全错位排列

全错位排列

先看下面例子:

例1 5个人站成一排,其中甲不站第一位,乙不站第二位,共有多少种不同的站法。 这个问题在高中很多参考书上都有,有几种解法,其中一解法是用排除法:

先考虑5个有的全排列,有A55种不同的排法,然后除去甲排第一(有A44种)与乙排第二(也有A44种),但两种又有重复部分,因此多减,必须加上多减部分,这样得到共有:A55-2A44+A33=78种。

现在考虑:

例2 5个人站成一排,其中甲不站第一位,乙不站第二位,丙不站第三位,共有多少种不同的站法。

仿上分析可得:A55-3A44+3A33-A22=64种

这与全错位排列很相似。

全错位排列——即n 个元素全部都不在相应位置的排列。看下面的问题

例3 5个人站成一排,其中A 不站第一位,B 不站第二位,C 不站第三位,D 不站第四位,E 不站第五位,共有多少种不同的站法。

解析:上面例1,例2实际上可以看成n 个不同元素中有m (m≤n)不排在相应位置。 公式一:n 个不同元素排成一排,有m 个元素(m≤n)不排在相应位置的排列种数共有:从而这个问题可能用上面的公式得出:

A n

n -C m ∙1A n -1+C m ∙n -12A n -2+..... +(-1)∙C m ∙m n -2m A n -m n -m

这个公式在n =m 时亦成立

A55-C(5,1)?A44+C(5,2)?A33-C(5,3)?A22+C(5,4)?A11-C(5,5)?A00=44种

(注意A00=0! =1)

再看1993年高考题:

同室四人各写一张贺年卡,先集中起来。然后每人从中拿一张别人送出的贺年卡。则四张贺年卡不同的分配方式有

(A)6种 (B)9种 (C)11种 (D)23种

解析:由上面公式得:

A44-C(4,1)?A33+C(4,2)?A22-C(4,3)?A11+C(4,4)?A00=9种,∴选择B 答案

因此可得到全错位排列的公式:

n 个不同元素排成一排,第一个元素不在第一位,第二个元素不在第二位,……,第n 个元素不在第n 位的排列数为:

A n

n -C n ∙1A n -1+C n ∙n -12A n -2+..... +(-1)∙C n ∙n n -2n A n -n n -n

这实际上是公式一的特殊情况。这个公式很有用,只要有特殊元素不站特殊位置的问题,都可以用这个公式很快得到解决,希望这个公式对大家有所帮助

将n 个编号为1、2、3...n 的小球投入到编号为1、2、3...n 的n 个盒子中,其中第i 号球不投到第i 号盒子中(i =1,2,3,...n )的投法数为全错排列问题.

这个问题是由瑞士的数学家欧拉解决的,公式为:

11111⎡n 1⎤f (n )=n ! ⎢1-+-+-+.... +(-1) ⎥ 1! 2! 3! 4! 5! n ! ⎣⎦

其中n≥2。

2009年12月02日

排列组合问题类型繁多、方法丰富、富于变化,稍不注意,极易出错. 本文选择一些在教学中学生常见的错误进行正误解析,以飨读者.

1没有理解两个基本原理出错

排列组合问题基于两个基本计数原理,即加法原理和乘法原理,故理解“分类用加、分步用乘”是解决排列组合问题的前提.

例1(1995年上海高考题)从6台原装计算机和5台组装计算机中任意选取5台, 其中至少有原装与组装计算机各两台, 则不同的取法有 种.

误解:因为可以取2台原装与3台组装计算机或是3台原装与2台组装计算机,所以只有2种取法.

错因分析:误解的原因在于没有意识到“选取2台原装与3台组装计算机或是3台原装与2台组装计算机”是完成任务的两“类”办法,每类办法中都还有不同的取法.

正解:由分析,完成第一类办法还可以分成两步:第一步在原装计算机中任意选取2台,有种方法;第二步是在组装计算机任意选取3台,有种方法,据乘法原理共有种方法. 同理,完成第二类办法中有种方法. 据加法原理完成全部的选取过程共有种方法.

例2 在一次运动会上有四项比赛的冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有( )种.

(A ) (B ) (C ) (D )

误解:把四个冠军,排在甲、乙、丙三个位置上,选A.

错因分析:误解是没有理解乘法原理的概念,盲目地套用公式.

正解:四项比赛的冠军依次在甲、乙、丙三人中选取,每项冠军都有3种选取方法,由乘法原理共有种.

说明:本题还有同学这样误解,甲乙丙夺冠均有四种情况,由乘法原理得. 这是由于没有考虑到某项冠军一旦被一人夺得后,其他人就不再有4种夺冠可能.

2判断不出是排列还是组合出错

在判断一个问题是排列还是组合问题时,主要看元素的组成有没有顺序性,有顺序的是排列,无顺序的是组合.

例3 有大小形状相同的3个红色小球和5个白色小球,排成一排,共有多少种不同的排列方法?

误解:因为是8个小球的全排列,所以共有种方法.

错因分析:误解中没有考虑3个红色小球是完全相同的,5个白色小球也是完全相同的,同色球之间互换位置是同一种排法.

正解:8个小球排好后对应着8个位置,题中的排法相当于在8个位置中选出3个位置给红球,剩下的位置给白球,由于这3个红球完全相同,所以没有顺序,是组合问题. 这样共有:排法.

3重复计算出错

在排列组合中常会遇到元素分配问题、平均分组问题等,这些问题要注意避免重复计数,产生错误。

例4(2002年北京文科高考题)5本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为( )

(A )480 种 (B )240种 (C )120种 (D )96种

误解:先从5本书中取4本分给4个人,有种方法,剩下的1本书可以给任意一个人有4种分法,共有种不同的分法,选A. 错因分析:设5本书为、、、、,四个人为甲、乙、丙、丁. 按照上述分法可能如下的表1和表2:

表1是甲首先分得、乙分得、丙分得、丁分得,最后一本书给甲的情况;表2是甲首先分得、乙分得、丙分得、丁分得,最后一本书给甲的情况. 这两种情况是完全相同的,而在误解中计算成了不同的情况。正好重复了一次.

正解:首先把5本书转化成4本书,然后分给4个人. 第一步:从5本书中任意取出2本捆绑成一本书,有种方法;第二步:再把4本书分给4个学生,有种方法. 由乘法原理,共有种方法,故选B.

例5 某交通岗共有3人,从周一到周日的七天中,每天安排一人值班,每人至少值2天,其不同的排法共有( )种.

(A )5040 (B )1260 (C )210 (D )630

误解:第一个人先挑选2天,第二个人再挑选2天,剩下的3天给第三个人,这三个人再进行全排列. 共有:,选B.

错因分析:这里是均匀分组问题. 比如:第一人挑选的是周一、周二,第二人挑选的是周三、周四;也可能是第一个人挑选的是周三、周四,第二人挑选的是周一、周二,所以在全排列的过程中就重复计算了.

正解:种.

4遗漏计算出错

在排列组合问题中还可能由于考虑问题不够全面,因为遗漏某些情况,而出错。 例6 用数字0,1,2,3,4组成没有重复数字的比1000大的奇数共有( )

(A )36个 (B )48个 (C )66个 (D )72个 误解:如右图,最后一位只能是1或3有两种取法,

又因为第1位不能是0,在最后一位取定后只有3种取

法,剩下3个数排中间两个位置有种排法,共有个.

错因分析:误解只考虑了四位数的情况,而比1000大的奇数还可能是五位数.

正解:任一个五位的奇数都符合要求,共有个,再由前面分析四位数个数和五位数个数之和共有72个,选D.

5忽视题设条件出错 在解决排列组合问题时一定要注意题目中的每一句话甚至每一个字和符号,不然就可能多解或者漏解

例7 (2003全国高考题) 如图,一个

地区分为5个行政区域,现给地图着色,

要求相邻区域不得使用同一颜色,现有4

种颜色可供选择,则不同的着色方法共有 种. (以数字作答)

误解:先着色第一区域,有4种方法,剩下3种颜色涂四个区域,即有一种颜色涂相对的两块区域,有种,由乘法原理共有:种.

错因分析:据报导,在高考中有很多考生填了48种. 这主要是没有看清题设“有4种颜色可供选择”,不一定需要4种颜色全部使用,用3种也可以完成任务.

正解:当使用四种颜色时,由前面的误解知有48种着色方法;当仅使用三种颜色时:从4种颜色中选取3种有种方法,先着色第一区域,有3种方法,剩下2种颜色涂四个区域,只能是一种颜色涂第2、4区域,另一种颜色涂第3、5区域,有2种着色方法,由乘法原理有种. 综上共有:种.

例8 已知是关于的一元二次方程,其中、,求解集不同的一元二次方程的个数.

误解:从集合中任意取两个元素作为、,方程有个,当、取同一个数时方程有1个,共有个.

错因分析:误解中没有注意到题设中:“求解集不同的……”所以在上述解法中要去掉同解情况,由于同解、同解,故要减去2个。

正解:由分析,共有个解集不同的一元二次方程.

6未考虑特殊情况出错

在排列组合中要特别注意一些特殊情况,一有疏漏就会出错.

例9 现有1角、2角、5角、1元、2元、5元、10元、50元人民币各一张,100元人民币2张,从中至少取一张,共可组成不同的币值种数是( )

(A)1024种 (B)1023种 (C)1536种 (D)1535种

误解:因为共有人民币10张,每张人民币都有取和不取2种情况,减去全不取的1种情况,共有种.

错因分析:这里100元面值比较特殊有两张,在误解中被计算成 4 种情况,实际上只有不取、取一张和取二张3种情况.

正解:除100元人民币以外每张均有取和不取2种情况,100元人民币的取法有3种情况,再减去全不取的1种情况,所以共有种.

7题意的理解偏差出错

例10 现有8个人排成一排照相,其中有甲、乙、丙三人不能相邻的排法有( )种.

(A ) (B ) (C ) (D )

错因分析:误解中没有理解“甲、乙、丙三人不能相邻”的含义,得到的结果是“甲、乙、丙三人互不相邻”的情况.“甲、乙、丙三人不能相邻”是指甲、乙、丙三人不能同时相邻,但允许其中有两人相邻.

正解:在8个人全排列的方法数中减去甲、乙、丙全相邻的方法数,就得到甲、乙、丙三人不相邻的方法数,即,故选B.

8解题策略的选择不当出错

例10 高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( ).

(A )16种 (B )18种 (C )37种 (D )48种

误解:甲工厂先派一个班去,有3种选派方法,剩下的2个班均有4种选择,这样共有种方案.

错因分析:显然这里有重复计算. 如:班先派去了甲工厂,班选择时也去了甲工厂,这与班先派去了甲工厂,班选择时也去了甲工厂是同一种情况,而在上述解法中当作了不一样的情况,并且这种重复很难排除.

正解:用间接法. 先计算3个班自由选择去何工厂的总数,再扣除甲工厂无人去的情况,即:种方案.

全错位排列

先看下面例子:

例1 5个人站成一排,其中甲不站第一位,乙不站第二位,共有多少种不同的站法。 这个问题在高中很多参考书上都有,有几种解法,其中一解法是用排除法:

先考虑5个有的全排列,有A55种不同的排法,然后除去甲排第一(有A44种)与乙排第二(也有A44种),但两种又有重复部分,因此多减,必须加上多减部分,这样得到共有:A55-2A44+A33=78种。

现在考虑:

例2 5个人站成一排,其中甲不站第一位,乙不站第二位,丙不站第三位,共有多少种不同的站法。

仿上分析可得:A55-3A44+3A33-A22=64种

这与全错位排列很相似。

全错位排列——即n 个元素全部都不在相应位置的排列。看下面的问题

例3 5个人站成一排,其中A 不站第一位,B 不站第二位,C 不站第三位,D 不站第四位,E 不站第五位,共有多少种不同的站法。

解析:上面例1,例2实际上可以看成n 个不同元素中有m (m≤n)不排在相应位置。 公式一:n 个不同元素排成一排,有m 个元素(m≤n)不排在相应位置的排列种数共有:从而这个问题可能用上面的公式得出:

A n

n -C m ∙1A n -1+C m ∙n -12A n -2+..... +(-1)∙C m ∙m n -2m A n -m n -m

这个公式在n =m 时亦成立

A55-C(5,1)?A44+C(5,2)?A33-C(5,3)?A22+C(5,4)?A11-C(5,5)?A00=44种

(注意A00=0! =1)

再看1993年高考题:

同室四人各写一张贺年卡,先集中起来。然后每人从中拿一张别人送出的贺年卡。则四张贺年卡不同的分配方式有

(A)6种 (B)9种 (C)11种 (D)23种

解析:由上面公式得:

A44-C(4,1)?A33+C(4,2)?A22-C(4,3)?A11+C(4,4)?A00=9种,∴选择B 答案

因此可得到全错位排列的公式:

n 个不同元素排成一排,第一个元素不在第一位,第二个元素不在第二位,……,第n 个元素不在第n 位的排列数为:

A n

n -C n ∙1A n -1+C n ∙n -12A n -2+..... +(-1)∙C n ∙n n -2n A n -n n -n

这实际上是公式一的特殊情况。这个公式很有用,只要有特殊元素不站特殊位置的问题,都可以用这个公式很快得到解决,希望这个公式对大家有所帮助

将n 个编号为1、2、3...n 的小球投入到编号为1、2、3...n 的n 个盒子中,其中第i 号球不投到第i 号盒子中(i =1,2,3,...n )的投法数为全错排列问题.

这个问题是由瑞士的数学家欧拉解决的,公式为:

11111⎡n 1⎤f (n )=n ! ⎢1-+-+-+.... +(-1) ⎥ 1! 2! 3! 4! 5! n ! ⎣⎦

其中n≥2。

2009年12月02日

排列组合问题类型繁多、方法丰富、富于变化,稍不注意,极易出错. 本文选择一些在教学中学生常见的错误进行正误解析,以飨读者.

1没有理解两个基本原理出错

排列组合问题基于两个基本计数原理,即加法原理和乘法原理,故理解“分类用加、分步用乘”是解决排列组合问题的前提.

例1(1995年上海高考题)从6台原装计算机和5台组装计算机中任意选取5台, 其中至少有原装与组装计算机各两台, 则不同的取法有 种.

误解:因为可以取2台原装与3台组装计算机或是3台原装与2台组装计算机,所以只有2种取法.

错因分析:误解的原因在于没有意识到“选取2台原装与3台组装计算机或是3台原装与2台组装计算机”是完成任务的两“类”办法,每类办法中都还有不同的取法.

正解:由分析,完成第一类办法还可以分成两步:第一步在原装计算机中任意选取2台,有种方法;第二步是在组装计算机任意选取3台,有种方法,据乘法原理共有种方法. 同理,完成第二类办法中有种方法. 据加法原理完成全部的选取过程共有种方法.

例2 在一次运动会上有四项比赛的冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有( )种.

(A ) (B ) (C ) (D )

误解:把四个冠军,排在甲、乙、丙三个位置上,选A.

错因分析:误解是没有理解乘法原理的概念,盲目地套用公式.

正解:四项比赛的冠军依次在甲、乙、丙三人中选取,每项冠军都有3种选取方法,由乘法原理共有种.

说明:本题还有同学这样误解,甲乙丙夺冠均有四种情况,由乘法原理得. 这是由于没有考虑到某项冠军一旦被一人夺得后,其他人就不再有4种夺冠可能.

2判断不出是排列还是组合出错

在判断一个问题是排列还是组合问题时,主要看元素的组成有没有顺序性,有顺序的是排列,无顺序的是组合.

例3 有大小形状相同的3个红色小球和5个白色小球,排成一排,共有多少种不同的排列方法?

误解:因为是8个小球的全排列,所以共有种方法.

错因分析:误解中没有考虑3个红色小球是完全相同的,5个白色小球也是完全相同的,同色球之间互换位置是同一种排法.

正解:8个小球排好后对应着8个位置,题中的排法相当于在8个位置中选出3个位置给红球,剩下的位置给白球,由于这3个红球完全相同,所以没有顺序,是组合问题. 这样共有:排法.

3重复计算出错

在排列组合中常会遇到元素分配问题、平均分组问题等,这些问题要注意避免重复计数,产生错误。

例4(2002年北京文科高考题)5本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为( )

(A )480 种 (B )240种 (C )120种 (D )96种

误解:先从5本书中取4本分给4个人,有种方法,剩下的1本书可以给任意一个人有4种分法,共有种不同的分法,选A. 错因分析:设5本书为、、、、,四个人为甲、乙、丙、丁. 按照上述分法可能如下的表1和表2:

表1是甲首先分得、乙分得、丙分得、丁分得,最后一本书给甲的情况;表2是甲首先分得、乙分得、丙分得、丁分得,最后一本书给甲的情况. 这两种情况是完全相同的,而在误解中计算成了不同的情况。正好重复了一次.

正解:首先把5本书转化成4本书,然后分给4个人. 第一步:从5本书中任意取出2本捆绑成一本书,有种方法;第二步:再把4本书分给4个学生,有种方法. 由乘法原理,共有种方法,故选B.

例5 某交通岗共有3人,从周一到周日的七天中,每天安排一人值班,每人至少值2天,其不同的排法共有( )种.

(A )5040 (B )1260 (C )210 (D )630

误解:第一个人先挑选2天,第二个人再挑选2天,剩下的3天给第三个人,这三个人再进行全排列. 共有:,选B.

错因分析:这里是均匀分组问题. 比如:第一人挑选的是周一、周二,第二人挑选的是周三、周四;也可能是第一个人挑选的是周三、周四,第二人挑选的是周一、周二,所以在全排列的过程中就重复计算了.

正解:种.

4遗漏计算出错

在排列组合问题中还可能由于考虑问题不够全面,因为遗漏某些情况,而出错。 例6 用数字0,1,2,3,4组成没有重复数字的比1000大的奇数共有( )

(A )36个 (B )48个 (C )66个 (D )72个 误解:如右图,最后一位只能是1或3有两种取法,

又因为第1位不能是0,在最后一位取定后只有3种取

法,剩下3个数排中间两个位置有种排法,共有个.

错因分析:误解只考虑了四位数的情况,而比1000大的奇数还可能是五位数.

正解:任一个五位的奇数都符合要求,共有个,再由前面分析四位数个数和五位数个数之和共有72个,选D.

5忽视题设条件出错 在解决排列组合问题时一定要注意题目中的每一句话甚至每一个字和符号,不然就可能多解或者漏解

例7 (2003全国高考题) 如图,一个

地区分为5个行政区域,现给地图着色,

要求相邻区域不得使用同一颜色,现有4

种颜色可供选择,则不同的着色方法共有 种. (以数字作答)

误解:先着色第一区域,有4种方法,剩下3种颜色涂四个区域,即有一种颜色涂相对的两块区域,有种,由乘法原理共有:种.

错因分析:据报导,在高考中有很多考生填了48种. 这主要是没有看清题设“有4种颜色可供选择”,不一定需要4种颜色全部使用,用3种也可以完成任务.

正解:当使用四种颜色时,由前面的误解知有48种着色方法;当仅使用三种颜色时:从4种颜色中选取3种有种方法,先着色第一区域,有3种方法,剩下2种颜色涂四个区域,只能是一种颜色涂第2、4区域,另一种颜色涂第3、5区域,有2种着色方法,由乘法原理有种. 综上共有:种.

例8 已知是关于的一元二次方程,其中、,求解集不同的一元二次方程的个数.

误解:从集合中任意取两个元素作为、,方程有个,当、取同一个数时方程有1个,共有个.

错因分析:误解中没有注意到题设中:“求解集不同的……”所以在上述解法中要去掉同解情况,由于同解、同解,故要减去2个。

正解:由分析,共有个解集不同的一元二次方程.

6未考虑特殊情况出错

在排列组合中要特别注意一些特殊情况,一有疏漏就会出错.

例9 现有1角、2角、5角、1元、2元、5元、10元、50元人民币各一张,100元人民币2张,从中至少取一张,共可组成不同的币值种数是( )

(A)1024种 (B)1023种 (C)1536种 (D)1535种

误解:因为共有人民币10张,每张人民币都有取和不取2种情况,减去全不取的1种情况,共有种.

错因分析:这里100元面值比较特殊有两张,在误解中被计算成 4 种情况,实际上只有不取、取一张和取二张3种情况.

正解:除100元人民币以外每张均有取和不取2种情况,100元人民币的取法有3种情况,再减去全不取的1种情况,所以共有种.

7题意的理解偏差出错

例10 现有8个人排成一排照相,其中有甲、乙、丙三人不能相邻的排法有( )种.

(A ) (B ) (C ) (D )

错因分析:误解中没有理解“甲、乙、丙三人不能相邻”的含义,得到的结果是“甲、乙、丙三人互不相邻”的情况.“甲、乙、丙三人不能相邻”是指甲、乙、丙三人不能同时相邻,但允许其中有两人相邻.

正解:在8个人全排列的方法数中减去甲、乙、丙全相邻的方法数,就得到甲、乙、丙三人不相邻的方法数,即,故选B.

8解题策略的选择不当出错

例10 高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( ).

(A )16种 (B )18种 (C )37种 (D )48种

误解:甲工厂先派一个班去,有3种选派方法,剩下的2个班均有4种选择,这样共有种方案.

错因分析:显然这里有重复计算. 如:班先派去了甲工厂,班选择时也去了甲工厂,这与班先派去了甲工厂,班选择时也去了甲工厂是同一种情况,而在上述解法中当作了不一样的情况,并且这种重复很难排除.

正解:用间接法. 先计算3个班自由选择去何工厂的总数,再扣除甲工厂无人去的情况,即:种方案.


相关文章

  • 行测排列组合经典模型讲解:错位重排
  • 行测排列组合经典模型讲解:错位重排 一.必备知识 错位重排这种经典模型,其与普通的直接用排列.组合的计数方法求解的题型相比更具有明显的题目特征,其题目的特征表现为:有两组元素,题目明确表现出原本两组之间存在一一对应关系,但题目最后问法要求, ...查看


  • 2016公务员考试难点攻克之错位重排问题
  • 2016公务员考试难点攻克之错位重排问题 错位重排问题是公务员考试行测试卷中比较难理解的复杂数学模型,是伯努利和欧拉在错装信封时发现的,因此又称为伯努利-欧拉装错信封问题,是指把n个元素的位置重新排列,使每个元素都不在原来位置上的排列问题. ...查看


  • 口腔正畸学
  • 口腔正畸学 第一章 绪论 1. 错牙合畸形:是在儿童生长发育过程中,由先天的遗传因素和后天的环境因素,如疾病.口腔不良习惯.替牙异常等导致的牙.颌骨.颅面的畸形,如牙排列不齐.上下牙弓间牙合关系异常.颌骨大小形态位置异常等. 2. 错牙合畸 ...查看


  • 解析CAF失效机理及分析方法
  • 1 前言 在电子设备领域,以汽车电子或某些军工装备为例,其对耐高温高湿环境的要求较高.随着此类产品向着高密度化发展,孔间距越来越小,这使得印制板对孔的可靠性要求也相应提高,所以印制电路板产生的导电阳极灯丝就成为影响产品可靠性的重要因素. 导 ...查看


  • 排列组合公式 1
  • 排列组合公式 1.分类计数原理(加法原理) N =m 1+m 2+ +m n . 2.分步计数原理(乘法原理) N =m 1⨯m 2⨯ ⨯m n . 3.排列数公式 n ! m A n !=n (n -1) (n -m +1) =(n -m ...查看


  • 脊柱小关节
  • 一."脊柱小关节错位"在脊柱病发病中所起的作用 脊柱小关节错位,是年轻人脊柱病的发病主因,也是中老年人病情反复发作的最常见病因之一.在防治脊柱病工作中,如能认识和建立脊柱小关节错位的诊断标准,按其错位类型进行整脊复位,即 ...查看


  • 2015上海反假货币应会考试
  • 新版钞100美元(只假) 1. 雕刻凹版印刷 2. 纸张挺括 3. 凸版印刷 4. 安全线(全埋式) 真:安全线上,缩微文字清晰可读 假:---------模糊不清 5. 缩微文字 真:放大镜下,清晰可读 特殊点: 1. 字母N 空心为假, ...查看


  • 女西装工艺实习报告
  • 服装结构与工艺实习(三) 班级0914091学号091409124姓名王闪闪 专业服装设计与工程(CAD/CAM) 这次的服装工艺实习已经是大学以来第三次的实习,为期两周.基 于大一.大二两年关于服装结构设计和服装工艺的学习,我已经有了一定 ...查看


  • 装修施工工艺及验收标准(全)
  • 装修施工工艺及验收标准 一. 家装电路施工工艺 一.电路改造工艺流程 1. 草拟布线图. 2. 划线.确定线路终端插座,开关,面板的位臵,在墙面标画出准确的位臵和尺寸. 3. 划线开槽. 4. 埋设暗盒及敷设PVC电线管. 5. 穿线. 6 ...查看


热门内容