向量组线性相关与线性无关的判定方法_侯雯昕

第32卷第5期(上)

2016年5月赤峰学院学报(自然科学版)JournalofChifengUniversity(NaturalScienceEdition)Vol.32No.5

May2016

向量组线性相关与线性无关的判定方法

侯雯昕

(华东师范大学

经济与管理学系,上海

200062)

要:向量组的线性相关性是线性代数理论的基本概念,它与向量空间、子空间等概念有密切关系,

同时在解析几何以及常微分方程中有广泛应用.本文主要研究的是向量组线性相关性的判定方法,包括利用线性相关性的定义、行列式的值、矩阵的秩及齐次线性方程组的解等判定向量组的线性相关性,并比较了几种不同判定方法的适用条件.

关键词:向量组;线性相关;线性无关;行列式;矩阵中图分类号:O151.2

文献标识码:A

文章编号:1673-260X(2016)05-0004-02

DOI:10.13398/j.cnki.issn1673-260x.2016.09.002

向量组的线性相关与线性无关的判定较难理解和掌握,实际上,向量组的线性相关与线性无关是相对的,只要掌握了线性相关的判定,线性无关的判定也就没有问题了.因此,本文主要论述了向量组的线性相关性的几种判定方法.1线性相关及相性无关的概念及性质1.1定义

设有n维向量组a1,a2,…,an,如果存在一组不全为零的数k1,k2,…,kn使k1a1+k2a2+…+knan=0成立,则称向量组a1,a2,…,an线性相关;如果仅当k1,k2,…,kn

上式k1a1+k2a2+…+knan=0才成立,则称向全为0时,

量组a1,a2,…,an线性无关.1.2性质

由向量组的概念易知向量组的线性相关性具有以下简单性质:

(1)含有零向量的向量组线性相关.(2)若单个向量a≠0,则向量组是线性无关的;相反,则向量组线性相关.

(3)含有n+1个向量的n维向量组必定线性相关.

(4)向量组中一部分向量线性相关,则该向量组线性相关;若向量组线性无关,则其任一部分向量组线性无关.

因此,一个向量组不是线性相关就是线性无关,为了更好的理解线性相关和线性无关,下面列出它们之间的不同点.

(1)定义不同:线性相关的向量组是,存在不全为零的一组数k1,k2,…,kn使k1a1+k2a2+…+knan=0成

收稿日期:2016-03-23

立而线性无关的向量组,只有当k1=k2=…=kn=0,才

有k1a1+k2a2+…+knan=0成立.

(2)线性表示问题:线性相关向量组中至少有一个向量能由其余n-1个向量线性表示;而线性无关的向量中任何一个向量都不能由其余n-1个向量线性表示.

(3)与线性方程组的关系:若a1,a2…an线性相关,则存在不全为零的数x1,x2,…,xn,使a1x1+a2x2+…

x1x

+anxn=0,即[a1,a2,…,an]2=0或AX=0有非零解;

xn

而线性无关,则是Ax=0只有零解.由此也可以看出研究向量的线性相关与方程组有着直接的关系.2向量组线性相关性的判定2.1利用定义法判定

这是判定向量组的线性相关的基本方法,即给定向量组A:a1,a2,…,an如果存在不全为零的数k1,k2,

则称向量组A…,kn,使得k1a1+k2a2+…+knan=0成立,

是线性相关的.否则,如果不存在不全为零的数k1,k2,…,kn,使得k1a1+k2a2+…+knan=0成立.也就是说,只

才有k1a1+k2a2+…+knan=0,则有当k1,k2,…,kn全为零,

称向量组A是线性无关的.

例如,证明向量组β1=α1+α2,β2=α2+α3,β3=α3+β4=α4+α1线性相关,则需要证明设存在4个数α4,

k1,k2,k3,k4,使得k1β1+k2β2+k3β3+k4β4=0.因此需将

β2=α2+α3,β3=α3+α4,β4=α4+α1代入上式β1=α1+α2,

有:

k1(α1+α2)+k2(α2+α3)+k3(α3+α4)+k4(α4+α1)=0,即

!

""""""""#

$%%%%%%%%&

-4-

(k1+k4)α1+(k1+k2)α2+(k2+k3)α3+(k3+k4)α4=0,

取k1=k3=1,k2=k4=-1,则有k1β1+k2β2+k3β3+k4β4

=0,由线性相关性的定义可知,向量组β1,β2,β3,β4线性相关.

2.2利用齐次线性方程组的解判定

对于各分量都给出的向量组a1,a2,…,an,若以A=[a1,a2,…,an]为系数矩阵的齐次线性方程组AX=0有非零解则此向量组a1,a2,…,an是线性相关的;若以A=[a1,a2,…,an]为系数矩阵的齐次线性方程组AX=0只有零解,则此向量组a1,a2,…,an是线性无关的.例如,判断x1=(-1,1,1),x2=(-2,1,2),x3=(-1,2,-1)的线性相关性.需要令k1x1+k2x2+…+knxn=0,即:将三组值代入后解方程组,可得k1=0,k2=0,k3=0,

故x1,x2,x3是线性无关的.2.3利用矩阵的秩判定

设向量组A:a1,a2,…,am是由m个n维列向量所组成的向量组,则向量组A的线性相关性可由向量组A所构成的矩阵A=(a1,a2,…,am)的秩的大小来进行判定.

(1)当R(A)=m时,则向量组A:a1,a2,…,am是线性无关的;(2)当R(A)<m时,则向量组A:aa1,a2,…,am是线性相关的.

2.4利用行列式的值来判定

(1)若向量组A:a1,a2,…,am是由m个m维列向量所组成的向量组,且向量组A所构成的矩阵A=

即A为m阶方阵,则有:(a1,a2,…,am),

①当|A|=0时,则向量组A:a1,a2,…,am是线性相关的;

②当|A|=0时,则向量组A:a1,a2,…,am是线性无关的.

(2)若向量组A:a1,a2,…,am的个数m与维数n不同时,则有:

①当m>n时,则向量组A:a1,a2,…,am是线性相关的;

②当m<n时,转化为上述来进行判定,即选取m个向量组成的m维向量组,若此m维向量组是线性相关的,则添加分量后,得到的向量组也是线性相关的.

2.5利用反证法判定

有些题目中,直接证明结论常常比较困难,而从结论的反面入手却很容易推出一些与已知条件或已知的定义、定理、公理相悖的结果,从而说明原

结论成立.

例如,向量组A:a1,a2,…,am中任一向量ai不是

证明向量它前面i-1个向量的线性组合,且ai≠0,

组A:a1,a2,…,am是线性无关的.

假设向量组A:a1,a2,…,am线可用反证法证明,

则存在不全为零的m个数k1,k2,…,km,使得性相关,

k1a1+k2a2+…+kmam=0.由此可知,km=0,否则由上式可得

am=a1-a3-…-am-1

mmm

即am可由它前面m-1个向量线性表示,这与题设矛盾,因此km=0.从而有k1a1+k2a2+…km-1am-1=0.同理可得km-1=km-2=…=k3=k2=0,最后得到k1a1=0因为ai≠0,所以k1=0,但这又与k1,k2…km不全为零矛盾.因此,向量组A:a1,a2,…,am线性无关.

2.6利用向量组在线性空间中象的线性关系判定

线性空间V中向量组a1,a2,…,ar线性相关的充

σ(a2)…σ(ar)线性相关.因为要条件是它们的象σ(a1),

由k1a1+k2a2+…+krar=0可得k1σ(a1)+k2σ(a1)+…+krσ(ar)=00.进而有σ(k1a1+k2a2+…+krar)=0.2.7利用方程组法判定

方程组法就是将向量组的线性相关性问题转化为齐次线性方程组的有无非零解的问题.对于各分量都给出的向量组a1,a2,…,as线性相关的充要条件是以a1,a2,…,as的列向量为系数矩阵的齐次线性方程组的有非零解;若齐次线性方程组只有零解,则向量组线性无关.3小结

本文主要对向量组线性相关性的定义以及性质进行了分析,并且给出了一些判定方法,由于向量组的线性相关性是线性代数中一个基础和重点的问题,仅限于这些讨论是远远不够的,还有待我们作进一步的研究.———————————————————————

参考文献:

〔1〕张禾瑞.郝鈵新.高等代数.高等教育出版社,

2007.130-270.

〔2〕杨燕新.王文斌.关于向量组线性相关的集中判

定.山西农业大学学报,2005(8):292-294.

〔3〕李先富.胡劲松.判断向量组线性相关性的另外

一种方法.四川理工学报,2005(8):94-95.

〔4〕肖艾平.向量组线性相关性的几种判定方法.伊

犁师范学院,2008(12):58-59.

第32卷第5期(上)

2016年5月赤峰学院学报(自然科学版)JournalofChifengUniversity(NaturalScienceEdition)Vol.32No.5

May2016

向量组线性相关与线性无关的判定方法

侯雯昕

(华东师范大学

经济与管理学系,上海

200062)

要:向量组的线性相关性是线性代数理论的基本概念,它与向量空间、子空间等概念有密切关系,

同时在解析几何以及常微分方程中有广泛应用.本文主要研究的是向量组线性相关性的判定方法,包括利用线性相关性的定义、行列式的值、矩阵的秩及齐次线性方程组的解等判定向量组的线性相关性,并比较了几种不同判定方法的适用条件.

关键词:向量组;线性相关;线性无关;行列式;矩阵中图分类号:O151.2

文献标识码:A

文章编号:1673-260X(2016)05-0004-02

DOI:10.13398/j.cnki.issn1673-260x.2016.09.002

向量组的线性相关与线性无关的判定较难理解和掌握,实际上,向量组的线性相关与线性无关是相对的,只要掌握了线性相关的判定,线性无关的判定也就没有问题了.因此,本文主要论述了向量组的线性相关性的几种判定方法.1线性相关及相性无关的概念及性质1.1定义

设有n维向量组a1,a2,…,an,如果存在一组不全为零的数k1,k2,…,kn使k1a1+k2a2+…+knan=0成立,则称向量组a1,a2,…,an线性相关;如果仅当k1,k2,…,kn

上式k1a1+k2a2+…+knan=0才成立,则称向全为0时,

量组a1,a2,…,an线性无关.1.2性质

由向量组的概念易知向量组的线性相关性具有以下简单性质:

(1)含有零向量的向量组线性相关.(2)若单个向量a≠0,则向量组是线性无关的;相反,则向量组线性相关.

(3)含有n+1个向量的n维向量组必定线性相关.

(4)向量组中一部分向量线性相关,则该向量组线性相关;若向量组线性无关,则其任一部分向量组线性无关.

因此,一个向量组不是线性相关就是线性无关,为了更好的理解线性相关和线性无关,下面列出它们之间的不同点.

(1)定义不同:线性相关的向量组是,存在不全为零的一组数k1,k2,…,kn使k1a1+k2a2+…+knan=0成

收稿日期:2016-03-23

立而线性无关的向量组,只有当k1=k2=…=kn=0,才

有k1a1+k2a2+…+knan=0成立.

(2)线性表示问题:线性相关向量组中至少有一个向量能由其余n-1个向量线性表示;而线性无关的向量中任何一个向量都不能由其余n-1个向量线性表示.

(3)与线性方程组的关系:若a1,a2…an线性相关,则存在不全为零的数x1,x2,…,xn,使a1x1+a2x2+…

x1x

+anxn=0,即[a1,a2,…,an]2=0或AX=0有非零解;

xn

而线性无关,则是Ax=0只有零解.由此也可以看出研究向量的线性相关与方程组有着直接的关系.2向量组线性相关性的判定2.1利用定义法判定

这是判定向量组的线性相关的基本方法,即给定向量组A:a1,a2,…,an如果存在不全为零的数k1,k2,

则称向量组A…,kn,使得k1a1+k2a2+…+knan=0成立,

是线性相关的.否则,如果不存在不全为零的数k1,k2,…,kn,使得k1a1+k2a2+…+knan=0成立.也就是说,只

才有k1a1+k2a2+…+knan=0,则有当k1,k2,…,kn全为零,

称向量组A是线性无关的.

例如,证明向量组β1=α1+α2,β2=α2+α3,β3=α3+β4=α4+α1线性相关,则需要证明设存在4个数α4,

k1,k2,k3,k4,使得k1β1+k2β2+k3β3+k4β4=0.因此需将

β2=α2+α3,β3=α3+α4,β4=α4+α1代入上式β1=α1+α2,

有:

k1(α1+α2)+k2(α2+α3)+k3(α3+α4)+k4(α4+α1)=0,即

!

""""""""#

$%%%%%%%%&

-4-

(k1+k4)α1+(k1+k2)α2+(k2+k3)α3+(k3+k4)α4=0,

取k1=k3=1,k2=k4=-1,则有k1β1+k2β2+k3β3+k4β4

=0,由线性相关性的定义可知,向量组β1,β2,β3,β4线性相关.

2.2利用齐次线性方程组的解判定

对于各分量都给出的向量组a1,a2,…,an,若以A=[a1,a2,…,an]为系数矩阵的齐次线性方程组AX=0有非零解则此向量组a1,a2,…,an是线性相关的;若以A=[a1,a2,…,an]为系数矩阵的齐次线性方程组AX=0只有零解,则此向量组a1,a2,…,an是线性无关的.例如,判断x1=(-1,1,1),x2=(-2,1,2),x3=(-1,2,-1)的线性相关性.需要令k1x1+k2x2+…+knxn=0,即:将三组值代入后解方程组,可得k1=0,k2=0,k3=0,

故x1,x2,x3是线性无关的.2.3利用矩阵的秩判定

设向量组A:a1,a2,…,am是由m个n维列向量所组成的向量组,则向量组A的线性相关性可由向量组A所构成的矩阵A=(a1,a2,…,am)的秩的大小来进行判定.

(1)当R(A)=m时,则向量组A:a1,a2,…,am是线性无关的;(2)当R(A)<m时,则向量组A:aa1,a2,…,am是线性相关的.

2.4利用行列式的值来判定

(1)若向量组A:a1,a2,…,am是由m个m维列向量所组成的向量组,且向量组A所构成的矩阵A=

即A为m阶方阵,则有:(a1,a2,…,am),

①当|A|=0时,则向量组A:a1,a2,…,am是线性相关的;

②当|A|=0时,则向量组A:a1,a2,…,am是线性无关的.

(2)若向量组A:a1,a2,…,am的个数m与维数n不同时,则有:

①当m>n时,则向量组A:a1,a2,…,am是线性相关的;

②当m<n时,转化为上述来进行判定,即选取m个向量组成的m维向量组,若此m维向量组是线性相关的,则添加分量后,得到的向量组也是线性相关的.

2.5利用反证法判定

有些题目中,直接证明结论常常比较困难,而从结论的反面入手却很容易推出一些与已知条件或已知的定义、定理、公理相悖的结果,从而说明原

结论成立.

例如,向量组A:a1,a2,…,am中任一向量ai不是

证明向量它前面i-1个向量的线性组合,且ai≠0,

组A:a1,a2,…,am是线性无关的.

假设向量组A:a1,a2,…,am线可用反证法证明,

则存在不全为零的m个数k1,k2,…,km,使得性相关,

k1a1+k2a2+…+kmam=0.由此可知,km=0,否则由上式可得

am=a1-a3-…-am-1

mmm

即am可由它前面m-1个向量线性表示,这与题设矛盾,因此km=0.从而有k1a1+k2a2+…km-1am-1=0.同理可得km-1=km-2=…=k3=k2=0,最后得到k1a1=0因为ai≠0,所以k1=0,但这又与k1,k2…km不全为零矛盾.因此,向量组A:a1,a2,…,am线性无关.

2.6利用向量组在线性空间中象的线性关系判定

线性空间V中向量组a1,a2,…,ar线性相关的充

σ(a2)…σ(ar)线性相关.因为要条件是它们的象σ(a1),

由k1a1+k2a2+…+krar=0可得k1σ(a1)+k2σ(a1)+…+krσ(ar)=00.进而有σ(k1a1+k2a2+…+krar)=0.2.7利用方程组法判定

方程组法就是将向量组的线性相关性问题转化为齐次线性方程组的有无非零解的问题.对于各分量都给出的向量组a1,a2,…,as线性相关的充要条件是以a1,a2,…,as的列向量为系数矩阵的齐次线性方程组的有非零解;若齐次线性方程组只有零解,则向量组线性无关.3小结

本文主要对向量组线性相关性的定义以及性质进行了分析,并且给出了一些判定方法,由于向量组的线性相关性是线性代数中一个基础和重点的问题,仅限于这些讨论是远远不够的,还有待我们作进一步的研究.———————————————————————

参考文献:

〔1〕张禾瑞.郝鈵新.高等代数.高等教育出版社,

2007.130-270.

〔2〕杨燕新.王文斌.关于向量组线性相关的集中判

定.山西农业大学学报,2005(8):292-294.

〔3〕李先富.胡劲松.判断向量组线性相关性的另外

一种方法.四川理工学报,2005(8):94-95.

〔4〕肖艾平.向量组线性相关性的几种判定方法.伊

犁师范学院,2008(12):58-59.


相关文章

  • 向量组线性相关性的判定方法开题报告
  • 毕业设计(论文)开题报告 数理学院届 题目论文 学课题来源号 自拟课题课题类型学生姓名专业年级班职称指导教师 填写日期:2016年1月10日一.本课题研究的主要内容.目的和意义 主要内容: 本文从介绍向量组线性相关性的定义着手,然后论述了若 ...查看


  • 线性代数知识点总结
  • 线性代数知识点总结 第一章 行列式 (一) 要点 1.二阶.三阶行列式 2.全排列和逆序数,奇偶排列(可以不介绍对换及有关定理),n 阶行列式的定义 3.行列式的性质 4.n 阶行列式D =a ij ,元素a ij 的余子式和代数余子式,行 ...查看


  • 线性代数复习重点
  • 线性代数复习重点 第一部分 行列式 1. 2. 3. 4. 排列的逆序数 行列式的性质及行列式的计算 行列式按行(列)展开法则 克拉默法则 了解行列式的概念,掌握行列式的性质,熟练掌握应用行列式的性质和行列式按行(列)展开定理计算行列式,理 ...查看


  • 四阶行列式的计算
  • 四阶行列式的计算: N阶特殊行列式的计算(如有行和.列和相等): 矩阵的运算(包括加.减.数乘.乘法.转置.逆等的混合运算): 求矩阵的秩.逆(两种方法):解矩阵方程: 含参数的线性方程组解的情况的讨论: 齐次.非齐次线性方程组的求解(包括 ...查看


  • 线性代数期末复习
  • • • • • • • • [<线性代数>复习提纲]只需1天就能高分过了线代--没听课的孩纸果断转了! 2012-11-30 21:01阅读(6)转载自 复制地址 上一篇 |下一篇:新东辰野史 阶特殊行列式的计算(如有行和.列和 ...查看


  • 电力电子变换器主电路拓扑辨识型_马皓
  • DOI:10.13334/j.0258-8013.pcsee.2006.06.010 第26卷 第6期 2006年3月 中 国 电 机 工 程 学 报 Proceedings of the CSEE V ol.26 No.6 Mar. 20 ...查看


  • 专题20用折线法求线性方程组的全部解
  • 专题20 用折线法求线性方程组的全部解 本专题介绍根据系数矩阵或增广矩阵直接求解齐次线性方程组或非齐次线性方程组的简单方法:"折线法". 为了叙述方便,用1,2n依次标记系数矩阵从左至右的n列. 一. 单位列和标准列 ...查看


  • 四川省普通高等学校专升本
  • 四川省普通高等学校专升本 <大学计算机基础>考试大纲 一. 总体要求 要求考生掌握必备的有关的计算机基础知识和基本应用能力,掌握微机的基本操作和使用方法,并为以后的计算机课程学习打下必要的计算机知识基础.具体要求为: 1. 了解 ...查看


  • 四川省专升本考试大纲
  • 四川省普通高等学校 <高等数学>考试大纲(理工类) 总要求 考生应理解或了解<高等数学>中函数.极限.连续.一元函数微分学.一元函数积分学.向量代数与空间解析几何.多元函数微积分学.无穷级数.常微分方程以及<线 ...查看


热门内容