碳纳米管的新型羧基化处理

MicrochimActa(2010)169:33–40DOI10.1007/s00604-010-0307-3

ORIGINALPAPER

Novelcarboxylationtreatmentandcharacterization

ofmultiwalledcarbonnanotubesforsimultaneoussensitivedeterminationofadenineandguanineinDNA

XinmanTu&XubiaoLuo&ShenglianLuo&LiushuiYan&FengZhang&QingjiXie

Received:2November2009/Accepted:14January2010/Publishedonline:23February2010#Springer-Verlag2010

AbstractAmethodispresentedforthecarboxylationofmultiwalledcarbonnanotubes(MWCNTs)viaatwo-stepprocess.ThehydroxygroupsofMWCNTswerefirstreactedwithepichlorohydrin,thenwithiminodiaceticacid.TheresultingMWCNTswerecharacterizedbymeansofFouriertransforminfraredspectroscopyandtransmissionelectronmicroscopy.TheglassycarbonelectrodemodifiedwiththeMWCNTsthuspreparedexhibitedenhancedelectrocatalyticactivityandgoodstabilityforthedetermi-nationofguanineandadenineinpH7.0phosphatebuffersolution.Theexperimentalparameterswereoptimized,andadirectelectrochemicalmethodwasdevelopedforthesimultaneousdeterminationofguanineandadenine.Thedetectionlimits(atS/N=3)forguanineandadenineare0.02and0.08μM,respectively.AsensitivemethodwasalsodevelopedforthedeterminationofguanineandadenineincalfthymusDNA.

KeywordsMultiwalledcarbonnanotubes.Carboxylation.Modifiedelectrode.Guanineandadenine.CalfthymusdsDNA

X.TuX.LuoS.Luo(*)L.YanF.ZhangSchoolofEnvironmentandChemicalEngineering,NanchangHangkongUniversity,Nanchang330063,Chinae-mail:[email protected]

X.Tu:Q.Xie

KeyLaboratoryofChemicalBiologyandTraditionalChineseMedicineResearch(MinistryofEducationofChina),HunanNormalUniversity,Changsha410081,China

Guanine(G)andadenine(A)areimportantcomponentsfoundindeoxyribonucleicacid.DeterminingindividualconcentrationsofguanineandadenineortheirratioinDNAisimportantwhenmeasuringthenucleicacidconcentrationitself.Indeed,nucleicacidcomponentsinphysiologicalfluids,tissuesandcellsarerelatedtothecatabolismofnucleicacids,enzymaticdegradationoftissuesanddietaryhabits.Therefore,detectionofelevatedlevelsofthesesubstancescouldbeindicativeofcertaindiseases[1].Manymethods,suchasthespectroscopicmethodscoupledwithchromatographyorelectrophoresis[1–6]andelectrophoresiswithelectrochemicaldetection[7–9],havebeendevelopedforthedetectionandquantifi-cationofpurinebasesinnucleicacids.Inaddition,voltammetrictechniquesarealsosuitablefortheanalysisofthesepurinesinnucleicacidsduetoadvantagesincludinghighsensitivityandselectivity,fastresponse,lowcostandultra-smallsamplevolumes.Butpurineandpyrimidinebasesusuallyprovidepoorresponsewithhighoxidativepotentialanddisturbeachotheronconventionalelectrodes.Todate,someelectrochemicaldetectionproto-colshavebeendeveloped,suchaselectrochemicallypretreatedglassycarbonelectrode[10],nafion-rutheniumoxidepyrochlorechemicallymodifiedelectrode[11],highlyboron-dopeddiamondelectrode[12],andcobalt(II)phthalocyaninemodifiedcarbonpasteelectrode[13],etc.However,thereareseveresetbacksforpurineelectro-chemicaldetermination,asthesepurinebasescouldirreversiblyadsorbontheelectrodesurfacethushamperingtheestimation.

Carbonnanotubes(CNTs)representanovelcarbonnano-materialofgreatinterest,especiallyinelectroanalysis,duetoitsexcellentperformanceinenhancingtheelectrochemicalreactivity,promotingtheelectron-transferreactionsand

34alleviatingsurfacefouling[14,15].However,thecrucialobstacleofthenanotubesindiverseapplicationsistheirpoorsolubilityandprocessibility,whichiscausedbyinherentattractivevanderWaalsinteractionsbetweennanotubes[16].Asaresult,carbonnanotubesareaggregatedandexistasbundlesintheirnativestate.Theycanbedispersedinsomesolventsbysonication,butprecipitationimmediatelyoccurswhenthisprocessisinterrupted.Toovercomethisdifficulty,thebestmethodtospövetheseproblemsistointroducevariousfunctionalgroupsonthesurfaceofCNTs[17,18],whichcanimprovethedispersionofCNTsinsolutionorcompositematerials.Moreover,variousfunctionalgroupscanbeintroducedthroughfurtherchemicalmodificationonthesidewallofthecarboxylatedCNTs.Thewaytointroducecarboxylicacidgroups(COOH)toCNTswasusuallyacidtreatmentbyoxidation.Therearetwocommonacidtreat-mentsusedintheliterature.Onerefluxesthenanotubeswithasolutionofnitricacid[19–23],andtheotherexposesthesampletoamixtureofHNO3/H2SO4(1:3byvolume)underhighpowersonicationforamaximumof6h[20,21,24–26].Chenetal.[27]haveshownthatanoxidationprocessforsingle-wallcarbonnanotubes(SWCNTs)involvingextensiveultrasonictreatmentinamixtureofHNO3/H2SO4(1:3byvolume)canleadtotheopeningofthenanotubecapsaswellastheformationofholesinthesidewalls.Thefinalproductsarenanotubefragmentswithlengthsintherangeof100to300nm,whoseendsandsidewallsaredecoratedwithahighdensityofvariousoxygencontaininggroups(mainlycarboxylgroups).Nanotubesfunctionalizedinthismannerhaddamagedpristineelectronicandmechanicalproperties.Thus,werequirethedevelopmentofanovelwaytointroducecarboxylicacidgroups(COOH)toCNTsandretaintheirpristineelectronicandmechanicalproperties.

Thispaperpresentsasimpleapproachtotheintro-ductionofcarboxylicacidgroups(COOH)toCNTsandretaintheirpristineelectronicandmechanicalproperties.TheelectrocatalyticactivitytowardstheoxidationofguanineandadenineonthecarboxylatedCNTsmodifiedelectrodehasbeeninvestigatedutilizingcyclicvoltam-metry(CV),andthedetectionlimitandlinearrangeofadenineandguaninehavealsobeenstudiedbylinearsweepvoltammetry(LSV).Itwasfoundthatthismodifiedelectrodeshowedexcellentelectrocatalyticactivityintheoxidationofguanineandadenine,andbasedonthisadirectelectrochemicalmethodwasdevelopedtodeterminetracelevelsofDNA.Tothebestofourknowledge,thepresentstrategyforthepreparationofacarboxylatedCNTsmodifiedelectrodehassofarnotbeenreported,norhastheelectrocatalyticactivitytowardguanineandadenineoxidationbeenstudiedtodate.

X.Tuetal.

ExperimentalsectionInstrumentationandreagents

FTIRspectrawerecollectedonaNEXUS670FTIRspectrophotometer(Nicolet,USA,http://www.thermo.com/).TheCNTwaspressedintoKBrpelletsforFTIRmeasure-ments.Transmissionelectronmicroscopy(TEM)pictureswerecollectedonaJEOL-1230microscope(JEOL,Tokyo,Japan,http://www.jeol.com/)withalineresolutionof0.20nm,operatedatanaccelerationvoltageof100kV.Thesamplesweredispersedinwateranddrop-castontoacoppergridwithaholeycarbonfilm.

AllelectrochemicalexperimentswereconductedonaCHI660Celectrochemicalworkstation(CHInstrumentCo.,USA,http://www.chinstruments.com/).Aconven-tionalthree-electrodecellwasused.Theglassycarbonelectrode(GCE)of3.0mmdiameterservedastheworkingelectrode.ThereferenceelectrodewasaKCl-saturatedcalomelelectrode(SCE),andallpotentialsinthispaperarereportedversusthisreference.Acarbonrodservedasthecounter-electrode.

Multiwalledcarbonnanotubeswithahydroxylgroup(95%purity,diameterof30–50nm,rateofsurfacecarbonatom:20–26mol%)werepurchasedfromtheChengduInstituteofOrganicChemistryoftheAcademyofSciences(http://www.timesnano.com).Adenine(A),guanine(G),andthecalfthymusdsDNAwerepurchasedfromSigma(http://www.sigmaaldrich.com/).Thestocksolutions(1.0mM)ofguanine(G)andadenine(A)werepreparedwithdilutedNaOHaqueoussolution.Theworkingsol-utionswerepreparedbydilutingthestocksolutionwithphosphatebuffersolution.0.10MK2SO4+0.10Mphos-phatebuffersolutionsconsistingofK2HPO4andKH2PO4wereemployedasthesupportingelectrolyte.ThedesiredsolutionpHwasadjustedbydifferentamountsof0.10MK2HPO4andKH2PO4solutions.Allchemicalswereofanalyticalgradeorbetterquality.Allsolutionswerepreparedusingredistilledwater.PreparationofDNAsamples

AgeneraltreatmentofDNAwith1.0mMHClleadstotheselectiveremovalofitspurinebasesbycleavageofpurineglycosidebonds[28].ThecalfthymusdsDNAwashydrolyzedasfollowsforquantificationofguanineandadenine:twomilligramsofdsDNAwasdigestedusing1.0mLof1.0MHClina10mLglasstube.Afterheatinginaboilingwaterbathfor80min,thepHofthesolutionwasadjustedwith1.0mLof1.0MNaOH.Aftercoolingtoroomtemperaturethesolutionwasdilutedto10mLusing0.10Mphosphatebuffersolution(pH7.0).

Novelcarboxylationtreatment35

CarboxylationofCNTs

Scheme1showsthecarboxylationreactionofCNTs.Theprocedurewasperformedasfollows:CNTs-OH(1.0g)wasdispersedin30mLof2.0MNaOHsolutionwhilestirring.110mgNaBH4and3.0mLepichlorohydrinwereaddedat37°C,andtheresultantmixturewasstirredfor10min.15mLof2.0MNaOHsolutionand9.0mLepichlorohy-drinwereaddeddropwiseundervigorousmagneticstirringoveraperiodof2h,andthemixturewasstirredfor24hat37°C.Theprecipitatewascollectedbyfiltrationunderreducedpressureandwashedwithdoublydistilledwater.Afterwards,theprecipitatewasdispersedin40mL2.0MNa2CO3solutionwhilestirring.2.5giminodiaceticacidwasadded,andtheresultantmixturewasstirredfor24hat37°C.Theprecipitatewascollectedbyfiltrationunderreducedpressureandwashedwithdoublydistilledwater.Theprecipitatewasdriedat50°C,andthecarboxylatedCNTswerefinallyobtained(DenotedasCNTs–COOH2).Forcomparison,theCNTs-OHwerefunctionalizedwithcarboxylicacidgroupsbysonicationina3:1sulfuric-acid/nitric-acidmixturefor8h[29].ThepretreatedMWCNTswereneutralizedwith0.10molL−1NaOH,washedwithwater,filtered,anddried(denotedasCNTs–COOH).Electrodemodifications

ThegeneralprocedureofGCEpretreatmentandmodifica-tionwasasfollows:priortouse,theworkingelectrodewaspolishedmechanicallywith0.05μmaluminapowdertoobtainamirror-likesurfaceandthenwashedwithdoublydistilledwaterandacetone.Electrochemicalactivationoftheelectrodewasperformedbycontinuouspotentialcyclingfrom−0.20to1.5Vatascanrateof100mVs−1in0.20molL−1HClO4solutionuntilastablevoltammo-gramwasobtained.Afterrinsingwithdoublydistilledwater,theactivatedelectrodewasmodifiedasfollows:TheCNTs-OHmodifiedGCEwaspreparedbydropping6.0μLofasolutionof2.0mgMWCNTs-OHdispersedin1.0mLofDMFonaGCE,andthenair-dried.TheCNTs-COOHfilmcoatedGCEwaspreparedbydropping6μLsolutionof2.0mgCNTs-COOHdispersedin1.0mLof

Scheme1SchematicdepictionofthecarboxylationofCNTs

OHOH

DMFontheGCE,andthenair-dried.TheCNTs-COOH2filmcoatedGCEwaspreparedbydropping6μLsolutionof2.0mgCNTs-COOH2dispersedin1.0mLofDMFontheGCE,andthenair-dried.

Resultsanddiscussion

CarboxylationofCNTsandcharacterization

Figure1showstheFTIRspectraofCNTs-OH(a)andcarboxylatedcarbonnanotube,CNTs-COOH(b)andCNTs-COOH2(c).ComparedwiththeFTIRspectrumofCNTs-OH,theCNTs-COOHhavesimilarcharacteristics.ForCNTs-COOH,thepeakat3,440cm−1isassignedtotheO-Hstretchingvibrations,thepeaksat1,710cm−1and1,210cm−1maybeassignedtotheC=OandC–Ostretchingvibrations,respectively.Thepeakat1,570cm−1canbeassociatedwiththestretchingofthecarbonnano-tubesbackbone.However,fortheCNTs-COOH2,peaksat2,920and2,850cm−1inthespectrum(c)aregreatlyenhancedbecauseoftheattachmentofadditionalmethy-lenegroups,andpeaksat1,100cm−1maybebecauseoftheexistenceofC-O-C[30].

Figure2showsTEMimagesofCNTs-OH(a),CNTs-COOH(b)andCNTs-COOH2(c).TheCNTs-OHwerehollowropeswithcleanwallsofca.40nmouterdiameter.AftertreatmentoftheCNTs-OHwithacidbyoxidation,theprocessleadstotheopeningofthenanotubecapsaswellastheformationofholesinthesidewalls,introducingdefectsonthewallsofthenanotubes.However,theimagescorrespondingtotheCNTs-OHsubjectedtothecovalentattachmentofCOOHtothesurfaceofCNTsshowthatthenanotubesidewallsdonotchangesignificantly.ThebiocompatiblesolubilizationofCNTsisbelievedtobesignificantforbiologicalapplicationsoftheCNTs.CNTs-OHhaveatendencytoaggregateinwaterduetothestrongvanderWaalsforces,asshownintheinsetofFig.2(a).However,theCNTsfunctionalizedwithCOOHcanformahomogeneousandblackdispersioninaqueoussolution,andthesuspensionwillkeepstableforatleast1week,asshownintheinsetsofFig.2bandc.

CH2COOHCH2COOH

+

ClHOOH

CH2COOHCH2COOH

+

HN

HO

OH

OH

N

36X.Tuetal.

a

1570

b

1710

c

3440

1570

28502920

1210

1710

2500

2000

1500

-1

3440

4000

3500

3000

1570

1000

500

wavelength /cm

Fig.1FTIRspectraofCNTs-OH(a),CNTs-COOH(b)andCNTs-COOH2(c)

Voltammetricstudyofadenineandguanineonthemodifiedelectrode

Inthepresentwork,weexaminetheenhancedelectro-chemicalresponseofadenineandguanineataCNTs-COOH2modifiedelectrode.Figure3illustratestheCVresponseoftheanalytemixtureonthemodifiedelectrodesandbareGCE.Itcanbeseenthat,inthecaseofbareGCE,thevoltammogramsofbasesAandGexhibitjusttwosmallhumppeaks.Comparedwiththeelectrochemicalresponseonthebareelectrode,inthecaseofCNTs-OH/GCE,CNTs-COOH/GCEandCNTs-COOH2/GCE,thepeakcurrentsignalsofAandGwereenhancedsignificantly.Further-more,itisevidentthattheelectrochemicalresponseonthe

CNTs-COOH2/GCEwasmuchstrongerthanthatontheCNTs-OH/GCEandCNTs-COOH/GCE.Nocathodicpeakswereobservedonthereversescanwithintheinvestigatedpotentialrange,indicatingthattheoxidationofGandAiselectrochemicallyirreversible.

WhenimmersingtheCNTs-COOH2/GCEelectrodeintoaquietphosphatebuffer(pH7.0)containingguanineandadeninefor5min,thecyclicvoltammogramshowsverylowresponses.After5minofstirringatopencircuit,however,theresponsesgreatlyimprove.AfterimmersionoftheCNTs-COOH2/GCEelectrodeinthestirringsolutioncontainingguanineandadeninefor5minandtransferringtoapH7.0phosphatebuffersolution,peaksofguanineandadeninecanbeobserved.ThissuggeststhatguanineandadeninecanbeadsorbedontheCNTs-COOH2/GCEelectrodesurface.Thepeaksofguanineandadeninealmostdisappearedinthesecondcycle.Thisphenomenonmaybepartlyattributedtotheconsumptionofadsorbedguanineandadenineandtheadsorptionofelectrochemicaloxida-tionproductsattheCNTs-COOH2/GCEsurface.

ToinfermoreaboutthereactionprocessofCNTs-COOH2/GCE,westudiedthescanrateeffectontheguanineelectrochemicalresponse(seeFig.4).ThepeakcurrentsofCNTs-COOH2/GCEinthepresenceof20μMAandGinphosphatebuffersolutionaredirectlyproportionaltothescanrateovertherangeof25–400mVs−1,furtherconfirmingthatAandGwereadsorbedonthesurfaceoftheelectrode.Inaddition,withincreasingscanrate,theoxidationpeakpotential(Ep)shiftstomorepositivevaluesandthereisalinearcorrelationbetweenthepeakpotentialandthelogarithmofthescanrate,logv.Thelogarithmplotpeakcurrent(logipa)vs.logarithmofscanrates(logv)ofGandAhavealinearrelationship,withaslopeof0.732(logipavs.logv,R=0.998)and0.731(logipavs.logv,R=0.999),respectively.Thesevaluesarebetween0.5and1.Theseresultsindicatethatthe

electrode

Fig.2TransmissionelectronmicrographsofCNTs-OH(a),CNTs-COOH(b)andCNTs-COOH2(c).Insetsshowthephotographsof2mgmL−1CNTsdispersionsintowaterfor1week

Novelcarboxylationtreatment

0.2

0.4

0.6

0.8

1.0

1.2

1.4

37

E /V vs SCE

Fig.3Cyclicvoltammetriccurvesin0.10MpH7.0phosphatebuffersolutioncontaining20μMguanineand20μMadenineatbareGCE(a),CNTs-OH/GCE(b),CNTs-COOH/GCE(c)andCNTs-COOH2/GCE(d).Accumulatedatanopencircuitpotentialfor240s,scanratewas100mVs−1

Ep=1.130–0.058pH(peakG,r=0.9945)andEp=1.451–0.060pH(peakA,r=0.9975),respectively.Theoxidationofadenineandguaninefollowsatwo-stepmechanisminvolvingthetotallossof4e-andthefirst2e-oxidationistherate-determiningstep.Theslopesof58and60mV/pHshowsthattwoprotonstakepartintherate-determiningstep[33].TheinfluencesoftheamountofCNTs-COOH2onthepeakcurrentwasexaminedbyCV.However,theoxidationpeakcurrentsofadenineandguaninearecloselyrelatedtotheamountofCNTs-COOH2.TheoxidationpeakcurrentincreasesgreatlywhentheCNTs-COOH2amountimprovesfrom0to9μL,andfinallydecreaseswhentheCNTs-COOH2amountishigherthan9μL,beingdueprobablytothelimitedmasstransportofadenineandguanineinsideathickerfilm.Meanwhile,thebackgroundcurrentgraduallyincreaseswhiletheCNTs-COOH2amountincreases.Inthiswork,theamountofCNTs-COOH2waschosentobe9μLforahigherpeakcurrentandalowerbackgroundcurrent.Voltammetricseparationdeterminationofadenineandguanine

Figure5showstheLSVwhen2.0μMguanineandadenineinconcentrationsfrom0.05to10.0μMcoexistinthesolution.Ascanbeseen,thecompetitiveadsorptionphenomenononCNTs-COOH2isnegligible,andthelinearrelationbetweenadenineconcentrationandthepeakcurrent(Ipa∼CA)isavailableintheinvestigatingcondition,whichilluminatesthatthepresenceofcertainconcentrationsofguaninedonotinterferewithadeninedetermination.Itisthereforepossibletodeterminequantitativelywithoutanyconsiderablerecip-rocalinfluenceoveralargerrangeofconcentrations.

Similarly,undertheexperimentalconditions,andinthepresenceof2.0μMadenine,theLSVpeaksofaseriesofguanine(withdifferentconcentrations)arespikyandhavea

1.10.90.8

-3.0

processwassimultaneouslyinfluencedbydiffusionandadsorption[31].Inthiscase,thechargetransfercoefficient(a)canbeworkedoutfromthefollowingequations[32],whichis0.66and0.68forAandG,respectively.Epa¼E0þ

2:3RTð1ÀaÞnFv

log

0ð1ÀaÞnFRTKs

ð1Þ

TheeffectofpHontheelectrochemicalresponseofthe

modifiedelectrodetowardsthesingledeterminationofadenineandguaninewasstudiedovertherangeof4.0–9.0.TheoxidationpeakcurrentofadenineandguanineatthemodifiedelectrodedecreasesslightlywithanincreaseofthepHvalue.ThepHdependenceofoxidationpeakpotentialsofguanineandadenineobeystheequations

900

[**************]0-150

0.70.6

logIpa

-3.6

-4.2

0.300.450.600.750.901.051.201.35

-4.8

E /V vs SCE

Fig.4aScanratedependenceofthecyclicvoltammetricresponseofCNTs-COOH2/GCEin0.10MpH7.0phosphatebuffersolutioncontaining20μMguanineand20μMadenine.Scanratefrominnertoouter:25,50,75,100,200,300,400mVs−1.Insetshowsplotof

logv

anodicpeakcurrentvs.scanrate.bPlotsofanodicpeakpotentialandthelogarithmofanodicpeakcurrentsasfunctionsofthelogarithmofthescanrate

Epa /V

1.0

38

200175

[1**********]

50250

0.300.450.600.750.901.051.201.35E/V vs SCE

Fig.5Linearsweepstrippingvoltammogramsofguanineatvariousconcentrations(0.2–10.0μM)in2.0μMadeninesolution.Inset:plotofpeakcurrentsvs.guanineconcentrations.OtherconditionswerethesameasinFig.3

favorablelinearrelationship(seeFig.6).Comparedwiththereportedresultsforguanineandadenine,thehighlinearlimitisimprovedupto10μM.Theseobservationsclearlydemonstratethatthetwopurinebasescanbeestimatedfromamixtureintheconcentrationrangestudied.Here,thedetectionlimitsofGandAforindividualanalysisarecalculatedtobe0.02and0.08μM(withS/N=3criterion),respectively.Thus,thismethodallowssimultaneousandsensitivedeterminationofguanineandadenine.Analyticalapplication

Theacid-denaturedDNAproducestwowell-definedpeaksattheCNTs-COOH2/GCEduetotheoxidationofguanine

225

[***********]0250

0.300.450.600.750.901.051.201.35

E /V vs SCE

Fig.6Linearsweepstrippingvoltammogramsofvariousconcen-trationsofadeninefrom0.2to10.0μMin2.0μMguaninesolution.Inset:plotofpeakcurrentsvs.adenineconcentrations.OtherconditionswerethesameasinFig.3

X.Tuetal.

E /V vs SCE

Fig.7Linearsweepstrippingvoltammogramsforthesimultaneousdeterminationofguanineandadenineinacid-denatured−1DNAwithincreasingconcentrationfrom0.50to25μgmL.Inset:plotofthepeakcurrentsvs.acid-denaturedDNAconcentrations.Othercon-ditionswerethesameasinFig.3

andadenineresidues.Figure7showsthetypicalLSVresponsesofguanineandadenineresidueswithincreasingDNAconcentrationsrangingfrom0.50to25μgmL−1.TherelationshipbetweenthepeakcurrentandDNAconcentra-tionislinearintherangeof0.50–15μgmL−1.

Thedeterminationofguanineandadenineconcentra-tionswasperformedbythestandardadditionmethodasfollows.TwentymicrolitersofdenaturedDNAwasaddedtoacellcontaining10mLpH7.0phosphatebuffersolution,thenthepeakcurrentsofguanineandadenineresiduesweremeasured.Subsequentlyacertainquantityofguanineoradeninesolutionwasadded,andthepeakcurrentofguanineoradeninewasmeasuredagain.TheconcentrationsofguanineandadenineinDNAcanbecalculatedfromthepeakcurrentusingthecalibrationgraphobtainedpreviouslyforsimultaneousdeterminationofguanineandadenine.TheresultsaregiveninTable1.Whenusingthemethodpresented,avalue(G+C)/(A+T)of0.81wasobtainedforacalfthymusDNAsampledigestedwithHCl,whichcoincidedwiththestandardvalueof0.77[34].Thedeterminationlimitof0.08μg·mL−1wasalso

Table1ContentofguanineandadenineinHCl-digestedcalfthymusDNAsimultaneouslydeterminedwiththeCNTs-COOH2/GCE

CalfthymusDNAtreatedwithHClGuanine(mol%)22.41Adenine(mol%)

27.67Molarratio(G+C)/(A+T)

0.81

Novelcarboxylationtreatmentobtainedforthecalf−1thymusDNA.Tencontinuousmeasure-mentsof1μg·mLcalfthymusshowedagoodreproduc-ibilitywitha2.6%R.S.D.

Conclusions

Insummary,wehavedevelopedanovelrouteforthecarboxylationofmultiwalledcarbonnanotubes.Ourobserva-tionsindicatethatthecarboxylatedCNTshaveexcellentfunctionalpropertieswithgoodelectrochemicalactivityonguanineandadeninebiomolecules.ItappearsthattheexcellentelectrochemicalbehavioroftherelevantbasesmaycomefromtheselectiveaccumulationonthecarboxylatedCNTselectrodesurface.Therefore,thissimpleandreliablestrategybasedonanelectrochemicaltechniqueatCNTs-COOH2/GCEcouldbeusedforthedevelopmentofsensitivevoltammetricbiosensorsforsimultaneousdeterminationofguanineandadenineintherelatedbiologicalprocess.

AcknowledgementsThisworkwassupportedbytheNationalOutstandingYouthFoundationsofChina(No.50725825),NationalNaturalScienceFoundationofChina(No.50908113,20765003),theNaturalScienceFoundationofJiangxiProvince(No.2008GZH0008),theYouthFoundationofJiangxiProvincialDepartmentofEducation(No.GJJ09483),andtheOpeningFundoftheKeyLaboratoryofChemicalBiologyandTraditionalChineseMedicineResearch(MinistryofEducationofChina),HunanNormalUniversity(No.KLCBTCMR2008-08).

References

1.ShengRS,NiF,CottonTM(1991)Determinationofpurinebasesbyreversed-phasehigh-performanceliquidchromatographyusingreal-timesurface-enhancedRamanspectroscopy.AnalChem63:437

2.KaiM,OhkuraY,YonekuraS,IwasakiM(1994)Chemilumines-cencedeterminationofguanineanditsnucleosidesandnucleo-tidesusingphenylglyoxal.AnalChimActa287:75

3.ToddB,ZhaoJ,FleetG(1995)HPLCmeasurementofguanineforthedeterminationofnucleicacids(RNA)inyeasts.JMicrobiolMethods22:1

4.TordaT,SaavedraJM(1990)Determinationofguaninenucleotidesensitivityof[125I]-neuropeptideYbindingintheratpituitaryglandbyquantitativeautoradiography.Neuroendocrinology52:361

5.KurodaN,NakashimaK,AkiyamaS(1993)Chemiluminescencemethodforthedeterminationofadenineafterreactionwithphenylglyoxal.AnalChimActa278:275

6.TsengHC,DadooC,ZareRN(1994)Selectivedeterminationofadenine-containingcompoundsbycapillaryelectrophoresiswithlaser-inducedfluorescencedetection.AnalBiochem222:55

7.HuaL,XuDK,ChenHY(1997)Simultaneousdeterminationofpurinebases,ribonucleosidesandribonucleotidesbycapillaryelectrophoresis-electrochemistrywithacopperelectrode.JChro-matogrA760:227

39

8.XuDK,HuaL,ChenHY(1996)Determinationofpurinebasesbycapillaryzoneelectrophoresiswithwall-jetamperometricdetection.AnalChimActa335:95

9.JinW,WeiH,ZhaoX(1997)Determinationofadenineandguaninebycapillaryzoneelectrophoresiswithend-columnamperometricdetectionatacarbonfibermicrodiskarrayelectrode.Electroanalysis9:770

10.WangHS,JuHX,ChenHY(2002)Simultaneousdetermination

ofguanineandadenineinDNAusinganelectrochemicallypretreatedglassycarbonelectrode.AnalChimActa461:24311.ZenJM,ChangMR,IlangovanG(1999)Simultaneousdetermi-nationofguanineandadeninecontentsinDNA,RNAandsyntheticoligonucleotidesusingachemicallymodifiedelectrode.Analyst124:679

12.IvandiniTA,SaradaBV,RaoTN,FujishimaA(2003)Electro-chemicaloxidationofunderivatized-nucleicacidsathighlyboron-dopeddiamondelectrodes.Analyst128:924

13.AbbaspourA,MehrgardiMA,KiaR(2004)Electrocatalytic

oxidationofguanineandss-DNAatacobalt(II)phthalocyaninemodifiedcarbonpasteelectrode.JElectroanalChem568:261

14.MusamehM,WangJ,MerkociA,LinY(2002)Low-potential

stableNADHdetectionatcarbon-nanotube-modifiedglassycarbonelectrodes.ElectrochemCommun4:743

15.WangJ(2005)Carbon-nanotubebasedelectrochemicalbiosen-sors:areview.Electroanalysis17:7

16.ThessA,LeeR,NikolaevP,DaiHJ,PetitP,RobertJ,XuCH,Lee

YH,KimSG,RinzlerAG,ColbertDT,ScuseriaGE,TomanekD,FischerJE,SmalleyRE(1996)Crystallineropesofmetalliccarbonnanotubes.Science273:483

17.HirschA(2002)Functionalizationofsingle-walledcarbonnano-tubes.AngewChemIntEdEngl41:1853

18.DykeCA,TourJM(2004)Overcomingtheinsolubilityofcarbon

nanotubesthroughhighdegreesofsidewallfunctionalization.ChemEurJ10:812

19.LinY,RaoM,SadanadanB,KenikEA,SunYP(2002)

Functionalizingmultiple-walledcarbonnanotubeswithamino-polymers.JPhysChemB106:1294

20.WangY,IqbalZ,MalhotraSV(2005)Functionalizationofcarbon

nanotubeswithaminesandenzymes.ChemPhysLett402:9621.LiuJ,RinzlerAG,DaiH,HafnerJH,BradleyRK,BoulPJ,LuA,

IversonT,ShelimovK,HuffmanCB,MaciasF,ShonYS,RandallLT,ColbertDT,SmalleyRE(1998)Fullerenepipes.Science280:1253

22.DujardinE,EbbesenTW,KrishnanA,TreacyMMJ(1998)

Purificationofsingle-shellnanotubes.AdvMater10:611

23.HillDE,LinY,RaoAM,AllardLF,SunYP(2002)Function-alizationofcarbonnanotubeswithpolystyrene.Macromolecules35:9466

24.LiS,QinY,ShiJ,GuoZX,LiY,ZhuD(2005)Electrical

propertiesofsolublecarbonnanotube/polymercompositefilms.ChemMater17:130

25.EitanA,JiangK,DukesD,AndrewsR,SchadlerLS(2003)

Surfacemodificationofmultiwalledcarbonnanotubes:towardthetailoringoftheinterfaceinpolymercomposites.ChemMater15:3198

26.SunYP,ZhouB,HenbestK,FuK,HuangW,LinY,TaylorS,

CarrollDL(2002)Luminescenceanisotropyoffunctionalizedcarbonnanotubesinsolution.ChemPhysLett351:349

27.ChenJ,HamonMA,HuH,ChenY,RaoAM,EklundPC,

HaddonRD(1998)Solutionpropertiesofsingle-walledcarbonnanotube.Science282:95

28.GarrettRH,CrishanCM(1995)Biochemistry.SaundersCollege,

Orlando

40

29.WangZ,LiuJ,LiangQ,WangY,LuoG(2002)Carbonnanotube-modifiedelectrodesforthesimultaneousdeterminationofdopamineandascorbicacid.Analyst127:653

30.ZhangS,YiD,WuT(1993)Infraredspectroscopicanalysisandnew

techniques(inChinese).ChinaMedicineScienceandTechnology,Beijing

31.NicholsonRS,ShainI(1964)Theoryofstationaryelectrode

polarography.Singlescanandcyclicmethodsappliedtorevers-ible,irreversible,andkineticsystems.AnalChem36(4):706

X.Tuetal.

32.LavironE(1979)Generalexpressionofthelinearpotentialsweep

voltammograminthecaseofdiffusionlesselectrochemicalsystems.JElectroanalChem101:19

33.WangZH,XiaoSF,ChenY(2006)β-Cyclodextrinincorpo-ratedcarbonnanotubes-modifiedelectrodesforsimultaneousdeterminationofadenineandguanine.JElectroanalChem589:237

34.DavidsonN(1972)Thebiochemistryofthenucleicacids,7th

edn.Cox&Nyman,Norfolk,p129

MicrochimActa(2010)169:33–40DOI10.1007/s00604-010-0307-3

ORIGINALPAPER

Novelcarboxylationtreatmentandcharacterization

ofmultiwalledcarbonnanotubesforsimultaneoussensitivedeterminationofadenineandguanineinDNA

XinmanTu&XubiaoLuo&ShenglianLuo&LiushuiYan&FengZhang&QingjiXie

Received:2November2009/Accepted:14January2010/Publishedonline:23February2010#Springer-Verlag2010

AbstractAmethodispresentedforthecarboxylationofmultiwalledcarbonnanotubes(MWCNTs)viaatwo-stepprocess.ThehydroxygroupsofMWCNTswerefirstreactedwithepichlorohydrin,thenwithiminodiaceticacid.TheresultingMWCNTswerecharacterizedbymeansofFouriertransforminfraredspectroscopyandtransmissionelectronmicroscopy.TheglassycarbonelectrodemodifiedwiththeMWCNTsthuspreparedexhibitedenhancedelectrocatalyticactivityandgoodstabilityforthedetermi-nationofguanineandadenineinpH7.0phosphatebuffersolution.Theexperimentalparameterswereoptimized,andadirectelectrochemicalmethodwasdevelopedforthesimultaneousdeterminationofguanineandadenine.Thedetectionlimits(atS/N=3)forguanineandadenineare0.02and0.08μM,respectively.AsensitivemethodwasalsodevelopedforthedeterminationofguanineandadenineincalfthymusDNA.

KeywordsMultiwalledcarbonnanotubes.Carboxylation.Modifiedelectrode.Guanineandadenine.CalfthymusdsDNA

X.TuX.LuoS.Luo(*)L.YanF.ZhangSchoolofEnvironmentandChemicalEngineering,NanchangHangkongUniversity,Nanchang330063,Chinae-mail:[email protected]

X.Tu:Q.Xie

KeyLaboratoryofChemicalBiologyandTraditionalChineseMedicineResearch(MinistryofEducationofChina),HunanNormalUniversity,Changsha410081,China

Guanine(G)andadenine(A)areimportantcomponentsfoundindeoxyribonucleicacid.DeterminingindividualconcentrationsofguanineandadenineortheirratioinDNAisimportantwhenmeasuringthenucleicacidconcentrationitself.Indeed,nucleicacidcomponentsinphysiologicalfluids,tissuesandcellsarerelatedtothecatabolismofnucleicacids,enzymaticdegradationoftissuesanddietaryhabits.Therefore,detectionofelevatedlevelsofthesesubstancescouldbeindicativeofcertaindiseases[1].Manymethods,suchasthespectroscopicmethodscoupledwithchromatographyorelectrophoresis[1–6]andelectrophoresiswithelectrochemicaldetection[7–9],havebeendevelopedforthedetectionandquantifi-cationofpurinebasesinnucleicacids.Inaddition,voltammetrictechniquesarealsosuitablefortheanalysisofthesepurinesinnucleicacidsduetoadvantagesincludinghighsensitivityandselectivity,fastresponse,lowcostandultra-smallsamplevolumes.Butpurineandpyrimidinebasesusuallyprovidepoorresponsewithhighoxidativepotentialanddisturbeachotheronconventionalelectrodes.Todate,someelectrochemicaldetectionproto-colshavebeendeveloped,suchaselectrochemicallypretreatedglassycarbonelectrode[10],nafion-rutheniumoxidepyrochlorechemicallymodifiedelectrode[11],highlyboron-dopeddiamondelectrode[12],andcobalt(II)phthalocyaninemodifiedcarbonpasteelectrode[13],etc.However,thereareseveresetbacksforpurineelectro-chemicaldetermination,asthesepurinebasescouldirreversiblyadsorbontheelectrodesurfacethushamperingtheestimation.

Carbonnanotubes(CNTs)representanovelcarbonnano-materialofgreatinterest,especiallyinelectroanalysis,duetoitsexcellentperformanceinenhancingtheelectrochemicalreactivity,promotingtheelectron-transferreactionsand

34alleviatingsurfacefouling[14,15].However,thecrucialobstacleofthenanotubesindiverseapplicationsistheirpoorsolubilityandprocessibility,whichiscausedbyinherentattractivevanderWaalsinteractionsbetweennanotubes[16].Asaresult,carbonnanotubesareaggregatedandexistasbundlesintheirnativestate.Theycanbedispersedinsomesolventsbysonication,butprecipitationimmediatelyoccurswhenthisprocessisinterrupted.Toovercomethisdifficulty,thebestmethodtospövetheseproblemsistointroducevariousfunctionalgroupsonthesurfaceofCNTs[17,18],whichcanimprovethedispersionofCNTsinsolutionorcompositematerials.Moreover,variousfunctionalgroupscanbeintroducedthroughfurtherchemicalmodificationonthesidewallofthecarboxylatedCNTs.Thewaytointroducecarboxylicacidgroups(COOH)toCNTswasusuallyacidtreatmentbyoxidation.Therearetwocommonacidtreat-mentsusedintheliterature.Onerefluxesthenanotubeswithasolutionofnitricacid[19–23],andtheotherexposesthesampletoamixtureofHNO3/H2SO4(1:3byvolume)underhighpowersonicationforamaximumof6h[20,21,24–26].Chenetal.[27]haveshownthatanoxidationprocessforsingle-wallcarbonnanotubes(SWCNTs)involvingextensiveultrasonictreatmentinamixtureofHNO3/H2SO4(1:3byvolume)canleadtotheopeningofthenanotubecapsaswellastheformationofholesinthesidewalls.Thefinalproductsarenanotubefragmentswithlengthsintherangeof100to300nm,whoseendsandsidewallsaredecoratedwithahighdensityofvariousoxygencontaininggroups(mainlycarboxylgroups).Nanotubesfunctionalizedinthismannerhaddamagedpristineelectronicandmechanicalproperties.Thus,werequirethedevelopmentofanovelwaytointroducecarboxylicacidgroups(COOH)toCNTsandretaintheirpristineelectronicandmechanicalproperties.

Thispaperpresentsasimpleapproachtotheintro-ductionofcarboxylicacidgroups(COOH)toCNTsandretaintheirpristineelectronicandmechanicalproperties.TheelectrocatalyticactivitytowardstheoxidationofguanineandadenineonthecarboxylatedCNTsmodifiedelectrodehasbeeninvestigatedutilizingcyclicvoltam-metry(CV),andthedetectionlimitandlinearrangeofadenineandguaninehavealsobeenstudiedbylinearsweepvoltammetry(LSV).Itwasfoundthatthismodifiedelectrodeshowedexcellentelectrocatalyticactivityintheoxidationofguanineandadenine,andbasedonthisadirectelectrochemicalmethodwasdevelopedtodeterminetracelevelsofDNA.Tothebestofourknowledge,thepresentstrategyforthepreparationofacarboxylatedCNTsmodifiedelectrodehassofarnotbeenreported,norhastheelectrocatalyticactivitytowardguanineandadenineoxidationbeenstudiedtodate.

X.Tuetal.

ExperimentalsectionInstrumentationandreagents

FTIRspectrawerecollectedonaNEXUS670FTIRspectrophotometer(Nicolet,USA,http://www.thermo.com/).TheCNTwaspressedintoKBrpelletsforFTIRmeasure-ments.Transmissionelectronmicroscopy(TEM)pictureswerecollectedonaJEOL-1230microscope(JEOL,Tokyo,Japan,http://www.jeol.com/)withalineresolutionof0.20nm,operatedatanaccelerationvoltageof100kV.Thesamplesweredispersedinwateranddrop-castontoacoppergridwithaholeycarbonfilm.

AllelectrochemicalexperimentswereconductedonaCHI660Celectrochemicalworkstation(CHInstrumentCo.,USA,http://www.chinstruments.com/).Aconven-tionalthree-electrodecellwasused.Theglassycarbonelectrode(GCE)of3.0mmdiameterservedastheworkingelectrode.ThereferenceelectrodewasaKCl-saturatedcalomelelectrode(SCE),andallpotentialsinthispaperarereportedversusthisreference.Acarbonrodservedasthecounter-electrode.

Multiwalledcarbonnanotubeswithahydroxylgroup(95%purity,diameterof30–50nm,rateofsurfacecarbonatom:20–26mol%)werepurchasedfromtheChengduInstituteofOrganicChemistryoftheAcademyofSciences(http://www.timesnano.com).Adenine(A),guanine(G),andthecalfthymusdsDNAwerepurchasedfromSigma(http://www.sigmaaldrich.com/).Thestocksolutions(1.0mM)ofguanine(G)andadenine(A)werepreparedwithdilutedNaOHaqueoussolution.Theworkingsol-utionswerepreparedbydilutingthestocksolutionwithphosphatebuffersolution.0.10MK2SO4+0.10Mphos-phatebuffersolutionsconsistingofK2HPO4andKH2PO4wereemployedasthesupportingelectrolyte.ThedesiredsolutionpHwasadjustedbydifferentamountsof0.10MK2HPO4andKH2PO4solutions.Allchemicalswereofanalyticalgradeorbetterquality.Allsolutionswerepreparedusingredistilledwater.PreparationofDNAsamples

AgeneraltreatmentofDNAwith1.0mMHClleadstotheselectiveremovalofitspurinebasesbycleavageofpurineglycosidebonds[28].ThecalfthymusdsDNAwashydrolyzedasfollowsforquantificationofguanineandadenine:twomilligramsofdsDNAwasdigestedusing1.0mLof1.0MHClina10mLglasstube.Afterheatinginaboilingwaterbathfor80min,thepHofthesolutionwasadjustedwith1.0mLof1.0MNaOH.Aftercoolingtoroomtemperaturethesolutionwasdilutedto10mLusing0.10Mphosphatebuffersolution(pH7.0).

Novelcarboxylationtreatment35

CarboxylationofCNTs

Scheme1showsthecarboxylationreactionofCNTs.Theprocedurewasperformedasfollows:CNTs-OH(1.0g)wasdispersedin30mLof2.0MNaOHsolutionwhilestirring.110mgNaBH4and3.0mLepichlorohydrinwereaddedat37°C,andtheresultantmixturewasstirredfor10min.15mLof2.0MNaOHsolutionand9.0mLepichlorohy-drinwereaddeddropwiseundervigorousmagneticstirringoveraperiodof2h,andthemixturewasstirredfor24hat37°C.Theprecipitatewascollectedbyfiltrationunderreducedpressureandwashedwithdoublydistilledwater.Afterwards,theprecipitatewasdispersedin40mL2.0MNa2CO3solutionwhilestirring.2.5giminodiaceticacidwasadded,andtheresultantmixturewasstirredfor24hat37°C.Theprecipitatewascollectedbyfiltrationunderreducedpressureandwashedwithdoublydistilledwater.Theprecipitatewasdriedat50°C,andthecarboxylatedCNTswerefinallyobtained(DenotedasCNTs–COOH2).Forcomparison,theCNTs-OHwerefunctionalizedwithcarboxylicacidgroupsbysonicationina3:1sulfuric-acid/nitric-acidmixturefor8h[29].ThepretreatedMWCNTswereneutralizedwith0.10molL−1NaOH,washedwithwater,filtered,anddried(denotedasCNTs–COOH).Electrodemodifications

ThegeneralprocedureofGCEpretreatmentandmodifica-tionwasasfollows:priortouse,theworkingelectrodewaspolishedmechanicallywith0.05μmaluminapowdertoobtainamirror-likesurfaceandthenwashedwithdoublydistilledwaterandacetone.Electrochemicalactivationoftheelectrodewasperformedbycontinuouspotentialcyclingfrom−0.20to1.5Vatascanrateof100mVs−1in0.20molL−1HClO4solutionuntilastablevoltammo-gramwasobtained.Afterrinsingwithdoublydistilledwater,theactivatedelectrodewasmodifiedasfollows:TheCNTs-OHmodifiedGCEwaspreparedbydropping6.0μLofasolutionof2.0mgMWCNTs-OHdispersedin1.0mLofDMFonaGCE,andthenair-dried.TheCNTs-COOHfilmcoatedGCEwaspreparedbydropping6μLsolutionof2.0mgCNTs-COOHdispersedin1.0mLof

Scheme1SchematicdepictionofthecarboxylationofCNTs

OHOH

DMFontheGCE,andthenair-dried.TheCNTs-COOH2filmcoatedGCEwaspreparedbydropping6μLsolutionof2.0mgCNTs-COOH2dispersedin1.0mLofDMFontheGCE,andthenair-dried.

Resultsanddiscussion

CarboxylationofCNTsandcharacterization

Figure1showstheFTIRspectraofCNTs-OH(a)andcarboxylatedcarbonnanotube,CNTs-COOH(b)andCNTs-COOH2(c).ComparedwiththeFTIRspectrumofCNTs-OH,theCNTs-COOHhavesimilarcharacteristics.ForCNTs-COOH,thepeakat3,440cm−1isassignedtotheO-Hstretchingvibrations,thepeaksat1,710cm−1and1,210cm−1maybeassignedtotheC=OandC–Ostretchingvibrations,respectively.Thepeakat1,570cm−1canbeassociatedwiththestretchingofthecarbonnano-tubesbackbone.However,fortheCNTs-COOH2,peaksat2,920and2,850cm−1inthespectrum(c)aregreatlyenhancedbecauseoftheattachmentofadditionalmethy-lenegroups,andpeaksat1,100cm−1maybebecauseoftheexistenceofC-O-C[30].

Figure2showsTEMimagesofCNTs-OH(a),CNTs-COOH(b)andCNTs-COOH2(c).TheCNTs-OHwerehollowropeswithcleanwallsofca.40nmouterdiameter.AftertreatmentoftheCNTs-OHwithacidbyoxidation,theprocessleadstotheopeningofthenanotubecapsaswellastheformationofholesinthesidewalls,introducingdefectsonthewallsofthenanotubes.However,theimagescorrespondingtotheCNTs-OHsubjectedtothecovalentattachmentofCOOHtothesurfaceofCNTsshowthatthenanotubesidewallsdonotchangesignificantly.ThebiocompatiblesolubilizationofCNTsisbelievedtobesignificantforbiologicalapplicationsoftheCNTs.CNTs-OHhaveatendencytoaggregateinwaterduetothestrongvanderWaalsforces,asshownintheinsetofFig.2(a).However,theCNTsfunctionalizedwithCOOHcanformahomogeneousandblackdispersioninaqueoussolution,andthesuspensionwillkeepstableforatleast1week,asshownintheinsetsofFig.2bandc.

CH2COOHCH2COOH

+

ClHOOH

CH2COOHCH2COOH

+

HN

HO

OH

OH

N

36X.Tuetal.

a

1570

b

1710

c

3440

1570

28502920

1210

1710

2500

2000

1500

-1

3440

4000

3500

3000

1570

1000

500

wavelength /cm

Fig.1FTIRspectraofCNTs-OH(a),CNTs-COOH(b)andCNTs-COOH2(c)

Voltammetricstudyofadenineandguanineonthemodifiedelectrode

Inthepresentwork,weexaminetheenhancedelectro-chemicalresponseofadenineandguanineataCNTs-COOH2modifiedelectrode.Figure3illustratestheCVresponseoftheanalytemixtureonthemodifiedelectrodesandbareGCE.Itcanbeseenthat,inthecaseofbareGCE,thevoltammogramsofbasesAandGexhibitjusttwosmallhumppeaks.Comparedwiththeelectrochemicalresponseonthebareelectrode,inthecaseofCNTs-OH/GCE,CNTs-COOH/GCEandCNTs-COOH2/GCE,thepeakcurrentsignalsofAandGwereenhancedsignificantly.Further-more,itisevidentthattheelectrochemicalresponseonthe

CNTs-COOH2/GCEwasmuchstrongerthanthatontheCNTs-OH/GCEandCNTs-COOH/GCE.Nocathodicpeakswereobservedonthereversescanwithintheinvestigatedpotentialrange,indicatingthattheoxidationofGandAiselectrochemicallyirreversible.

WhenimmersingtheCNTs-COOH2/GCEelectrodeintoaquietphosphatebuffer(pH7.0)containingguanineandadeninefor5min,thecyclicvoltammogramshowsverylowresponses.After5minofstirringatopencircuit,however,theresponsesgreatlyimprove.AfterimmersionoftheCNTs-COOH2/GCEelectrodeinthestirringsolutioncontainingguanineandadeninefor5minandtransferringtoapH7.0phosphatebuffersolution,peaksofguanineandadeninecanbeobserved.ThissuggeststhatguanineandadeninecanbeadsorbedontheCNTs-COOH2/GCEelectrodesurface.Thepeaksofguanineandadeninealmostdisappearedinthesecondcycle.Thisphenomenonmaybepartlyattributedtotheconsumptionofadsorbedguanineandadenineandtheadsorptionofelectrochemicaloxida-tionproductsattheCNTs-COOH2/GCEsurface.

ToinfermoreaboutthereactionprocessofCNTs-COOH2/GCE,westudiedthescanrateeffectontheguanineelectrochemicalresponse(seeFig.4).ThepeakcurrentsofCNTs-COOH2/GCEinthepresenceof20μMAandGinphosphatebuffersolutionaredirectlyproportionaltothescanrateovertherangeof25–400mVs−1,furtherconfirmingthatAandGwereadsorbedonthesurfaceoftheelectrode.Inaddition,withincreasingscanrate,theoxidationpeakpotential(Ep)shiftstomorepositivevaluesandthereisalinearcorrelationbetweenthepeakpotentialandthelogarithmofthescanrate,logv.Thelogarithmplotpeakcurrent(logipa)vs.logarithmofscanrates(logv)ofGandAhavealinearrelationship,withaslopeof0.732(logipavs.logv,R=0.998)and0.731(logipavs.logv,R=0.999),respectively.Thesevaluesarebetween0.5and1.Theseresultsindicatethatthe

electrode

Fig.2TransmissionelectronmicrographsofCNTs-OH(a),CNTs-COOH(b)andCNTs-COOH2(c).Insetsshowthephotographsof2mgmL−1CNTsdispersionsintowaterfor1week

Novelcarboxylationtreatment

0.2

0.4

0.6

0.8

1.0

1.2

1.4

37

E /V vs SCE

Fig.3Cyclicvoltammetriccurvesin0.10MpH7.0phosphatebuffersolutioncontaining20μMguanineand20μMadenineatbareGCE(a),CNTs-OH/GCE(b),CNTs-COOH/GCE(c)andCNTs-COOH2/GCE(d).Accumulatedatanopencircuitpotentialfor240s,scanratewas100mVs−1

Ep=1.130–0.058pH(peakG,r=0.9945)andEp=1.451–0.060pH(peakA,r=0.9975),respectively.Theoxidationofadenineandguaninefollowsatwo-stepmechanisminvolvingthetotallossof4e-andthefirst2e-oxidationistherate-determiningstep.Theslopesof58and60mV/pHshowsthattwoprotonstakepartintherate-determiningstep[33].TheinfluencesoftheamountofCNTs-COOH2onthepeakcurrentwasexaminedbyCV.However,theoxidationpeakcurrentsofadenineandguaninearecloselyrelatedtotheamountofCNTs-COOH2.TheoxidationpeakcurrentincreasesgreatlywhentheCNTs-COOH2amountimprovesfrom0to9μL,andfinallydecreaseswhentheCNTs-COOH2amountishigherthan9μL,beingdueprobablytothelimitedmasstransportofadenineandguanineinsideathickerfilm.Meanwhile,thebackgroundcurrentgraduallyincreaseswhiletheCNTs-COOH2amountincreases.Inthiswork,theamountofCNTs-COOH2waschosentobe9μLforahigherpeakcurrentandalowerbackgroundcurrent.Voltammetricseparationdeterminationofadenineandguanine

Figure5showstheLSVwhen2.0μMguanineandadenineinconcentrationsfrom0.05to10.0μMcoexistinthesolution.Ascanbeseen,thecompetitiveadsorptionphenomenononCNTs-COOH2isnegligible,andthelinearrelationbetweenadenineconcentrationandthepeakcurrent(Ipa∼CA)isavailableintheinvestigatingcondition,whichilluminatesthatthepresenceofcertainconcentrationsofguaninedonotinterferewithadeninedetermination.Itisthereforepossibletodeterminequantitativelywithoutanyconsiderablerecip-rocalinfluenceoveralargerrangeofconcentrations.

Similarly,undertheexperimentalconditions,andinthepresenceof2.0μMadenine,theLSVpeaksofaseriesofguanine(withdifferentconcentrations)arespikyandhavea

1.10.90.8

-3.0

processwassimultaneouslyinfluencedbydiffusionandadsorption[31].Inthiscase,thechargetransfercoefficient(a)canbeworkedoutfromthefollowingequations[32],whichis0.66and0.68forAandG,respectively.Epa¼E0þ

2:3RTð1ÀaÞnFv

log

0ð1ÀaÞnFRTKs

ð1Þ

TheeffectofpHontheelectrochemicalresponseofthe

modifiedelectrodetowardsthesingledeterminationofadenineandguaninewasstudiedovertherangeof4.0–9.0.TheoxidationpeakcurrentofadenineandguanineatthemodifiedelectrodedecreasesslightlywithanincreaseofthepHvalue.ThepHdependenceofoxidationpeakpotentialsofguanineandadenineobeystheequations

900

[**************]0-150

0.70.6

logIpa

-3.6

-4.2

0.300.450.600.750.901.051.201.35

-4.8

E /V vs SCE

Fig.4aScanratedependenceofthecyclicvoltammetricresponseofCNTs-COOH2/GCEin0.10MpH7.0phosphatebuffersolutioncontaining20μMguanineand20μMadenine.Scanratefrominnertoouter:25,50,75,100,200,300,400mVs−1.Insetshowsplotof

logv

anodicpeakcurrentvs.scanrate.bPlotsofanodicpeakpotentialandthelogarithmofanodicpeakcurrentsasfunctionsofthelogarithmofthescanrate

Epa /V

1.0

38

200175

[1**********]

50250

0.300.450.600.750.901.051.201.35E/V vs SCE

Fig.5Linearsweepstrippingvoltammogramsofguanineatvariousconcentrations(0.2–10.0μM)in2.0μMadeninesolution.Inset:plotofpeakcurrentsvs.guanineconcentrations.OtherconditionswerethesameasinFig.3

favorablelinearrelationship(seeFig.6).Comparedwiththereportedresultsforguanineandadenine,thehighlinearlimitisimprovedupto10μM.Theseobservationsclearlydemonstratethatthetwopurinebasescanbeestimatedfromamixtureintheconcentrationrangestudied.Here,thedetectionlimitsofGandAforindividualanalysisarecalculatedtobe0.02and0.08μM(withS/N=3criterion),respectively.Thus,thismethodallowssimultaneousandsensitivedeterminationofguanineandadenine.Analyticalapplication

Theacid-denaturedDNAproducestwowell-definedpeaksattheCNTs-COOH2/GCEduetotheoxidationofguanine

225

[***********]0250

0.300.450.600.750.901.051.201.35

E /V vs SCE

Fig.6Linearsweepstrippingvoltammogramsofvariousconcen-trationsofadeninefrom0.2to10.0μMin2.0μMguaninesolution.Inset:plotofpeakcurrentsvs.adenineconcentrations.OtherconditionswerethesameasinFig.3

X.Tuetal.

E /V vs SCE

Fig.7Linearsweepstrippingvoltammogramsforthesimultaneousdeterminationofguanineandadenineinacid-denatured−1DNAwithincreasingconcentrationfrom0.50to25μgmL.Inset:plotofthepeakcurrentsvs.acid-denaturedDNAconcentrations.Othercon-ditionswerethesameasinFig.3

andadenineresidues.Figure7showsthetypicalLSVresponsesofguanineandadenineresidueswithincreasingDNAconcentrationsrangingfrom0.50to25μgmL−1.TherelationshipbetweenthepeakcurrentandDNAconcentra-tionislinearintherangeof0.50–15μgmL−1.

Thedeterminationofguanineandadenineconcentra-tionswasperformedbythestandardadditionmethodasfollows.TwentymicrolitersofdenaturedDNAwasaddedtoacellcontaining10mLpH7.0phosphatebuffersolution,thenthepeakcurrentsofguanineandadenineresiduesweremeasured.Subsequentlyacertainquantityofguanineoradeninesolutionwasadded,andthepeakcurrentofguanineoradeninewasmeasuredagain.TheconcentrationsofguanineandadenineinDNAcanbecalculatedfromthepeakcurrentusingthecalibrationgraphobtainedpreviouslyforsimultaneousdeterminationofguanineandadenine.TheresultsaregiveninTable1.Whenusingthemethodpresented,avalue(G+C)/(A+T)of0.81wasobtainedforacalfthymusDNAsampledigestedwithHCl,whichcoincidedwiththestandardvalueof0.77[34].Thedeterminationlimitof0.08μg·mL−1wasalso

Table1ContentofguanineandadenineinHCl-digestedcalfthymusDNAsimultaneouslydeterminedwiththeCNTs-COOH2/GCE

CalfthymusDNAtreatedwithHClGuanine(mol%)22.41Adenine(mol%)

27.67Molarratio(G+C)/(A+T)

0.81

Novelcarboxylationtreatmentobtainedforthecalf−1thymusDNA.Tencontinuousmeasure-mentsof1μg·mLcalfthymusshowedagoodreproduc-ibilitywitha2.6%R.S.D.

Conclusions

Insummary,wehavedevelopedanovelrouteforthecarboxylationofmultiwalledcarbonnanotubes.Ourobserva-tionsindicatethatthecarboxylatedCNTshaveexcellentfunctionalpropertieswithgoodelectrochemicalactivityonguanineandadeninebiomolecules.ItappearsthattheexcellentelectrochemicalbehavioroftherelevantbasesmaycomefromtheselectiveaccumulationonthecarboxylatedCNTselectrodesurface.Therefore,thissimpleandreliablestrategybasedonanelectrochemicaltechniqueatCNTs-COOH2/GCEcouldbeusedforthedevelopmentofsensitivevoltammetricbiosensorsforsimultaneousdeterminationofguanineandadenineintherelatedbiologicalprocess.

AcknowledgementsThisworkwassupportedbytheNationalOutstandingYouthFoundationsofChina(No.50725825),NationalNaturalScienceFoundationofChina(No.50908113,20765003),theNaturalScienceFoundationofJiangxiProvince(No.2008GZH0008),theYouthFoundationofJiangxiProvincialDepartmentofEducation(No.GJJ09483),andtheOpeningFundoftheKeyLaboratoryofChemicalBiologyandTraditionalChineseMedicineResearch(MinistryofEducationofChina),HunanNormalUniversity(No.KLCBTCMR2008-08).

References

1.ShengRS,NiF,CottonTM(1991)Determinationofpurinebasesbyreversed-phasehigh-performanceliquidchromatographyusingreal-timesurface-enhancedRamanspectroscopy.AnalChem63:437

2.KaiM,OhkuraY,YonekuraS,IwasakiM(1994)Chemilumines-cencedeterminationofguanineanditsnucleosidesandnucleo-tidesusingphenylglyoxal.AnalChimActa287:75

3.ToddB,ZhaoJ,FleetG(1995)HPLCmeasurementofguanineforthedeterminationofnucleicacids(RNA)inyeasts.JMicrobiolMethods22:1

4.TordaT,SaavedraJM(1990)Determinationofguaninenucleotidesensitivityof[125I]-neuropeptideYbindingintheratpituitaryglandbyquantitativeautoradiography.Neuroendocrinology52:361

5.KurodaN,NakashimaK,AkiyamaS(1993)Chemiluminescencemethodforthedeterminationofadenineafterreactionwithphenylglyoxal.AnalChimActa278:275

6.TsengHC,DadooC,ZareRN(1994)Selectivedeterminationofadenine-containingcompoundsbycapillaryelectrophoresiswithlaser-inducedfluorescencedetection.AnalBiochem222:55

7.HuaL,XuDK,ChenHY(1997)Simultaneousdeterminationofpurinebases,ribonucleosidesandribonucleotidesbycapillaryelectrophoresis-electrochemistrywithacopperelectrode.JChro-matogrA760:227

39

8.XuDK,HuaL,ChenHY(1996)Determinationofpurinebasesbycapillaryzoneelectrophoresiswithwall-jetamperometricdetection.AnalChimActa335:95

9.JinW,WeiH,ZhaoX(1997)Determinationofadenineandguaninebycapillaryzoneelectrophoresiswithend-columnamperometricdetectionatacarbonfibermicrodiskarrayelectrode.Electroanalysis9:770

10.WangHS,JuHX,ChenHY(2002)Simultaneousdetermination

ofguanineandadenineinDNAusinganelectrochemicallypretreatedglassycarbonelectrode.AnalChimActa461:24311.ZenJM,ChangMR,IlangovanG(1999)Simultaneousdetermi-nationofguanineandadeninecontentsinDNA,RNAandsyntheticoligonucleotidesusingachemicallymodifiedelectrode.Analyst124:679

12.IvandiniTA,SaradaBV,RaoTN,FujishimaA(2003)Electro-chemicaloxidationofunderivatized-nucleicacidsathighlyboron-dopeddiamondelectrodes.Analyst128:924

13.AbbaspourA,MehrgardiMA,KiaR(2004)Electrocatalytic

oxidationofguanineandss-DNAatacobalt(II)phthalocyaninemodifiedcarbonpasteelectrode.JElectroanalChem568:261

14.MusamehM,WangJ,MerkociA,LinY(2002)Low-potential

stableNADHdetectionatcarbon-nanotube-modifiedglassycarbonelectrodes.ElectrochemCommun4:743

15.WangJ(2005)Carbon-nanotubebasedelectrochemicalbiosen-sors:areview.Electroanalysis17:7

16.ThessA,LeeR,NikolaevP,DaiHJ,PetitP,RobertJ,XuCH,Lee

YH,KimSG,RinzlerAG,ColbertDT,ScuseriaGE,TomanekD,FischerJE,SmalleyRE(1996)Crystallineropesofmetalliccarbonnanotubes.Science273:483

17.HirschA(2002)Functionalizationofsingle-walledcarbonnano-tubes.AngewChemIntEdEngl41:1853

18.DykeCA,TourJM(2004)Overcomingtheinsolubilityofcarbon

nanotubesthroughhighdegreesofsidewallfunctionalization.ChemEurJ10:812

19.LinY,RaoM,SadanadanB,KenikEA,SunYP(2002)

Functionalizingmultiple-walledcarbonnanotubeswithamino-polymers.JPhysChemB106:1294

20.WangY,IqbalZ,MalhotraSV(2005)Functionalizationofcarbon

nanotubeswithaminesandenzymes.ChemPhysLett402:9621.LiuJ,RinzlerAG,DaiH,HafnerJH,BradleyRK,BoulPJ,LuA,

IversonT,ShelimovK,HuffmanCB,MaciasF,ShonYS,RandallLT,ColbertDT,SmalleyRE(1998)Fullerenepipes.Science280:1253

22.DujardinE,EbbesenTW,KrishnanA,TreacyMMJ(1998)

Purificationofsingle-shellnanotubes.AdvMater10:611

23.HillDE,LinY,RaoAM,AllardLF,SunYP(2002)Function-alizationofcarbonnanotubeswithpolystyrene.Macromolecules35:9466

24.LiS,QinY,ShiJ,GuoZX,LiY,ZhuD(2005)Electrical

propertiesofsolublecarbonnanotube/polymercompositefilms.ChemMater17:130

25.EitanA,JiangK,DukesD,AndrewsR,SchadlerLS(2003)

Surfacemodificationofmultiwalledcarbonnanotubes:towardthetailoringoftheinterfaceinpolymercomposites.ChemMater15:3198

26.SunYP,ZhouB,HenbestK,FuK,HuangW,LinY,TaylorS,

CarrollDL(2002)Luminescenceanisotropyoffunctionalizedcarbonnanotubesinsolution.ChemPhysLett351:349

27.ChenJ,HamonMA,HuH,ChenY,RaoAM,EklundPC,

HaddonRD(1998)Solutionpropertiesofsingle-walledcarbonnanotube.Science282:95

28.GarrettRH,CrishanCM(1995)Biochemistry.SaundersCollege,

Orlando

40

29.WangZ,LiuJ,LiangQ,WangY,LuoG(2002)Carbonnanotube-modifiedelectrodesforthesimultaneousdeterminationofdopamineandascorbicacid.Analyst127:653

30.ZhangS,YiD,WuT(1993)Infraredspectroscopicanalysisandnew

techniques(inChinese).ChinaMedicineScienceandTechnology,Beijing

31.NicholsonRS,ShainI(1964)Theoryofstationaryelectrode

polarography.Singlescanandcyclicmethodsappliedtorevers-ible,irreversible,andkineticsystems.AnalChem36(4):706

X.Tuetal.

32.LavironE(1979)Generalexpressionofthelinearpotentialsweep

voltammograminthecaseofdiffusionlesselectrochemicalsystems.JElectroanalChem101:19

33.WangZH,XiaoSF,ChenY(2006)β-Cyclodextrinincorpo-ratedcarbonnanotubes-modifiedelectrodesforsimultaneousdeterminationofadenineandguanine.JElectroanalChem589:237

34.DavidsonN(1972)Thebiochemistryofthenucleicacids,7th

edn.Cox&Nyman,Norfolk,p129


相关文章

  • 碳纳米管生物传感器
  • 计划书 碳纳米管在生物传感器中的应用 材料学院2010级 材科六班 3010208167 张蕊 1. 课题名称:碳纳米管在生物传感器中的应用 2. 背景介绍: 生物传感器是一类特殊形式的传感器,由生物分子识别元件以及物理.化学换能器组成,用 ...查看


  • 氨基化多壁碳纳米管的制备
  • 第30卷第6期天津工业大学学报 JOURNALOFTIANJINPOLYTECHNICUNIVERSITY Vol.30No.6氨基化多壁碳纳米管的制备 侯立晨,孟庆杰,王 宁,张兴祥 300387) (天津工业大学改性与功能纤维天津市重点 ...查看


  • 合成聚对苯二甲酸丙二醇酯负载型催化剂钛酸四丁酯纳米二氧化硅的制备
  • 第30卷第1期应用化学V01.30Iss.12013年1月CHINESEJOURNALOFAPPLIEDCHEMIS汀RYJall.2013 合成聚对苯二甲酸丙二醇酯负载型催化剂 钛酸四丁酯/纳米二氧化硅的制备 叶冲.姜敏6张强6刘茜.周光 ...查看


  • 染料敏化剂
  • 338 化学通报 2005年第5期 http: www.hxtb.org 染料敏化纳米薄膜太阳电池中的染料敏化剂 孔凡太 戴松元* 王孔嘉 (中国科学院等离子体物理研究所 合肥 230031) 摘 要 简要介绍了化学太阳电池的原理和染料敏化 ...查看


  • 海藻酸钠的应用
  • 摘 要 海藻酸钠是一种天然多糖,具有优良的生物相容性.生物可降解性和生物黏附性.海藻酸钠磁性纳米球在药物载体方面有了较深入的研究.其分子链上丰富的羟基和羧基可以进行多种修饰,海藻酸钠与钙离子发生离子反应生成球形海藻酸钙骨架,可以作为药物载体 ...查看


  • 氨基与羧基对Fe_3O_4纳米颗粒合成的影响
  • 第38卷2009年增刊212月 稀有金属材料与工程 RARE V01.38,Suppl.2December2009 METALMATERIAI.SANDENGn.『EERⅢG 氨基与羧基对Fe304纳米颗粒合成的影响 王永亮,李保强,周 玉 ...查看


  • 氧化石墨与石墨烯的制备及其在样品前处理中的应用_张素玲
  • 第31卷第9期2012年9月分析测试学报FENXICESHIXUEBAO(JournalofInstrumentalAnalysis)Vol.31No.91178-1183 氧化石墨与石墨烯的制备及其在样品 前处理中的应用 张素玲,杜 (中 ...查看


  • 碳酸钙新型表面处理剂
  • PVC用高性能碳酸钙超分散偶联剂SP-1082 与传统分散剂或偶联剂的区别 碳酸钙广泛应用于PVC制品中,由于碳酸钙为亲水性无机粉体,它与PVC相容性差.目前,通常采用硬脂酸.钛酸酯.铝酸酯等传统偶联剂进行处理,以改善碳酸钙的疏水亲油性和提 ...查看


  • 软模板法合成纳米材料的研究进展
  • ·56·材料导报A:综述篇 上)第2012年1月(6卷第1期 2 软模板法合成纳米材料的研究进展* 阮 秀,董 磊,于 晶,于良民,杨玉臻 ()中国海洋大学海洋化学理论与工程技术教育部重点实验室,青岛266100 摘要 介绍了近年来合成高分 ...查看


热门内容