甘油三酯的合成代谢

甘油三酯的合成代谢?

甘油三酯(Triglyceride),是长链脂肪酸和甘油形成的脂肪分子,是人体内含量最多的脂类,大部分组织均可以利用甘油三酯分解产物供给能量,同时肝脏、脂肪等组织还可以进行甘油三酯的合成,在脂肪组织中贮存。人体可利用甘油、糖、脂肪酸和甘油一酯为原料,经过磷脂酸途径和甘油一酯途径合成甘油三酯。

1. 甘油一酯途径:以甘油一酯为起始物,与脂酰CoA共同在脂酰转移酶作用下酯化生成甘油三酯。

2. 磷脂酸途径:磷脂酸,即3-磷酸-1,2-甘油二酯,是合成含甘油脂类的共同前体。糖酵解的中间产物—类磷酸二羟丙酮在甘油磷酸脱氢酶作用下,还原生成3-磷酸甘油;游离的甘油也可经甘油激酶催化,生成3-磷酸甘油(因脂肪及肌肉组织缺乏甘油激酶,故不能利用激离的甘油)。 3-磷酸甘油在脂酰转移酶作用下,与两分子脂酰CoA反应生成3-磷酸-1,2甘油二酯,即磷脂酸。此外,磷酸二羟丙酮也可不转为3-磷酸甘油,而是先酯化,后还原生成溶血磷脂酸,然后再经酯化合成磷脂酸。磷脂酸在磷脂酸磷酸酶作用下,水解释放出无机磷酸,而转变为甘油二酯,它是甘油三酯的前身物,只需酯化即可生成甘油三酯。

甘油三酯所含的三个脂肪酸可以是相同的或不同的,可为饱和脂肪酸或不饱和脂肪酸。甘油三酯的合成速度可以受激素的影响而改变,如胰岛素可促进糖转变为甘油三酯。由于胰岛素分泌不足或作用失效所致的糖尿病患者,不仅不能很好利用葡萄糖,而且葡萄糖或某些氨基酸也不能用于合成脂肪酸,而表现为脂肪的氧化速度增加,酮体生成过多,其结果是患者体重下降。此外,胰高血糖素、肾上腺皮质激素等也影响甘油三酯的合成。

TCA循环等等重要代谢途径哪些步骤有维生素或其辅酶参与反应?

1、乙酰CoA与草酰乙酸的羧基进行醛醇型缩合,柠檬酸转变成异柠檬酸:前者由柠檬酸合成酶催化,后者由顺乌头酸酶催化,均为变构酶,需要维生素B12作为变构酶的辅酶,参与一些异构化作用。

2、第一次氧化脱酸:在异柠檬酸脱氢酶作用下,异柠檬酸生成α-酮戊二酸、NADH和CO2 。而第二次氧化脱羧:在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化脱羧生成琥珀酰-CoA、NADH·H+和CO2 。在过程中,维生素B5是NAD和NADP的组成成分,而它们是脱氢酶的辅酶,

参与递氢作用。

3、底物磷酸化生成ATP:在琥珀酸硫激酶的作用下,琥珀酰-CoA的硫酯键水解,释放的自由能用于合成GTP。此时,琥珀酰-CoA生成琥珀酸和CoA。维生素B3是CoA的组成成分,而其又是生物体内转酰基酶的辅酶,参与转酰基作用。

4、琥珀酸脱氢及草酰乙酸再生:前者是在琥珀酸脱氢酶催化作用下,琥珀酸氧化成为延胡索酸。该酶含有铁硫中心和共价结合的FAD。后者则是在苹果酸脱氢酶作用下,苹果酸生成草酰乙酸,NAD+是脱氢酶的辅酶,接受氢成为NADH·H+。在过程中,维生素B2是以FAD与FMN的形式作为脱氢酶等多种氧化还原酶及递氢体辅基的组成成分,参与生物氧化作用,作为递氢体。维生素B5是NAD和NADP的组成成分,而它们是脱氢酶的辅酶,参与递氢作用。

Designing a Flu Drug :

Analog (类似物) based-- Indirect drug design,在已知靶物质三维结构的前提下,运用定向设计原理,根据靶物质的结构要求,利用计算机图形学的研究,直接设计新药分子。

Target (靶标) structure based --Direct drug design,在靶物质结构未知的情况下,利用药物分子与靶物质的互补性,搜索一系列已知药物的三维结构与生物活性的定量关系,反推出靶物质的结构,从而设计新药。

1.Computational molecular docking (分子对接)is being used more and more in

pharmaceutical industry(制药工程) for designing new drugs. 分子对接使依据配体与受体作用的“锁-钥原理”,模拟小分子配体与受体生物大分子相互作用,是分子识别的过程,主要包括静电作用、氢键作用、疏水作用、范德华作用等。通过计算,可以预测两者间的结合模式和亲和力,从而进行药物的虚拟筛选。分子对接首先产生一个填充受体分子表面的口袋,然后生成一系列假定的结合位点。依据受体表面的这些结合点与配体分子的距离匹配原则,将配体分子投映到受体分子表面,来计算其结合的模式和亲和力,并对计算结果进行打分,评判配体与受体的结合程度。

2.At the moment the simplistic(单纯化的)rigid protein model is being used the most.

3.There is a need for more efficient algorithms(计算程序) to deal with flexible proteins efficiently.

4.Due to imperfect(不完善的)energy functions the existing methods are not perfect.

新药设计包括:

1)类型演化:通过新的先导化合物的寻求和发掘,对各种模型化合物的结构剖析,确定显效化学结构或药效集团模型基本结构,进而获得全新结构的化合物。

2)结构优化,设计先导物的同系物或类似物

3)类型演化为系列设计开辟新的设计条件和领域,系列设计则是类型演化的继续和发展,两者相辅相成。系列设计是基于药物的定量构效关系的研究。包括:合成对象的选择;合成;拟定将要测定的生物活性指标;化学结构因素选择;QRST方程的求解;活性预测与新合成对象的选定等过程。

甘油三酯的合成代谢?

甘油三酯(Triglyceride),是长链脂肪酸和甘油形成的脂肪分子,是人体内含量最多的脂类,大部分组织均可以利用甘油三酯分解产物供给能量,同时肝脏、脂肪等组织还可以进行甘油三酯的合成,在脂肪组织中贮存。人体可利用甘油、糖、脂肪酸和甘油一酯为原料,经过磷脂酸途径和甘油一酯途径合成甘油三酯。

1. 甘油一酯途径:以甘油一酯为起始物,与脂酰CoA共同在脂酰转移酶作用下酯化生成甘油三酯。

2. 磷脂酸途径:磷脂酸,即3-磷酸-1,2-甘油二酯,是合成含甘油脂类的共同前体。糖酵解的中间产物—类磷酸二羟丙酮在甘油磷酸脱氢酶作用下,还原生成3-磷酸甘油;游离的甘油也可经甘油激酶催化,生成3-磷酸甘油(因脂肪及肌肉组织缺乏甘油激酶,故不能利用激离的甘油)。 3-磷酸甘油在脂酰转移酶作用下,与两分子脂酰CoA反应生成3-磷酸-1,2甘油二酯,即磷脂酸。此外,磷酸二羟丙酮也可不转为3-磷酸甘油,而是先酯化,后还原生成溶血磷脂酸,然后再经酯化合成磷脂酸。磷脂酸在磷脂酸磷酸酶作用下,水解释放出无机磷酸,而转变为甘油二酯,它是甘油三酯的前身物,只需酯化即可生成甘油三酯。

甘油三酯所含的三个脂肪酸可以是相同的或不同的,可为饱和脂肪酸或不饱和脂肪酸。甘油三酯的合成速度可以受激素的影响而改变,如胰岛素可促进糖转变为甘油三酯。由于胰岛素分泌不足或作用失效所致的糖尿病患者,不仅不能很好利用葡萄糖,而且葡萄糖或某些氨基酸也不能用于合成脂肪酸,而表现为脂肪的氧化速度增加,酮体生成过多,其结果是患者体重下降。此外,胰高血糖素、肾上腺皮质激素等也影响甘油三酯的合成。

TCA循环等等重要代谢途径哪些步骤有维生素或其辅酶参与反应?

1、乙酰CoA与草酰乙酸的羧基进行醛醇型缩合,柠檬酸转变成异柠檬酸:前者由柠檬酸合成酶催化,后者由顺乌头酸酶催化,均为变构酶,需要维生素B12作为变构酶的辅酶,参与一些异构化作用。

2、第一次氧化脱酸:在异柠檬酸脱氢酶作用下,异柠檬酸生成α-酮戊二酸、NADH和CO2 。而第二次氧化脱羧:在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化脱羧生成琥珀酰-CoA、NADH·H+和CO2 。在过程中,维生素B5是NAD和NADP的组成成分,而它们是脱氢酶的辅酶,

参与递氢作用。

3、底物磷酸化生成ATP:在琥珀酸硫激酶的作用下,琥珀酰-CoA的硫酯键水解,释放的自由能用于合成GTP。此时,琥珀酰-CoA生成琥珀酸和CoA。维生素B3是CoA的组成成分,而其又是生物体内转酰基酶的辅酶,参与转酰基作用。

4、琥珀酸脱氢及草酰乙酸再生:前者是在琥珀酸脱氢酶催化作用下,琥珀酸氧化成为延胡索酸。该酶含有铁硫中心和共价结合的FAD。后者则是在苹果酸脱氢酶作用下,苹果酸生成草酰乙酸,NAD+是脱氢酶的辅酶,接受氢成为NADH·H+。在过程中,维生素B2是以FAD与FMN的形式作为脱氢酶等多种氧化还原酶及递氢体辅基的组成成分,参与生物氧化作用,作为递氢体。维生素B5是NAD和NADP的组成成分,而它们是脱氢酶的辅酶,参与递氢作用。

Designing a Flu Drug :

Analog (类似物) based-- Indirect drug design,在已知靶物质三维结构的前提下,运用定向设计原理,根据靶物质的结构要求,利用计算机图形学的研究,直接设计新药分子。

Target (靶标) structure based --Direct drug design,在靶物质结构未知的情况下,利用药物分子与靶物质的互补性,搜索一系列已知药物的三维结构与生物活性的定量关系,反推出靶物质的结构,从而设计新药。

1.Computational molecular docking (分子对接)is being used more and more in

pharmaceutical industry(制药工程) for designing new drugs. 分子对接使依据配体与受体作用的“锁-钥原理”,模拟小分子配体与受体生物大分子相互作用,是分子识别的过程,主要包括静电作用、氢键作用、疏水作用、范德华作用等。通过计算,可以预测两者间的结合模式和亲和力,从而进行药物的虚拟筛选。分子对接首先产生一个填充受体分子表面的口袋,然后生成一系列假定的结合位点。依据受体表面的这些结合点与配体分子的距离匹配原则,将配体分子投映到受体分子表面,来计算其结合的模式和亲和力,并对计算结果进行打分,评判配体与受体的结合程度。

2.At the moment the simplistic(单纯化的)rigid protein model is being used the most.

3.There is a need for more efficient algorithms(计算程序) to deal with flexible proteins efficiently.

4.Due to imperfect(不完善的)energy functions the existing methods are not perfect.

新药设计包括:

1)类型演化:通过新的先导化合物的寻求和发掘,对各种模型化合物的结构剖析,确定显效化学结构或药效集团模型基本结构,进而获得全新结构的化合物。

2)结构优化,设计先导物的同系物或类似物

3)类型演化为系列设计开辟新的设计条件和领域,系列设计则是类型演化的继续和发展,两者相辅相成。系列设计是基于药物的定量构效关系的研究。包括:合成对象的选择;合成;拟定将要测定的生物活性指标;化学结构因素选择;QRST方程的求解;活性预测与新合成对象的选定等过程。


相关文章

  • 微生物的代谢与调控
  • 目录 摘要 .................................................................................................................. ...查看


  • 09第9章糖代谢
  • 第9章 糖代谢 一.教学大纲基本要求 糖酵解.三羧酸循环.乙醛酸循环.磷酸戊糖途径.糖原的合成与分解.糖异生作用.对各条代谢途径的阐述内容主要包括:酶促反应步骤.作用部位.代谢特点.能量转换关系.生理意义.关键酶的调控以及各条代谢途径之间的 ...查看


  • 极低密度脂蛋白胆固醇
  • 极低密度脂蛋白(VLDL)的主要功能:是运输肝脏中合成的内源性甘油三酯.无论是血液运输到肝细胞的脂肪酸,或是糖代谢转变而形成的脂肪酸,在肝细胞中均可合成甘油三酯.在肝细胞内,甘油H酯与APOB100.胆固醇等结合,形成VLDL并释放入血.在 ...查看


  • 4.糖代谢
  • 第四章 糖代谢 一.A 型选择题 01. 淀粉经α-淀粉酶作用后的主要产物是 A. 麦芽糖及异麦芽糖 B. 葡萄糖及麦芽糖 C. 葡萄糖 D. 麦芽糖及临界糊精 E. 异麦芽糖及临界糊精 02. 糖酵解时下列哪一对代谢物提供-P 使ADP ...查看


  • 中国农业大学考研笔记知识点总结[生物化学]
  • 中国农业大学考研生物化学复习笔记 第一篇 生物大分子的结构与功能 第一章 氨基酸和蛋白质 一.组成蛋白质的20种氨基酸的分类 1.非极性氨基酸 包括:甘氨酸.丙氨酸.缬氨酸.亮氨酸.异亮氨酸.苯丙氨酸.脯氨酸 2.极性氨基酸 极性中性氨基酸 ...查看


  • 考研生物化学复习笔记.doc
  • 第一篇 生物大分子的结构与功能 第一章 氨基酸和蛋白质 一.组成蛋白质的20种氨基酸的分类 1.非极性氨基酸 包括:甘氨酸.丙氨酸.缬氨酸.亮氨酸.异亮氨酸.苯丙氨酸.脯氨酸 2.极性氨基酸:极性中性氨基酸:色氨酸.酪氨酸.丝氨酸.半胱氨酸 ...查看


  • 生物化学考研名词解释与问答题
  • 生化考研精解名词解释答案 第十章 糖代谢(P124-125) 1. 糖酵解(glycolysis ):由10步酶促反应组成的糖分解代谢途径.通过该途径,一分子葡萄糖转化为两分子丙酮酸,同时净生成两分子ATP 和两分子NADH . 2. 发酵 ...查看


  • 生物化学笔记
  • 去年的题型: 1. 填空 30' (30个空) 2. 判断 20' (20题) 3. 名词解释 30' (30个) 4. 问答 70' (10'/题,8选7) 复习的思路:划成大块进行串联 生物大分子的结构与功能 酶学 代谢 [重点:蛋白质 ...查看


  • 肥胖与运动减肥论文黎焰
  • 肥胖与运动减肥 运动人体科学 黎焰 指导教师 殷劲 摘要:通过对脂肪在人体中的储备,脂肪的代谢过程,激素调节和代谢调节过程的分析,论述了运动强度.运动持续时间.激素水平.脂酶浓度.糖代谢等因素与脂肪供能的关系,讨论了运动减肥的生物肥胖已成为 ...查看


热门内容