,连接AA1、BB1,设△ACA1和△BCB1的面积分别为S1、S2.求证:S1∶S2=1∶3;
【证】
(3)如图3,设AC的中点为E,A1B1的中点为P,AC=a,连接EP.当θ= °时,EP
的长度 1
最大,最大值为 .
(2012•安徽)22.如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG的周长相等,设BC=a、AC=b、AB=c.
(1)求线段BG的长;
(2)求证:DG平分∠EDF;
(3)连接CG,如图2,若△BDG与△DFG相似,求证:BG⊥CG.
(2013安徽)23.如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,E为 BC边上的一个动点(不与B、C重合).过E作直线AB的垂线,垂足为F. FE与DC的延长线相交于点G,连结DE,DF..
(1) 求证:ΔBEF ∽ΔCEG.
(2) 当点E在线段BC上运动时,△BEF和△CEG的周长之间有什么关系?并说明你的理由.
(3)设BE=x,△DEF的面积为 y,请你求出yAD
和x之间的函数关系式,并求出当x为何值时,yF
有最大值,最大值是多少?
M
B CxE
2
(2014安徽)17.(8分)(2014•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).
(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;
(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比不为1.
3