[鸽巢问题(一)]教学设计

《鸽巢问题(一)》教学设计

一、教学目标

(一)知识与技能

通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。

(二)过程与方法

结合具体的实际问题,通过实验、观察、分析、等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。

(三)情感态度和价值观

在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。

二、教学重难点

教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。

教学难点:理解“总有”“至少”的意义。

三、教学准备

多媒体课件。

四、教学过程

(一)游戏引入,导入明标

出示一副扑克牌。

教师:今天老师要给大家表演一个“魔术”。取出大王和小王,还剩下52张牌,下面请5位同学上来,每人随意抽一张,不管怎么抽,至少有2张牌是同花色的。同学们相信吗? 5位同学上台,抽牌,亮牌,统计。

教师:这类问题在数学上称为鸽巢问题(板书)。因为52张扑克牌数量较大,为了方便研究,我们先来研究几个数量较小的同类问题。

【设计意图】从学生喜欢的“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。

(二)自学质疑

1.教学例1。

(1)教师:把3支铅笔放到2个铅笔盒里,有哪些放法?请同桌二人为一组动手试一试。 教师:谁来说一说结果?

预设:一个放3支,另一个不放;一个放2支,另一个放1支。(教师根据学生回答在黑板上画图表示两种结果)

教师:“不管怎么放,总有一个铅笔盒里至少有2支铅笔”,这句话说得对吗? 教师:这句话里“总有”是什么意思?

预设:一定有。

教师:这句话里“至少有2支”是什么意思?

预设:最少有2支,不少于2支,包括2支及2支以上。

【设计意图】把教材中例1的“笔筒”改为“铅笔盒”,便于学生准备学具。且用画图和数的分解来表示上述问题的结果,更直观。通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。

(2)教师:把4支铅笔放到3个铅笔盒里,有哪些放法?请4人为一组动手试一试。 教师:谁来说一说结果?

学生:可以放(4,0,0);(3,1,0);(2,2,0);(2,1,1)。(教师根据学生回答在黑板上画图表示四种结果)

引导学生仿照上例得出“不管怎么放,总有一个铅笔盒里至少有2支铅笔”。

假设法(反证法):

教师:前面我们是通过动手操作得出这一结论的,想一想,能不能找到一种更为直接的方法得到这个结论呢?小组讨论一下。

学生进行组内交流,再汇报,教师进行总结:

如果每个盒子里放1支铅笔,最多放3支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。这就是平均分的方法。

【设计意图】从另一方面入手,逐步引入假设法来说理,从实际操作上升为理论水平,进一步加深理解。

教师:把5支铅笔放到4个铅笔盒里呢?

引导学生分析“如果每个盒子里放1支铅笔,最多放4支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。

教师:把6支铅笔放到5个铅笔盒里呢?把7支铅笔放到6个铅笔盒里呢?„„你发现了什么?

引导学生得出“只要铅笔数比铅笔盒数多1,总有一个盒子里至少有2支铅笔”。 教师:上面各个问题,我们都采用了什么方法?

引导学生通过观察比较得出“平均分”的方法。

【设计意图】让学生自己通过观察比较得出“平均分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。

(3)教师:现在我们回过头来揭示本节课开头的魔术的结果,你能来说一说这个魔术的道理吗?

引导学生分析“如果4人选中了4种不同的花色,剩下的1人不管选那种花色,总会和其他4人里的一人相同。总有一种花色,至少有2人选”。

【设计意图】回到课开头提出的问题,揭示悬念,满足学生的好奇心,让学生认识到数学的应用价值。

(4)练习教材第68页“做一做”第1题(进一步练习“平均分”的方法)。

5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

(三)巩固练习

1.11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。为什么?

2.5个人坐4把椅子,总有一把椅子上至少坐2人。为什么?

(四)课堂小结

教师:通过这节课的学习,你有哪些新的收获呢?

我们学会了简单的鸽巢问题。

可以用画图的方法来帮助我们分析,也可以用除法的意义来解答。

《鸽巢问题(一)》教学设计

一、教学目标

(一)知识与技能

通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。

(二)过程与方法

结合具体的实际问题,通过实验、观察、分析、等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。

(三)情感态度和价值观

在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。

二、教学重难点

教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。

教学难点:理解“总有”“至少”的意义。

三、教学准备

多媒体课件。

四、教学过程

(一)游戏引入,导入明标

出示一副扑克牌。

教师:今天老师要给大家表演一个“魔术”。取出大王和小王,还剩下52张牌,下面请5位同学上来,每人随意抽一张,不管怎么抽,至少有2张牌是同花色的。同学们相信吗? 5位同学上台,抽牌,亮牌,统计。

教师:这类问题在数学上称为鸽巢问题(板书)。因为52张扑克牌数量较大,为了方便研究,我们先来研究几个数量较小的同类问题。

【设计意图】从学生喜欢的“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。

(二)自学质疑

1.教学例1。

(1)教师:把3支铅笔放到2个铅笔盒里,有哪些放法?请同桌二人为一组动手试一试。 教师:谁来说一说结果?

预设:一个放3支,另一个不放;一个放2支,另一个放1支。(教师根据学生回答在黑板上画图表示两种结果)

教师:“不管怎么放,总有一个铅笔盒里至少有2支铅笔”,这句话说得对吗? 教师:这句话里“总有”是什么意思?

预设:一定有。

教师:这句话里“至少有2支”是什么意思?

预设:最少有2支,不少于2支,包括2支及2支以上。

【设计意图】把教材中例1的“笔筒”改为“铅笔盒”,便于学生准备学具。且用画图和数的分解来表示上述问题的结果,更直观。通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。

(2)教师:把4支铅笔放到3个铅笔盒里,有哪些放法?请4人为一组动手试一试。 教师:谁来说一说结果?

学生:可以放(4,0,0);(3,1,0);(2,2,0);(2,1,1)。(教师根据学生回答在黑板上画图表示四种结果)

引导学生仿照上例得出“不管怎么放,总有一个铅笔盒里至少有2支铅笔”。

假设法(反证法):

教师:前面我们是通过动手操作得出这一结论的,想一想,能不能找到一种更为直接的方法得到这个结论呢?小组讨论一下。

学生进行组内交流,再汇报,教师进行总结:

如果每个盒子里放1支铅笔,最多放3支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。这就是平均分的方法。

【设计意图】从另一方面入手,逐步引入假设法来说理,从实际操作上升为理论水平,进一步加深理解。

教师:把5支铅笔放到4个铅笔盒里呢?

引导学生分析“如果每个盒子里放1支铅笔,最多放4支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。

教师:把6支铅笔放到5个铅笔盒里呢?把7支铅笔放到6个铅笔盒里呢?„„你发现了什么?

引导学生得出“只要铅笔数比铅笔盒数多1,总有一个盒子里至少有2支铅笔”。 教师:上面各个问题,我们都采用了什么方法?

引导学生通过观察比较得出“平均分”的方法。

【设计意图】让学生自己通过观察比较得出“平均分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。

(3)教师:现在我们回过头来揭示本节课开头的魔术的结果,你能来说一说这个魔术的道理吗?

引导学生分析“如果4人选中了4种不同的花色,剩下的1人不管选那种花色,总会和其他4人里的一人相同。总有一种花色,至少有2人选”。

【设计意图】回到课开头提出的问题,揭示悬念,满足学生的好奇心,让学生认识到数学的应用价值。

(4)练习教材第68页“做一做”第1题(进一步练习“平均分”的方法)。

5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

(三)巩固练习

1.11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。为什么?

2.5个人坐4把椅子,总有一把椅子上至少坐2人。为什么?

(四)课堂小结

教师:通过这节课的学习,你有哪些新的收获呢?

我们学会了简单的鸽巢问题。

可以用画图的方法来帮助我们分析,也可以用除法的意义来解答。


相关文章

  • 李辉论文_中学历史教学中的问题设计
  • 中学历史教学中的问题设计 [摘 要]中学历史对于启迪学生思想.培养学生人生观和价值观有着重要作用,将问题教学法引入中学历史教学中,可以有效提升教学效果.问题教学法的核心是"问题设计",同时课堂提问是课堂教学活动的有机组成 ...查看


  • (一)什么是校本教研
  • 校本培训材料 (一)什么是校本教研 专家们解释是"为了学校,基于学校,在学校中"进行的教学研究,是一种融学习.工作和教研于一体的学校性活动和教师行为. 校本教研概括地说,就是为了改进学校的教育教学,提高学校的教育教学质量 ...查看


  • 参加甘肃省中小学教师教育技术能力培训心得
  • 参加甘肃省中小学教师教育技术能力培训心得 2012年8月11日到13日,我参加了甘肃省中小学教师教育技术能力培训在武威点的培训,为期三天的培训,培训平台为我们展示了很多的新的理念和知识:思维导图设计与使用:问题化教学设计活动.教学实施.评价 ...查看


  • 基于问题提出的数学教学研究综述-许才基
  • 数学课程与教学论课程设计 基于问题提出的数学教学研究综述 Review of research on mathematics teaching based on questions 学 院:数学与信息科学学院 专 业: 数学与应用数学 班 ...查看


  • 高中历史教学中问题教学的设计
  • 摘 要:近年来,问题教学法在各个学科中进行实施后都取得了非常好的成果.这种教学法要注重问题的设置,本文中主要介绍了高中历史教学过程中教学问题的设计. 关键词:历史 教学 问题 中图分类号:G633.5 文献标识码:A 文章编号:1003-9 ...查看


  • 首要教学原理指导下的微课教学设计模式探索
  • 微课热仍在持续,做好一门好微课,它的教学设计首先是最重要的先决条件也是许多老师面临的头等问题,但又很难找到合适的教学设计模板去参考和借鉴.梅里尔的首要教学原理恰当地解释了这一问题,它以问题为中心,将学习分为四个阶段,激活旧知.示范新知.应用 ...查看


  • 贵州省中小学继续教育笔记--有效上课
  • <有效上课>读书笔记 第一单元"师生共学"的新课程有效课堂教学理念 课程改革至今,课堂教学发生了真实的变化.具体表现在以下方面: 一.教师角色转换意识得到了充分体现 教师由单纯的只是传授者及教材的复制者转变为 ...查看


  • 课题研究中期报告:高中思想政治课中问题设计的有效性研究
  • 自2015年12月份小课题<高中思想政治课中问题设计的有效性研究>开题以后,在实际教学中,每一份导学案的设计,自学.对学.群学.检测等环节问题的设计,笔者都是带着自己的思考进行的,诸如:"这个问题预检测学生什么?&qu ...查看


  • 发现问题是创新设计的前提
  • 发现问题是创新设计的前提 摘要:在工业设计中,"发现问题"很难,它比解决问题更重要.工业设计专业学生难发现问题的主要原因是:学校传播模仿行为方式,缺乏"以人为本"的价值观,缺乏设计指导思想.和产品的使 ...查看


  • [基于问题的课堂教学模式研究]
  • <基于问题的课堂教学模式研究> 结题报告 常州市第八中学 翁明星 赵文金 一.课题的提出 随着知识经济时代和信息时代的到来,教学的发展面临着前所未有的挑战.科技的发展,综合国力的竞争,急需提高国民的整体素质,培养全民创新精神和实 ...查看


热门内容