MicrochimActa(2010)169:33–40DOI10.1007/s00604-010-0307-3
ORIGINALPAPER
Novelcarboxylationtreatmentandcharacterization
ofmultiwalledcarbonnanotubesforsimultaneoussensitivedeterminationofadenineandguanineinDNA
XinmanTu&XubiaoLuo&ShenglianLuo&LiushuiYan&FengZhang&QingjiXie
Received:2November2009/Accepted:14January2010/Publishedonline:23February2010#Springer-Verlag2010
AbstractAmethodispresentedforthecarboxylationofmultiwalledcarbonnanotubes(MWCNTs)viaatwo-stepprocess.ThehydroxygroupsofMWCNTswerefirstreactedwithepichlorohydrin,thenwithiminodiaceticacid.TheresultingMWCNTswerecharacterizedbymeansofFouriertransforminfraredspectroscopyandtransmissionelectronmicroscopy.TheglassycarbonelectrodemodifiedwiththeMWCNTsthuspreparedexhibitedenhancedelectrocatalyticactivityandgoodstabilityforthedetermi-nationofguanineandadenineinpH7.0phosphatebuffersolution.Theexperimentalparameterswereoptimized,andadirectelectrochemicalmethodwasdevelopedforthesimultaneousdeterminationofguanineandadenine.Thedetectionlimits(atS/N=3)forguanineandadenineare0.02and0.08μM,respectively.AsensitivemethodwasalsodevelopedforthedeterminationofguanineandadenineincalfthymusDNA.
KeywordsMultiwalledcarbonnanotubes.Carboxylation.Modifiedelectrode.Guanineandadenine.CalfthymusdsDNA
X.TuX.LuoS.Luo(*)L.YanF.ZhangSchoolofEnvironmentandChemicalEngineering,NanchangHangkongUniversity,Nanchang330063,Chinae-mail:[email protected]
X.Tu:Q.Xie
KeyLaboratoryofChemicalBiologyandTraditionalChineseMedicineResearch(MinistryofEducationofChina),HunanNormalUniversity,Changsha410081,China
Guanine(G)andadenine(A)areimportantcomponentsfoundindeoxyribonucleicacid.DeterminingindividualconcentrationsofguanineandadenineortheirratioinDNAisimportantwhenmeasuringthenucleicacidconcentrationitself.Indeed,nucleicacidcomponentsinphysiologicalfluids,tissuesandcellsarerelatedtothecatabolismofnucleicacids,enzymaticdegradationoftissuesanddietaryhabits.Therefore,detectionofelevatedlevelsofthesesubstancescouldbeindicativeofcertaindiseases[1].Manymethods,suchasthespectroscopicmethodscoupledwithchromatographyorelectrophoresis[1–6]andelectrophoresiswithelectrochemicaldetection[7–9],havebeendevelopedforthedetectionandquantifi-cationofpurinebasesinnucleicacids.Inaddition,voltammetrictechniquesarealsosuitablefortheanalysisofthesepurinesinnucleicacidsduetoadvantagesincludinghighsensitivityandselectivity,fastresponse,lowcostandultra-smallsamplevolumes.Butpurineandpyrimidinebasesusuallyprovidepoorresponsewithhighoxidativepotentialanddisturbeachotheronconventionalelectrodes.Todate,someelectrochemicaldetectionproto-colshavebeendeveloped,suchaselectrochemicallypretreatedglassycarbonelectrode[10],nafion-rutheniumoxidepyrochlorechemicallymodifiedelectrode[11],highlyboron-dopeddiamondelectrode[12],andcobalt(II)phthalocyaninemodifiedcarbonpasteelectrode[13],etc.However,thereareseveresetbacksforpurineelectro-chemicaldetermination,asthesepurinebasescouldirreversiblyadsorbontheelectrodesurfacethushamperingtheestimation.
Carbonnanotubes(CNTs)representanovelcarbonnano-materialofgreatinterest,especiallyinelectroanalysis,duetoitsexcellentperformanceinenhancingtheelectrochemicalreactivity,promotingtheelectron-transferreactionsand
34alleviatingsurfacefouling[14,15].However,thecrucialobstacleofthenanotubesindiverseapplicationsistheirpoorsolubilityandprocessibility,whichiscausedbyinherentattractivevanderWaalsinteractionsbetweennanotubes[16].Asaresult,carbonnanotubesareaggregatedandexistasbundlesintheirnativestate.Theycanbedispersedinsomesolventsbysonication,butprecipitationimmediatelyoccurswhenthisprocessisinterrupted.Toovercomethisdifficulty,thebestmethodtospövetheseproblemsistointroducevariousfunctionalgroupsonthesurfaceofCNTs[17,18],whichcanimprovethedispersionofCNTsinsolutionorcompositematerials.Moreover,variousfunctionalgroupscanbeintroducedthroughfurtherchemicalmodificationonthesidewallofthecarboxylatedCNTs.Thewaytointroducecarboxylicacidgroups(COOH)toCNTswasusuallyacidtreatmentbyoxidation.Therearetwocommonacidtreat-mentsusedintheliterature.Onerefluxesthenanotubeswithasolutionofnitricacid[19–23],andtheotherexposesthesampletoamixtureofHNO3/H2SO4(1:3byvolume)underhighpowersonicationforamaximumof6h[20,21,24–26].Chenetal.[27]haveshownthatanoxidationprocessforsingle-wallcarbonnanotubes(SWCNTs)involvingextensiveultrasonictreatmentinamixtureofHNO3/H2SO4(1:3byvolume)canleadtotheopeningofthenanotubecapsaswellastheformationofholesinthesidewalls.Thefinalproductsarenanotubefragmentswithlengthsintherangeof100to300nm,whoseendsandsidewallsaredecoratedwithahighdensityofvariousoxygencontaininggroups(mainlycarboxylgroups).Nanotubesfunctionalizedinthismannerhaddamagedpristineelectronicandmechanicalproperties.Thus,werequirethedevelopmentofanovelwaytointroducecarboxylicacidgroups(COOH)toCNTsandretaintheirpristineelectronicandmechanicalproperties.
Thispaperpresentsasimpleapproachtotheintro-ductionofcarboxylicacidgroups(COOH)toCNTsandretaintheirpristineelectronicandmechanicalproperties.TheelectrocatalyticactivitytowardstheoxidationofguanineandadenineonthecarboxylatedCNTsmodifiedelectrodehasbeeninvestigatedutilizingcyclicvoltam-metry(CV),andthedetectionlimitandlinearrangeofadenineandguaninehavealsobeenstudiedbylinearsweepvoltammetry(LSV).Itwasfoundthatthismodifiedelectrodeshowedexcellentelectrocatalyticactivityintheoxidationofguanineandadenine,andbasedonthisadirectelectrochemicalmethodwasdevelopedtodeterminetracelevelsofDNA.Tothebestofourknowledge,thepresentstrategyforthepreparationofacarboxylatedCNTsmodifiedelectrodehassofarnotbeenreported,norhastheelectrocatalyticactivitytowardguanineandadenineoxidationbeenstudiedtodate.
X.Tuetal.
ExperimentalsectionInstrumentationandreagents
FTIRspectrawerecollectedonaNEXUS670FTIRspectrophotometer(Nicolet,USA,http://www.thermo.com/).TheCNTwaspressedintoKBrpelletsforFTIRmeasure-ments.Transmissionelectronmicroscopy(TEM)pictureswerecollectedonaJEOL-1230microscope(JEOL,Tokyo,Japan,http://www.jeol.com/)withalineresolutionof0.20nm,operatedatanaccelerationvoltageof100kV.Thesamplesweredispersedinwateranddrop-castontoacoppergridwithaholeycarbonfilm.
AllelectrochemicalexperimentswereconductedonaCHI660Celectrochemicalworkstation(CHInstrumentCo.,USA,http://www.chinstruments.com/).Aconven-tionalthree-electrodecellwasused.Theglassycarbonelectrode(GCE)of3.0mmdiameterservedastheworkingelectrode.ThereferenceelectrodewasaKCl-saturatedcalomelelectrode(SCE),andallpotentialsinthispaperarereportedversusthisreference.Acarbonrodservedasthecounter-electrode.
Multiwalledcarbonnanotubeswithahydroxylgroup(95%purity,diameterof30–50nm,rateofsurfacecarbonatom:20–26mol%)werepurchasedfromtheChengduInstituteofOrganicChemistryoftheAcademyofSciences(http://www.timesnano.com).Adenine(A),guanine(G),andthecalfthymusdsDNAwerepurchasedfromSigma(http://www.sigmaaldrich.com/).Thestocksolutions(1.0mM)ofguanine(G)andadenine(A)werepreparedwithdilutedNaOHaqueoussolution.Theworkingsol-utionswerepreparedbydilutingthestocksolutionwithphosphatebuffersolution.0.10MK2SO4+0.10Mphos-phatebuffersolutionsconsistingofK2HPO4andKH2PO4wereemployedasthesupportingelectrolyte.ThedesiredsolutionpHwasadjustedbydifferentamountsof0.10MK2HPO4andKH2PO4solutions.Allchemicalswereofanalyticalgradeorbetterquality.Allsolutionswerepreparedusingredistilledwater.PreparationofDNAsamples
AgeneraltreatmentofDNAwith1.0mMHClleadstotheselectiveremovalofitspurinebasesbycleavageofpurineglycosidebonds[28].ThecalfthymusdsDNAwashydrolyzedasfollowsforquantificationofguanineandadenine:twomilligramsofdsDNAwasdigestedusing1.0mLof1.0MHClina10mLglasstube.Afterheatinginaboilingwaterbathfor80min,thepHofthesolutionwasadjustedwith1.0mLof1.0MNaOH.Aftercoolingtoroomtemperaturethesolutionwasdilutedto10mLusing0.10Mphosphatebuffersolution(pH7.0).
Novelcarboxylationtreatment35
CarboxylationofCNTs
Scheme1showsthecarboxylationreactionofCNTs.Theprocedurewasperformedasfollows:CNTs-OH(1.0g)wasdispersedin30mLof2.0MNaOHsolutionwhilestirring.110mgNaBH4and3.0mLepichlorohydrinwereaddedat37°C,andtheresultantmixturewasstirredfor10min.15mLof2.0MNaOHsolutionand9.0mLepichlorohy-drinwereaddeddropwiseundervigorousmagneticstirringoveraperiodof2h,andthemixturewasstirredfor24hat37°C.Theprecipitatewascollectedbyfiltrationunderreducedpressureandwashedwithdoublydistilledwater.Afterwards,theprecipitatewasdispersedin40mL2.0MNa2CO3solutionwhilestirring.2.5giminodiaceticacidwasadded,andtheresultantmixturewasstirredfor24hat37°C.Theprecipitatewascollectedbyfiltrationunderreducedpressureandwashedwithdoublydistilledwater.Theprecipitatewasdriedat50°C,andthecarboxylatedCNTswerefinallyobtained(DenotedasCNTs–COOH2).Forcomparison,theCNTs-OHwerefunctionalizedwithcarboxylicacidgroupsbysonicationina3:1sulfuric-acid/nitric-acidmixturefor8h[29].ThepretreatedMWCNTswereneutralizedwith0.10molL−1NaOH,washedwithwater,filtered,anddried(denotedasCNTs–COOH).Electrodemodifications
ThegeneralprocedureofGCEpretreatmentandmodifica-tionwasasfollows:priortouse,theworkingelectrodewaspolishedmechanicallywith0.05μmaluminapowdertoobtainamirror-likesurfaceandthenwashedwithdoublydistilledwaterandacetone.Electrochemicalactivationoftheelectrodewasperformedbycontinuouspotentialcyclingfrom−0.20to1.5Vatascanrateof100mVs−1in0.20molL−1HClO4solutionuntilastablevoltammo-gramwasobtained.Afterrinsingwithdoublydistilledwater,theactivatedelectrodewasmodifiedasfollows:TheCNTs-OHmodifiedGCEwaspreparedbydropping6.0μLofasolutionof2.0mgMWCNTs-OHdispersedin1.0mLofDMFonaGCE,andthenair-dried.TheCNTs-COOHfilmcoatedGCEwaspreparedbydropping6μLsolutionof2.0mgCNTs-COOHdispersedin1.0mLof
Scheme1SchematicdepictionofthecarboxylationofCNTs
OHOH
DMFontheGCE,andthenair-dried.TheCNTs-COOH2filmcoatedGCEwaspreparedbydropping6μLsolutionof2.0mgCNTs-COOH2dispersedin1.0mLofDMFontheGCE,andthenair-dried.
Resultsanddiscussion
CarboxylationofCNTsandcharacterization
Figure1showstheFTIRspectraofCNTs-OH(a)andcarboxylatedcarbonnanotube,CNTs-COOH(b)andCNTs-COOH2(c).ComparedwiththeFTIRspectrumofCNTs-OH,theCNTs-COOHhavesimilarcharacteristics.ForCNTs-COOH,thepeakat3,440cm−1isassignedtotheO-Hstretchingvibrations,thepeaksat1,710cm−1and1,210cm−1maybeassignedtotheC=OandC–Ostretchingvibrations,respectively.Thepeakat1,570cm−1canbeassociatedwiththestretchingofthecarbonnano-tubesbackbone.However,fortheCNTs-COOH2,peaksat2,920and2,850cm−1inthespectrum(c)aregreatlyenhancedbecauseoftheattachmentofadditionalmethy-lenegroups,andpeaksat1,100cm−1maybebecauseoftheexistenceofC-O-C[30].
Figure2showsTEMimagesofCNTs-OH(a),CNTs-COOH(b)andCNTs-COOH2(c).TheCNTs-OHwerehollowropeswithcleanwallsofca.40nmouterdiameter.AftertreatmentoftheCNTs-OHwithacidbyoxidation,theprocessleadstotheopeningofthenanotubecapsaswellastheformationofholesinthesidewalls,introducingdefectsonthewallsofthenanotubes.However,theimagescorrespondingtotheCNTs-OHsubjectedtothecovalentattachmentofCOOHtothesurfaceofCNTsshowthatthenanotubesidewallsdonotchangesignificantly.ThebiocompatiblesolubilizationofCNTsisbelievedtobesignificantforbiologicalapplicationsoftheCNTs.CNTs-OHhaveatendencytoaggregateinwaterduetothestrongvanderWaalsforces,asshownintheinsetofFig.2(a).However,theCNTsfunctionalizedwithCOOHcanformahomogeneousandblackdispersioninaqueoussolution,andthesuspensionwillkeepstableforatleast1week,asshownintheinsetsofFig.2bandc.
CH2COOHCH2COOH
+
ClHOOH
CH2COOHCH2COOH
+
HN
HO
OH
OH
N
36X.Tuetal.
a
1570
b
1710
c
3440
1570
28502920
1210
1710
2500
2000
1500
-1
3440
4000
3500
3000
1570
1000
500
wavelength /cm
Fig.1FTIRspectraofCNTs-OH(a),CNTs-COOH(b)andCNTs-COOH2(c)
Voltammetricstudyofadenineandguanineonthemodifiedelectrode
Inthepresentwork,weexaminetheenhancedelectro-chemicalresponseofadenineandguanineataCNTs-COOH2modifiedelectrode.Figure3illustratestheCVresponseoftheanalytemixtureonthemodifiedelectrodesandbareGCE.Itcanbeseenthat,inthecaseofbareGCE,thevoltammogramsofbasesAandGexhibitjusttwosmallhumppeaks.Comparedwiththeelectrochemicalresponseonthebareelectrode,inthecaseofCNTs-OH/GCE,CNTs-COOH/GCEandCNTs-COOH2/GCE,thepeakcurrentsignalsofAandGwereenhancedsignificantly.Further-more,itisevidentthattheelectrochemicalresponseonthe
CNTs-COOH2/GCEwasmuchstrongerthanthatontheCNTs-OH/GCEandCNTs-COOH/GCE.Nocathodicpeakswereobservedonthereversescanwithintheinvestigatedpotentialrange,indicatingthattheoxidationofGandAiselectrochemicallyirreversible.
WhenimmersingtheCNTs-COOH2/GCEelectrodeintoaquietphosphatebuffer(pH7.0)containingguanineandadeninefor5min,thecyclicvoltammogramshowsverylowresponses.After5minofstirringatopencircuit,however,theresponsesgreatlyimprove.AfterimmersionoftheCNTs-COOH2/GCEelectrodeinthestirringsolutioncontainingguanineandadeninefor5minandtransferringtoapH7.0phosphatebuffersolution,peaksofguanineandadeninecanbeobserved.ThissuggeststhatguanineandadeninecanbeadsorbedontheCNTs-COOH2/GCEelectrodesurface.Thepeaksofguanineandadeninealmostdisappearedinthesecondcycle.Thisphenomenonmaybepartlyattributedtotheconsumptionofadsorbedguanineandadenineandtheadsorptionofelectrochemicaloxida-tionproductsattheCNTs-COOH2/GCEsurface.
ToinfermoreaboutthereactionprocessofCNTs-COOH2/GCE,westudiedthescanrateeffectontheguanineelectrochemicalresponse(seeFig.4).ThepeakcurrentsofCNTs-COOH2/GCEinthepresenceof20μMAandGinphosphatebuffersolutionaredirectlyproportionaltothescanrateovertherangeof25–400mVs−1,furtherconfirmingthatAandGwereadsorbedonthesurfaceoftheelectrode.Inaddition,withincreasingscanrate,theoxidationpeakpotential(Ep)shiftstomorepositivevaluesandthereisalinearcorrelationbetweenthepeakpotentialandthelogarithmofthescanrate,logv.Thelogarithmplotpeakcurrent(logipa)vs.logarithmofscanrates(logv)ofGandAhavealinearrelationship,withaslopeof0.732(logipavs.logv,R=0.998)and0.731(logipavs.logv,R=0.999),respectively.Thesevaluesarebetween0.5and1.Theseresultsindicatethatthe
electrode
Fig.2TransmissionelectronmicrographsofCNTs-OH(a),CNTs-COOH(b)andCNTs-COOH2(c).Insetsshowthephotographsof2mgmL−1CNTsdispersionsintowaterfor1week
Novelcarboxylationtreatment
0.2
0.4
0.6
0.8
1.0
1.2
1.4
37
E /V vs SCE
Fig.3Cyclicvoltammetriccurvesin0.10MpH7.0phosphatebuffersolutioncontaining20μMguanineand20μMadenineatbareGCE(a),CNTs-OH/GCE(b),CNTs-COOH/GCE(c)andCNTs-COOH2/GCE(d).Accumulatedatanopencircuitpotentialfor240s,scanratewas100mVs−1
Ep=1.130–0.058pH(peakG,r=0.9945)andEp=1.451–0.060pH(peakA,r=0.9975),respectively.Theoxidationofadenineandguaninefollowsatwo-stepmechanisminvolvingthetotallossof4e-andthefirst2e-oxidationistherate-determiningstep.Theslopesof58and60mV/pHshowsthattwoprotonstakepartintherate-determiningstep[33].TheinfluencesoftheamountofCNTs-COOH2onthepeakcurrentwasexaminedbyCV.However,theoxidationpeakcurrentsofadenineandguaninearecloselyrelatedtotheamountofCNTs-COOH2.TheoxidationpeakcurrentincreasesgreatlywhentheCNTs-COOH2amountimprovesfrom0to9μL,andfinallydecreaseswhentheCNTs-COOH2amountishigherthan9μL,beingdueprobablytothelimitedmasstransportofadenineandguanineinsideathickerfilm.Meanwhile,thebackgroundcurrentgraduallyincreaseswhiletheCNTs-COOH2amountincreases.Inthiswork,theamountofCNTs-COOH2waschosentobe9μLforahigherpeakcurrentandalowerbackgroundcurrent.Voltammetricseparationdeterminationofadenineandguanine
Figure5showstheLSVwhen2.0μMguanineandadenineinconcentrationsfrom0.05to10.0μMcoexistinthesolution.Ascanbeseen,thecompetitiveadsorptionphenomenononCNTs-COOH2isnegligible,andthelinearrelationbetweenadenineconcentrationandthepeakcurrent(Ipa∼CA)isavailableintheinvestigatingcondition,whichilluminatesthatthepresenceofcertainconcentrationsofguaninedonotinterferewithadeninedetermination.Itisthereforepossibletodeterminequantitativelywithoutanyconsiderablerecip-rocalinfluenceoveralargerrangeofconcentrations.
Similarly,undertheexperimentalconditions,andinthepresenceof2.0μMadenine,theLSVpeaksofaseriesofguanine(withdifferentconcentrations)arespikyandhavea
1.10.90.8
-3.0
processwassimultaneouslyinfluencedbydiffusionandadsorption[31].Inthiscase,thechargetransfercoefficient(a)canbeworkedoutfromthefollowingequations[32],whichis0.66and0.68forAandG,respectively.Epa¼E0þ
2:3RTð1ÀaÞnFv
log
0ð1ÀaÞnFRTKs
ð1Þ
TheeffectofpHontheelectrochemicalresponseofthe
modifiedelectrodetowardsthesingledeterminationofadenineandguaninewasstudiedovertherangeof4.0–9.0.TheoxidationpeakcurrentofadenineandguanineatthemodifiedelectrodedecreasesslightlywithanincreaseofthepHvalue.ThepHdependenceofoxidationpeakpotentialsofguanineandadenineobeystheequations
900
[**************]0-150
0.70.6
logIpa
-3.6
-4.2
0.300.450.600.750.901.051.201.35
-4.8
E /V vs SCE
Fig.4aScanratedependenceofthecyclicvoltammetricresponseofCNTs-COOH2/GCEin0.10MpH7.0phosphatebuffersolutioncontaining20μMguanineand20μMadenine.Scanratefrominnertoouter:25,50,75,100,200,300,400mVs−1.Insetshowsplotof
logv
anodicpeakcurrentvs.scanrate.bPlotsofanodicpeakpotentialandthelogarithmofanodicpeakcurrentsasfunctionsofthelogarithmofthescanrate
Epa /V
1.0
38
200175
[1**********]
50250
0.300.450.600.750.901.051.201.35E/V vs SCE
Fig.5Linearsweepstrippingvoltammogramsofguanineatvariousconcentrations(0.2–10.0μM)in2.0μMadeninesolution.Inset:plotofpeakcurrentsvs.guanineconcentrations.OtherconditionswerethesameasinFig.3
favorablelinearrelationship(seeFig.6).Comparedwiththereportedresultsforguanineandadenine,thehighlinearlimitisimprovedupto10μM.Theseobservationsclearlydemonstratethatthetwopurinebasescanbeestimatedfromamixtureintheconcentrationrangestudied.Here,thedetectionlimitsofGandAforindividualanalysisarecalculatedtobe0.02and0.08μM(withS/N=3criterion),respectively.Thus,thismethodallowssimultaneousandsensitivedeterminationofguanineandadenine.Analyticalapplication
Theacid-denaturedDNAproducestwowell-definedpeaksattheCNTs-COOH2/GCEduetotheoxidationofguanine
225
[***********]0250
0.300.450.600.750.901.051.201.35
E /V vs SCE
Fig.6Linearsweepstrippingvoltammogramsofvariousconcen-trationsofadeninefrom0.2to10.0μMin2.0μMguaninesolution.Inset:plotofpeakcurrentsvs.adenineconcentrations.OtherconditionswerethesameasinFig.3
X.Tuetal.
E /V vs SCE
Fig.7Linearsweepstrippingvoltammogramsforthesimultaneousdeterminationofguanineandadenineinacid-denatured−1DNAwithincreasingconcentrationfrom0.50to25μgmL.Inset:plotofthepeakcurrentsvs.acid-denaturedDNAconcentrations.Othercon-ditionswerethesameasinFig.3
andadenineresidues.Figure7showsthetypicalLSVresponsesofguanineandadenineresidueswithincreasingDNAconcentrationsrangingfrom0.50to25μgmL−1.TherelationshipbetweenthepeakcurrentandDNAconcentra-tionislinearintherangeof0.50–15μgmL−1.
Thedeterminationofguanineandadenineconcentra-tionswasperformedbythestandardadditionmethodasfollows.TwentymicrolitersofdenaturedDNAwasaddedtoacellcontaining10mLpH7.0phosphatebuffersolution,thenthepeakcurrentsofguanineandadenineresiduesweremeasured.Subsequentlyacertainquantityofguanineoradeninesolutionwasadded,andthepeakcurrentofguanineoradeninewasmeasuredagain.TheconcentrationsofguanineandadenineinDNAcanbecalculatedfromthepeakcurrentusingthecalibrationgraphobtainedpreviouslyforsimultaneousdeterminationofguanineandadenine.TheresultsaregiveninTable1.Whenusingthemethodpresented,avalue(G+C)/(A+T)of0.81wasobtainedforacalfthymusDNAsampledigestedwithHCl,whichcoincidedwiththestandardvalueof0.77[34].Thedeterminationlimitof0.08μg·mL−1wasalso
Table1ContentofguanineandadenineinHCl-digestedcalfthymusDNAsimultaneouslydeterminedwiththeCNTs-COOH2/GCE
CalfthymusDNAtreatedwithHClGuanine(mol%)22.41Adenine(mol%)
27.67Molarratio(G+C)/(A+T)
0.81
Novelcarboxylationtreatmentobtainedforthecalf−1thymusDNA.Tencontinuousmeasure-mentsof1μg·mLcalfthymusshowedagoodreproduc-ibilitywitha2.6%R.S.D.
Conclusions
Insummary,wehavedevelopedanovelrouteforthecarboxylationofmultiwalledcarbonnanotubes.Ourobserva-tionsindicatethatthecarboxylatedCNTshaveexcellentfunctionalpropertieswithgoodelectrochemicalactivityonguanineandadeninebiomolecules.ItappearsthattheexcellentelectrochemicalbehavioroftherelevantbasesmaycomefromtheselectiveaccumulationonthecarboxylatedCNTselectrodesurface.Therefore,thissimpleandreliablestrategybasedonanelectrochemicaltechniqueatCNTs-COOH2/GCEcouldbeusedforthedevelopmentofsensitivevoltammetricbiosensorsforsimultaneousdeterminationofguanineandadenineintherelatedbiologicalprocess.
AcknowledgementsThisworkwassupportedbytheNationalOutstandingYouthFoundationsofChina(No.50725825),NationalNaturalScienceFoundationofChina(No.50908113,20765003),theNaturalScienceFoundationofJiangxiProvince(No.2008GZH0008),theYouthFoundationofJiangxiProvincialDepartmentofEducation(No.GJJ09483),andtheOpeningFundoftheKeyLaboratoryofChemicalBiologyandTraditionalChineseMedicineResearch(MinistryofEducationofChina),HunanNormalUniversity(No.KLCBTCMR2008-08).
References
1.ShengRS,NiF,CottonTM(1991)Determinationofpurinebasesbyreversed-phasehigh-performanceliquidchromatographyusingreal-timesurface-enhancedRamanspectroscopy.AnalChem63:437
2.KaiM,OhkuraY,YonekuraS,IwasakiM(1994)Chemilumines-cencedeterminationofguanineanditsnucleosidesandnucleo-tidesusingphenylglyoxal.AnalChimActa287:75
3.ToddB,ZhaoJ,FleetG(1995)HPLCmeasurementofguanineforthedeterminationofnucleicacids(RNA)inyeasts.JMicrobiolMethods22:1
4.TordaT,SaavedraJM(1990)Determinationofguaninenucleotidesensitivityof[125I]-neuropeptideYbindingintheratpituitaryglandbyquantitativeautoradiography.Neuroendocrinology52:361
5.KurodaN,NakashimaK,AkiyamaS(1993)Chemiluminescencemethodforthedeterminationofadenineafterreactionwithphenylglyoxal.AnalChimActa278:275
6.TsengHC,DadooC,ZareRN(1994)Selectivedeterminationofadenine-containingcompoundsbycapillaryelectrophoresiswithlaser-inducedfluorescencedetection.AnalBiochem222:55
7.HuaL,XuDK,ChenHY(1997)Simultaneousdeterminationofpurinebases,ribonucleosidesandribonucleotidesbycapillaryelectrophoresis-electrochemistrywithacopperelectrode.JChro-matogrA760:227
39
8.XuDK,HuaL,ChenHY(1996)Determinationofpurinebasesbycapillaryzoneelectrophoresiswithwall-jetamperometricdetection.AnalChimActa335:95
9.JinW,WeiH,ZhaoX(1997)Determinationofadenineandguaninebycapillaryzoneelectrophoresiswithend-columnamperometricdetectionatacarbonfibermicrodiskarrayelectrode.Electroanalysis9:770
10.WangHS,JuHX,ChenHY(2002)Simultaneousdetermination
ofguanineandadenineinDNAusinganelectrochemicallypretreatedglassycarbonelectrode.AnalChimActa461:24311.ZenJM,ChangMR,IlangovanG(1999)Simultaneousdetermi-nationofguanineandadeninecontentsinDNA,RNAandsyntheticoligonucleotidesusingachemicallymodifiedelectrode.Analyst124:679
12.IvandiniTA,SaradaBV,RaoTN,FujishimaA(2003)Electro-chemicaloxidationofunderivatized-nucleicacidsathighlyboron-dopeddiamondelectrodes.Analyst128:924
13.AbbaspourA,MehrgardiMA,KiaR(2004)Electrocatalytic
oxidationofguanineandss-DNAatacobalt(II)phthalocyaninemodifiedcarbonpasteelectrode.JElectroanalChem568:261
14.MusamehM,WangJ,MerkociA,LinY(2002)Low-potential
stableNADHdetectionatcarbon-nanotube-modifiedglassycarbonelectrodes.ElectrochemCommun4:743
15.WangJ(2005)Carbon-nanotubebasedelectrochemicalbiosen-sors:areview.Electroanalysis17:7
16.ThessA,LeeR,NikolaevP,DaiHJ,PetitP,RobertJ,XuCH,Lee
YH,KimSG,RinzlerAG,ColbertDT,ScuseriaGE,TomanekD,FischerJE,SmalleyRE(1996)Crystallineropesofmetalliccarbonnanotubes.Science273:483
17.HirschA(2002)Functionalizationofsingle-walledcarbonnano-tubes.AngewChemIntEdEngl41:1853
18.DykeCA,TourJM(2004)Overcomingtheinsolubilityofcarbon
nanotubesthroughhighdegreesofsidewallfunctionalization.ChemEurJ10:812
19.LinY,RaoM,SadanadanB,KenikEA,SunYP(2002)
Functionalizingmultiple-walledcarbonnanotubeswithamino-polymers.JPhysChemB106:1294
20.WangY,IqbalZ,MalhotraSV(2005)Functionalizationofcarbon
nanotubeswithaminesandenzymes.ChemPhysLett402:9621.LiuJ,RinzlerAG,DaiH,HafnerJH,BradleyRK,BoulPJ,LuA,
IversonT,ShelimovK,HuffmanCB,MaciasF,ShonYS,RandallLT,ColbertDT,SmalleyRE(1998)Fullerenepipes.Science280:1253
22.DujardinE,EbbesenTW,KrishnanA,TreacyMMJ(1998)
Purificationofsingle-shellnanotubes.AdvMater10:611
23.HillDE,LinY,RaoAM,AllardLF,SunYP(2002)Function-alizationofcarbonnanotubeswithpolystyrene.Macromolecules35:9466
24.LiS,QinY,ShiJ,GuoZX,LiY,ZhuD(2005)Electrical
propertiesofsolublecarbonnanotube/polymercompositefilms.ChemMater17:130
25.EitanA,JiangK,DukesD,AndrewsR,SchadlerLS(2003)
Surfacemodificationofmultiwalledcarbonnanotubes:towardthetailoringoftheinterfaceinpolymercomposites.ChemMater15:3198
26.SunYP,ZhouB,HenbestK,FuK,HuangW,LinY,TaylorS,
CarrollDL(2002)Luminescenceanisotropyoffunctionalizedcarbonnanotubesinsolution.ChemPhysLett351:349
27.ChenJ,HamonMA,HuH,ChenY,RaoAM,EklundPC,
HaddonRD(1998)Solutionpropertiesofsingle-walledcarbonnanotube.Science282:95
28.GarrettRH,CrishanCM(1995)Biochemistry.SaundersCollege,
Orlando
40
29.WangZ,LiuJ,LiangQ,WangY,LuoG(2002)Carbonnanotube-modifiedelectrodesforthesimultaneousdeterminationofdopamineandascorbicacid.Analyst127:653
30.ZhangS,YiD,WuT(1993)Infraredspectroscopicanalysisandnew
techniques(inChinese).ChinaMedicineScienceandTechnology,Beijing
31.NicholsonRS,ShainI(1964)Theoryofstationaryelectrode
polarography.Singlescanandcyclicmethodsappliedtorevers-ible,irreversible,andkineticsystems.AnalChem36(4):706
X.Tuetal.
32.LavironE(1979)Generalexpressionofthelinearpotentialsweep
voltammograminthecaseofdiffusionlesselectrochemicalsystems.JElectroanalChem101:19
33.WangZH,XiaoSF,ChenY(2006)β-Cyclodextrinincorpo-ratedcarbonnanotubes-modifiedelectrodesforsimultaneousdeterminationofadenineandguanine.JElectroanalChem589:237
34.DavidsonN(1972)Thebiochemistryofthenucleicacids,7th
edn.Cox&Nyman,Norfolk,p129
MicrochimActa(2010)169:33–40DOI10.1007/s00604-010-0307-3
ORIGINALPAPER
Novelcarboxylationtreatmentandcharacterization
ofmultiwalledcarbonnanotubesforsimultaneoussensitivedeterminationofadenineandguanineinDNA
XinmanTu&XubiaoLuo&ShenglianLuo&LiushuiYan&FengZhang&QingjiXie
Received:2November2009/Accepted:14January2010/Publishedonline:23February2010#Springer-Verlag2010
AbstractAmethodispresentedforthecarboxylationofmultiwalledcarbonnanotubes(MWCNTs)viaatwo-stepprocess.ThehydroxygroupsofMWCNTswerefirstreactedwithepichlorohydrin,thenwithiminodiaceticacid.TheresultingMWCNTswerecharacterizedbymeansofFouriertransforminfraredspectroscopyandtransmissionelectronmicroscopy.TheglassycarbonelectrodemodifiedwiththeMWCNTsthuspreparedexhibitedenhancedelectrocatalyticactivityandgoodstabilityforthedetermi-nationofguanineandadenineinpH7.0phosphatebuffersolution.Theexperimentalparameterswereoptimized,andadirectelectrochemicalmethodwasdevelopedforthesimultaneousdeterminationofguanineandadenine.Thedetectionlimits(atS/N=3)forguanineandadenineare0.02and0.08μM,respectively.AsensitivemethodwasalsodevelopedforthedeterminationofguanineandadenineincalfthymusDNA.
KeywordsMultiwalledcarbonnanotubes.Carboxylation.Modifiedelectrode.Guanineandadenine.CalfthymusdsDNA
X.TuX.LuoS.Luo(*)L.YanF.ZhangSchoolofEnvironmentandChemicalEngineering,NanchangHangkongUniversity,Nanchang330063,Chinae-mail:[email protected]
X.Tu:Q.Xie
KeyLaboratoryofChemicalBiologyandTraditionalChineseMedicineResearch(MinistryofEducationofChina),HunanNormalUniversity,Changsha410081,China
Guanine(G)andadenine(A)areimportantcomponentsfoundindeoxyribonucleicacid.DeterminingindividualconcentrationsofguanineandadenineortheirratioinDNAisimportantwhenmeasuringthenucleicacidconcentrationitself.Indeed,nucleicacidcomponentsinphysiologicalfluids,tissuesandcellsarerelatedtothecatabolismofnucleicacids,enzymaticdegradationoftissuesanddietaryhabits.Therefore,detectionofelevatedlevelsofthesesubstancescouldbeindicativeofcertaindiseases[1].Manymethods,suchasthespectroscopicmethodscoupledwithchromatographyorelectrophoresis[1–6]andelectrophoresiswithelectrochemicaldetection[7–9],havebeendevelopedforthedetectionandquantifi-cationofpurinebasesinnucleicacids.Inaddition,voltammetrictechniquesarealsosuitablefortheanalysisofthesepurinesinnucleicacidsduetoadvantagesincludinghighsensitivityandselectivity,fastresponse,lowcostandultra-smallsamplevolumes.Butpurineandpyrimidinebasesusuallyprovidepoorresponsewithhighoxidativepotentialanddisturbeachotheronconventionalelectrodes.Todate,someelectrochemicaldetectionproto-colshavebeendeveloped,suchaselectrochemicallypretreatedglassycarbonelectrode[10],nafion-rutheniumoxidepyrochlorechemicallymodifiedelectrode[11],highlyboron-dopeddiamondelectrode[12],andcobalt(II)phthalocyaninemodifiedcarbonpasteelectrode[13],etc.However,thereareseveresetbacksforpurineelectro-chemicaldetermination,asthesepurinebasescouldirreversiblyadsorbontheelectrodesurfacethushamperingtheestimation.
Carbonnanotubes(CNTs)representanovelcarbonnano-materialofgreatinterest,especiallyinelectroanalysis,duetoitsexcellentperformanceinenhancingtheelectrochemicalreactivity,promotingtheelectron-transferreactionsand
34alleviatingsurfacefouling[14,15].However,thecrucialobstacleofthenanotubesindiverseapplicationsistheirpoorsolubilityandprocessibility,whichiscausedbyinherentattractivevanderWaalsinteractionsbetweennanotubes[16].Asaresult,carbonnanotubesareaggregatedandexistasbundlesintheirnativestate.Theycanbedispersedinsomesolventsbysonication,butprecipitationimmediatelyoccurswhenthisprocessisinterrupted.Toovercomethisdifficulty,thebestmethodtospövetheseproblemsistointroducevariousfunctionalgroupsonthesurfaceofCNTs[17,18],whichcanimprovethedispersionofCNTsinsolutionorcompositematerials.Moreover,variousfunctionalgroupscanbeintroducedthroughfurtherchemicalmodificationonthesidewallofthecarboxylatedCNTs.Thewaytointroducecarboxylicacidgroups(COOH)toCNTswasusuallyacidtreatmentbyoxidation.Therearetwocommonacidtreat-mentsusedintheliterature.Onerefluxesthenanotubeswithasolutionofnitricacid[19–23],andtheotherexposesthesampletoamixtureofHNO3/H2SO4(1:3byvolume)underhighpowersonicationforamaximumof6h[20,21,24–26].Chenetal.[27]haveshownthatanoxidationprocessforsingle-wallcarbonnanotubes(SWCNTs)involvingextensiveultrasonictreatmentinamixtureofHNO3/H2SO4(1:3byvolume)canleadtotheopeningofthenanotubecapsaswellastheformationofholesinthesidewalls.Thefinalproductsarenanotubefragmentswithlengthsintherangeof100to300nm,whoseendsandsidewallsaredecoratedwithahighdensityofvariousoxygencontaininggroups(mainlycarboxylgroups).Nanotubesfunctionalizedinthismannerhaddamagedpristineelectronicandmechanicalproperties.Thus,werequirethedevelopmentofanovelwaytointroducecarboxylicacidgroups(COOH)toCNTsandretaintheirpristineelectronicandmechanicalproperties.
Thispaperpresentsasimpleapproachtotheintro-ductionofcarboxylicacidgroups(COOH)toCNTsandretaintheirpristineelectronicandmechanicalproperties.TheelectrocatalyticactivitytowardstheoxidationofguanineandadenineonthecarboxylatedCNTsmodifiedelectrodehasbeeninvestigatedutilizingcyclicvoltam-metry(CV),andthedetectionlimitandlinearrangeofadenineandguaninehavealsobeenstudiedbylinearsweepvoltammetry(LSV).Itwasfoundthatthismodifiedelectrodeshowedexcellentelectrocatalyticactivityintheoxidationofguanineandadenine,andbasedonthisadirectelectrochemicalmethodwasdevelopedtodeterminetracelevelsofDNA.Tothebestofourknowledge,thepresentstrategyforthepreparationofacarboxylatedCNTsmodifiedelectrodehassofarnotbeenreported,norhastheelectrocatalyticactivitytowardguanineandadenineoxidationbeenstudiedtodate.
X.Tuetal.
ExperimentalsectionInstrumentationandreagents
FTIRspectrawerecollectedonaNEXUS670FTIRspectrophotometer(Nicolet,USA,http://www.thermo.com/).TheCNTwaspressedintoKBrpelletsforFTIRmeasure-ments.Transmissionelectronmicroscopy(TEM)pictureswerecollectedonaJEOL-1230microscope(JEOL,Tokyo,Japan,http://www.jeol.com/)withalineresolutionof0.20nm,operatedatanaccelerationvoltageof100kV.Thesamplesweredispersedinwateranddrop-castontoacoppergridwithaholeycarbonfilm.
AllelectrochemicalexperimentswereconductedonaCHI660Celectrochemicalworkstation(CHInstrumentCo.,USA,http://www.chinstruments.com/).Aconven-tionalthree-electrodecellwasused.Theglassycarbonelectrode(GCE)of3.0mmdiameterservedastheworkingelectrode.ThereferenceelectrodewasaKCl-saturatedcalomelelectrode(SCE),andallpotentialsinthispaperarereportedversusthisreference.Acarbonrodservedasthecounter-electrode.
Multiwalledcarbonnanotubeswithahydroxylgroup(95%purity,diameterof30–50nm,rateofsurfacecarbonatom:20–26mol%)werepurchasedfromtheChengduInstituteofOrganicChemistryoftheAcademyofSciences(http://www.timesnano.com).Adenine(A),guanine(G),andthecalfthymusdsDNAwerepurchasedfromSigma(http://www.sigmaaldrich.com/).Thestocksolutions(1.0mM)ofguanine(G)andadenine(A)werepreparedwithdilutedNaOHaqueoussolution.Theworkingsol-utionswerepreparedbydilutingthestocksolutionwithphosphatebuffersolution.0.10MK2SO4+0.10Mphos-phatebuffersolutionsconsistingofK2HPO4andKH2PO4wereemployedasthesupportingelectrolyte.ThedesiredsolutionpHwasadjustedbydifferentamountsof0.10MK2HPO4andKH2PO4solutions.Allchemicalswereofanalyticalgradeorbetterquality.Allsolutionswerepreparedusingredistilledwater.PreparationofDNAsamples
AgeneraltreatmentofDNAwith1.0mMHClleadstotheselectiveremovalofitspurinebasesbycleavageofpurineglycosidebonds[28].ThecalfthymusdsDNAwashydrolyzedasfollowsforquantificationofguanineandadenine:twomilligramsofdsDNAwasdigestedusing1.0mLof1.0MHClina10mLglasstube.Afterheatinginaboilingwaterbathfor80min,thepHofthesolutionwasadjustedwith1.0mLof1.0MNaOH.Aftercoolingtoroomtemperaturethesolutionwasdilutedto10mLusing0.10Mphosphatebuffersolution(pH7.0).
Novelcarboxylationtreatment35
CarboxylationofCNTs
Scheme1showsthecarboxylationreactionofCNTs.Theprocedurewasperformedasfollows:CNTs-OH(1.0g)wasdispersedin30mLof2.0MNaOHsolutionwhilestirring.110mgNaBH4and3.0mLepichlorohydrinwereaddedat37°C,andtheresultantmixturewasstirredfor10min.15mLof2.0MNaOHsolutionand9.0mLepichlorohy-drinwereaddeddropwiseundervigorousmagneticstirringoveraperiodof2h,andthemixturewasstirredfor24hat37°C.Theprecipitatewascollectedbyfiltrationunderreducedpressureandwashedwithdoublydistilledwater.Afterwards,theprecipitatewasdispersedin40mL2.0MNa2CO3solutionwhilestirring.2.5giminodiaceticacidwasadded,andtheresultantmixturewasstirredfor24hat37°C.Theprecipitatewascollectedbyfiltrationunderreducedpressureandwashedwithdoublydistilledwater.Theprecipitatewasdriedat50°C,andthecarboxylatedCNTswerefinallyobtained(DenotedasCNTs–COOH2).Forcomparison,theCNTs-OHwerefunctionalizedwithcarboxylicacidgroupsbysonicationina3:1sulfuric-acid/nitric-acidmixturefor8h[29].ThepretreatedMWCNTswereneutralizedwith0.10molL−1NaOH,washedwithwater,filtered,anddried(denotedasCNTs–COOH).Electrodemodifications
ThegeneralprocedureofGCEpretreatmentandmodifica-tionwasasfollows:priortouse,theworkingelectrodewaspolishedmechanicallywith0.05μmaluminapowdertoobtainamirror-likesurfaceandthenwashedwithdoublydistilledwaterandacetone.Electrochemicalactivationoftheelectrodewasperformedbycontinuouspotentialcyclingfrom−0.20to1.5Vatascanrateof100mVs−1in0.20molL−1HClO4solutionuntilastablevoltammo-gramwasobtained.Afterrinsingwithdoublydistilledwater,theactivatedelectrodewasmodifiedasfollows:TheCNTs-OHmodifiedGCEwaspreparedbydropping6.0μLofasolutionof2.0mgMWCNTs-OHdispersedin1.0mLofDMFonaGCE,andthenair-dried.TheCNTs-COOHfilmcoatedGCEwaspreparedbydropping6μLsolutionof2.0mgCNTs-COOHdispersedin1.0mLof
Scheme1SchematicdepictionofthecarboxylationofCNTs
OHOH
DMFontheGCE,andthenair-dried.TheCNTs-COOH2filmcoatedGCEwaspreparedbydropping6μLsolutionof2.0mgCNTs-COOH2dispersedin1.0mLofDMFontheGCE,andthenair-dried.
Resultsanddiscussion
CarboxylationofCNTsandcharacterization
Figure1showstheFTIRspectraofCNTs-OH(a)andcarboxylatedcarbonnanotube,CNTs-COOH(b)andCNTs-COOH2(c).ComparedwiththeFTIRspectrumofCNTs-OH,theCNTs-COOHhavesimilarcharacteristics.ForCNTs-COOH,thepeakat3,440cm−1isassignedtotheO-Hstretchingvibrations,thepeaksat1,710cm−1and1,210cm−1maybeassignedtotheC=OandC–Ostretchingvibrations,respectively.Thepeakat1,570cm−1canbeassociatedwiththestretchingofthecarbonnano-tubesbackbone.However,fortheCNTs-COOH2,peaksat2,920and2,850cm−1inthespectrum(c)aregreatlyenhancedbecauseoftheattachmentofadditionalmethy-lenegroups,andpeaksat1,100cm−1maybebecauseoftheexistenceofC-O-C[30].
Figure2showsTEMimagesofCNTs-OH(a),CNTs-COOH(b)andCNTs-COOH2(c).TheCNTs-OHwerehollowropeswithcleanwallsofca.40nmouterdiameter.AftertreatmentoftheCNTs-OHwithacidbyoxidation,theprocessleadstotheopeningofthenanotubecapsaswellastheformationofholesinthesidewalls,introducingdefectsonthewallsofthenanotubes.However,theimagescorrespondingtotheCNTs-OHsubjectedtothecovalentattachmentofCOOHtothesurfaceofCNTsshowthatthenanotubesidewallsdonotchangesignificantly.ThebiocompatiblesolubilizationofCNTsisbelievedtobesignificantforbiologicalapplicationsoftheCNTs.CNTs-OHhaveatendencytoaggregateinwaterduetothestrongvanderWaalsforces,asshownintheinsetofFig.2(a).However,theCNTsfunctionalizedwithCOOHcanformahomogeneousandblackdispersioninaqueoussolution,andthesuspensionwillkeepstableforatleast1week,asshownintheinsetsofFig.2bandc.
CH2COOHCH2COOH
+
ClHOOH
CH2COOHCH2COOH
+
HN
HO
OH
OH
N
36X.Tuetal.
a
1570
b
1710
c
3440
1570
28502920
1210
1710
2500
2000
1500
-1
3440
4000
3500
3000
1570
1000
500
wavelength /cm
Fig.1FTIRspectraofCNTs-OH(a),CNTs-COOH(b)andCNTs-COOH2(c)
Voltammetricstudyofadenineandguanineonthemodifiedelectrode
Inthepresentwork,weexaminetheenhancedelectro-chemicalresponseofadenineandguanineataCNTs-COOH2modifiedelectrode.Figure3illustratestheCVresponseoftheanalytemixtureonthemodifiedelectrodesandbareGCE.Itcanbeseenthat,inthecaseofbareGCE,thevoltammogramsofbasesAandGexhibitjusttwosmallhumppeaks.Comparedwiththeelectrochemicalresponseonthebareelectrode,inthecaseofCNTs-OH/GCE,CNTs-COOH/GCEandCNTs-COOH2/GCE,thepeakcurrentsignalsofAandGwereenhancedsignificantly.Further-more,itisevidentthattheelectrochemicalresponseonthe
CNTs-COOH2/GCEwasmuchstrongerthanthatontheCNTs-OH/GCEandCNTs-COOH/GCE.Nocathodicpeakswereobservedonthereversescanwithintheinvestigatedpotentialrange,indicatingthattheoxidationofGandAiselectrochemicallyirreversible.
WhenimmersingtheCNTs-COOH2/GCEelectrodeintoaquietphosphatebuffer(pH7.0)containingguanineandadeninefor5min,thecyclicvoltammogramshowsverylowresponses.After5minofstirringatopencircuit,however,theresponsesgreatlyimprove.AfterimmersionoftheCNTs-COOH2/GCEelectrodeinthestirringsolutioncontainingguanineandadeninefor5minandtransferringtoapH7.0phosphatebuffersolution,peaksofguanineandadeninecanbeobserved.ThissuggeststhatguanineandadeninecanbeadsorbedontheCNTs-COOH2/GCEelectrodesurface.Thepeaksofguanineandadeninealmostdisappearedinthesecondcycle.Thisphenomenonmaybepartlyattributedtotheconsumptionofadsorbedguanineandadenineandtheadsorptionofelectrochemicaloxida-tionproductsattheCNTs-COOH2/GCEsurface.
ToinfermoreaboutthereactionprocessofCNTs-COOH2/GCE,westudiedthescanrateeffectontheguanineelectrochemicalresponse(seeFig.4).ThepeakcurrentsofCNTs-COOH2/GCEinthepresenceof20μMAandGinphosphatebuffersolutionaredirectlyproportionaltothescanrateovertherangeof25–400mVs−1,furtherconfirmingthatAandGwereadsorbedonthesurfaceoftheelectrode.Inaddition,withincreasingscanrate,theoxidationpeakpotential(Ep)shiftstomorepositivevaluesandthereisalinearcorrelationbetweenthepeakpotentialandthelogarithmofthescanrate,logv.Thelogarithmplotpeakcurrent(logipa)vs.logarithmofscanrates(logv)ofGandAhavealinearrelationship,withaslopeof0.732(logipavs.logv,R=0.998)and0.731(logipavs.logv,R=0.999),respectively.Thesevaluesarebetween0.5and1.Theseresultsindicatethatthe
electrode
Fig.2TransmissionelectronmicrographsofCNTs-OH(a),CNTs-COOH(b)andCNTs-COOH2(c).Insetsshowthephotographsof2mgmL−1CNTsdispersionsintowaterfor1week
Novelcarboxylationtreatment
0.2
0.4
0.6
0.8
1.0
1.2
1.4
37
E /V vs SCE
Fig.3Cyclicvoltammetriccurvesin0.10MpH7.0phosphatebuffersolutioncontaining20μMguanineand20μMadenineatbareGCE(a),CNTs-OH/GCE(b),CNTs-COOH/GCE(c)andCNTs-COOH2/GCE(d).Accumulatedatanopencircuitpotentialfor240s,scanratewas100mVs−1
Ep=1.130–0.058pH(peakG,r=0.9945)andEp=1.451–0.060pH(peakA,r=0.9975),respectively.Theoxidationofadenineandguaninefollowsatwo-stepmechanisminvolvingthetotallossof4e-andthefirst2e-oxidationistherate-determiningstep.Theslopesof58and60mV/pHshowsthattwoprotonstakepartintherate-determiningstep[33].TheinfluencesoftheamountofCNTs-COOH2onthepeakcurrentwasexaminedbyCV.However,theoxidationpeakcurrentsofadenineandguaninearecloselyrelatedtotheamountofCNTs-COOH2.TheoxidationpeakcurrentincreasesgreatlywhentheCNTs-COOH2amountimprovesfrom0to9μL,andfinallydecreaseswhentheCNTs-COOH2amountishigherthan9μL,beingdueprobablytothelimitedmasstransportofadenineandguanineinsideathickerfilm.Meanwhile,thebackgroundcurrentgraduallyincreaseswhiletheCNTs-COOH2amountincreases.Inthiswork,theamountofCNTs-COOH2waschosentobe9μLforahigherpeakcurrentandalowerbackgroundcurrent.Voltammetricseparationdeterminationofadenineandguanine
Figure5showstheLSVwhen2.0μMguanineandadenineinconcentrationsfrom0.05to10.0μMcoexistinthesolution.Ascanbeseen,thecompetitiveadsorptionphenomenononCNTs-COOH2isnegligible,andthelinearrelationbetweenadenineconcentrationandthepeakcurrent(Ipa∼CA)isavailableintheinvestigatingcondition,whichilluminatesthatthepresenceofcertainconcentrationsofguaninedonotinterferewithadeninedetermination.Itisthereforepossibletodeterminequantitativelywithoutanyconsiderablerecip-rocalinfluenceoveralargerrangeofconcentrations.
Similarly,undertheexperimentalconditions,andinthepresenceof2.0μMadenine,theLSVpeaksofaseriesofguanine(withdifferentconcentrations)arespikyandhavea
1.10.90.8
-3.0
processwassimultaneouslyinfluencedbydiffusionandadsorption[31].Inthiscase,thechargetransfercoefficient(a)canbeworkedoutfromthefollowingequations[32],whichis0.66and0.68forAandG,respectively.Epa¼E0þ
2:3RTð1ÀaÞnFv
log
0ð1ÀaÞnFRTKs
ð1Þ
TheeffectofpHontheelectrochemicalresponseofthe
modifiedelectrodetowardsthesingledeterminationofadenineandguaninewasstudiedovertherangeof4.0–9.0.TheoxidationpeakcurrentofadenineandguanineatthemodifiedelectrodedecreasesslightlywithanincreaseofthepHvalue.ThepHdependenceofoxidationpeakpotentialsofguanineandadenineobeystheequations
900
[**************]0-150
0.70.6
logIpa
-3.6
-4.2
0.300.450.600.750.901.051.201.35
-4.8
E /V vs SCE
Fig.4aScanratedependenceofthecyclicvoltammetricresponseofCNTs-COOH2/GCEin0.10MpH7.0phosphatebuffersolutioncontaining20μMguanineand20μMadenine.Scanratefrominnertoouter:25,50,75,100,200,300,400mVs−1.Insetshowsplotof
logv
anodicpeakcurrentvs.scanrate.bPlotsofanodicpeakpotentialandthelogarithmofanodicpeakcurrentsasfunctionsofthelogarithmofthescanrate
Epa /V
1.0
38
200175
[1**********]
50250
0.300.450.600.750.901.051.201.35E/V vs SCE
Fig.5Linearsweepstrippingvoltammogramsofguanineatvariousconcentrations(0.2–10.0μM)in2.0μMadeninesolution.Inset:plotofpeakcurrentsvs.guanineconcentrations.OtherconditionswerethesameasinFig.3
favorablelinearrelationship(seeFig.6).Comparedwiththereportedresultsforguanineandadenine,thehighlinearlimitisimprovedupto10μM.Theseobservationsclearlydemonstratethatthetwopurinebasescanbeestimatedfromamixtureintheconcentrationrangestudied.Here,thedetectionlimitsofGandAforindividualanalysisarecalculatedtobe0.02and0.08μM(withS/N=3criterion),respectively.Thus,thismethodallowssimultaneousandsensitivedeterminationofguanineandadenine.Analyticalapplication
Theacid-denaturedDNAproducestwowell-definedpeaksattheCNTs-COOH2/GCEduetotheoxidationofguanine
225
[***********]0250
0.300.450.600.750.901.051.201.35
E /V vs SCE
Fig.6Linearsweepstrippingvoltammogramsofvariousconcen-trationsofadeninefrom0.2to10.0μMin2.0μMguaninesolution.Inset:plotofpeakcurrentsvs.adenineconcentrations.OtherconditionswerethesameasinFig.3
X.Tuetal.
E /V vs SCE
Fig.7Linearsweepstrippingvoltammogramsforthesimultaneousdeterminationofguanineandadenineinacid-denatured−1DNAwithincreasingconcentrationfrom0.50to25μgmL.Inset:plotofthepeakcurrentsvs.acid-denaturedDNAconcentrations.Othercon-ditionswerethesameasinFig.3
andadenineresidues.Figure7showsthetypicalLSVresponsesofguanineandadenineresidueswithincreasingDNAconcentrationsrangingfrom0.50to25μgmL−1.TherelationshipbetweenthepeakcurrentandDNAconcentra-tionislinearintherangeof0.50–15μgmL−1.
Thedeterminationofguanineandadenineconcentra-tionswasperformedbythestandardadditionmethodasfollows.TwentymicrolitersofdenaturedDNAwasaddedtoacellcontaining10mLpH7.0phosphatebuffersolution,thenthepeakcurrentsofguanineandadenineresiduesweremeasured.Subsequentlyacertainquantityofguanineoradeninesolutionwasadded,andthepeakcurrentofguanineoradeninewasmeasuredagain.TheconcentrationsofguanineandadenineinDNAcanbecalculatedfromthepeakcurrentusingthecalibrationgraphobtainedpreviouslyforsimultaneousdeterminationofguanineandadenine.TheresultsaregiveninTable1.Whenusingthemethodpresented,avalue(G+C)/(A+T)of0.81wasobtainedforacalfthymusDNAsampledigestedwithHCl,whichcoincidedwiththestandardvalueof0.77[34].Thedeterminationlimitof0.08μg·mL−1wasalso
Table1ContentofguanineandadenineinHCl-digestedcalfthymusDNAsimultaneouslydeterminedwiththeCNTs-COOH2/GCE
CalfthymusDNAtreatedwithHClGuanine(mol%)22.41Adenine(mol%)
27.67Molarratio(G+C)/(A+T)
0.81
Novelcarboxylationtreatmentobtainedforthecalf−1thymusDNA.Tencontinuousmeasure-mentsof1μg·mLcalfthymusshowedagoodreproduc-ibilitywitha2.6%R.S.D.
Conclusions
Insummary,wehavedevelopedanovelrouteforthecarboxylationofmultiwalledcarbonnanotubes.Ourobserva-tionsindicatethatthecarboxylatedCNTshaveexcellentfunctionalpropertieswithgoodelectrochemicalactivityonguanineandadeninebiomolecules.ItappearsthattheexcellentelectrochemicalbehavioroftherelevantbasesmaycomefromtheselectiveaccumulationonthecarboxylatedCNTselectrodesurface.Therefore,thissimpleandreliablestrategybasedonanelectrochemicaltechniqueatCNTs-COOH2/GCEcouldbeusedforthedevelopmentofsensitivevoltammetricbiosensorsforsimultaneousdeterminationofguanineandadenineintherelatedbiologicalprocess.
AcknowledgementsThisworkwassupportedbytheNationalOutstandingYouthFoundationsofChina(No.50725825),NationalNaturalScienceFoundationofChina(No.50908113,20765003),theNaturalScienceFoundationofJiangxiProvince(No.2008GZH0008),theYouthFoundationofJiangxiProvincialDepartmentofEducation(No.GJJ09483),andtheOpeningFundoftheKeyLaboratoryofChemicalBiologyandTraditionalChineseMedicineResearch(MinistryofEducationofChina),HunanNormalUniversity(No.KLCBTCMR2008-08).
References
1.ShengRS,NiF,CottonTM(1991)Determinationofpurinebasesbyreversed-phasehigh-performanceliquidchromatographyusingreal-timesurface-enhancedRamanspectroscopy.AnalChem63:437
2.KaiM,OhkuraY,YonekuraS,IwasakiM(1994)Chemilumines-cencedeterminationofguanineanditsnucleosidesandnucleo-tidesusingphenylglyoxal.AnalChimActa287:75
3.ToddB,ZhaoJ,FleetG(1995)HPLCmeasurementofguanineforthedeterminationofnucleicacids(RNA)inyeasts.JMicrobiolMethods22:1
4.TordaT,SaavedraJM(1990)Determinationofguaninenucleotidesensitivityof[125I]-neuropeptideYbindingintheratpituitaryglandbyquantitativeautoradiography.Neuroendocrinology52:361
5.KurodaN,NakashimaK,AkiyamaS(1993)Chemiluminescencemethodforthedeterminationofadenineafterreactionwithphenylglyoxal.AnalChimActa278:275
6.TsengHC,DadooC,ZareRN(1994)Selectivedeterminationofadenine-containingcompoundsbycapillaryelectrophoresiswithlaser-inducedfluorescencedetection.AnalBiochem222:55
7.HuaL,XuDK,ChenHY(1997)Simultaneousdeterminationofpurinebases,ribonucleosidesandribonucleotidesbycapillaryelectrophoresis-electrochemistrywithacopperelectrode.JChro-matogrA760:227
39
8.XuDK,HuaL,ChenHY(1996)Determinationofpurinebasesbycapillaryzoneelectrophoresiswithwall-jetamperometricdetection.AnalChimActa335:95
9.JinW,WeiH,ZhaoX(1997)Determinationofadenineandguaninebycapillaryzoneelectrophoresiswithend-columnamperometricdetectionatacarbonfibermicrodiskarrayelectrode.Electroanalysis9:770
10.WangHS,JuHX,ChenHY(2002)Simultaneousdetermination
ofguanineandadenineinDNAusinganelectrochemicallypretreatedglassycarbonelectrode.AnalChimActa461:24311.ZenJM,ChangMR,IlangovanG(1999)Simultaneousdetermi-nationofguanineandadeninecontentsinDNA,RNAandsyntheticoligonucleotidesusingachemicallymodifiedelectrode.Analyst124:679
12.IvandiniTA,SaradaBV,RaoTN,FujishimaA(2003)Electro-chemicaloxidationofunderivatized-nucleicacidsathighlyboron-dopeddiamondelectrodes.Analyst128:924
13.AbbaspourA,MehrgardiMA,KiaR(2004)Electrocatalytic
oxidationofguanineandss-DNAatacobalt(II)phthalocyaninemodifiedcarbonpasteelectrode.JElectroanalChem568:261
14.MusamehM,WangJ,MerkociA,LinY(2002)Low-potential
stableNADHdetectionatcarbon-nanotube-modifiedglassycarbonelectrodes.ElectrochemCommun4:743
15.WangJ(2005)Carbon-nanotubebasedelectrochemicalbiosen-sors:areview.Electroanalysis17:7
16.ThessA,LeeR,NikolaevP,DaiHJ,PetitP,RobertJ,XuCH,Lee
YH,KimSG,RinzlerAG,ColbertDT,ScuseriaGE,TomanekD,FischerJE,SmalleyRE(1996)Crystallineropesofmetalliccarbonnanotubes.Science273:483
17.HirschA(2002)Functionalizationofsingle-walledcarbonnano-tubes.AngewChemIntEdEngl41:1853
18.DykeCA,TourJM(2004)Overcomingtheinsolubilityofcarbon
nanotubesthroughhighdegreesofsidewallfunctionalization.ChemEurJ10:812
19.LinY,RaoM,SadanadanB,KenikEA,SunYP(2002)
Functionalizingmultiple-walledcarbonnanotubeswithamino-polymers.JPhysChemB106:1294
20.WangY,IqbalZ,MalhotraSV(2005)Functionalizationofcarbon
nanotubeswithaminesandenzymes.ChemPhysLett402:9621.LiuJ,RinzlerAG,DaiH,HafnerJH,BradleyRK,BoulPJ,LuA,
IversonT,ShelimovK,HuffmanCB,MaciasF,ShonYS,RandallLT,ColbertDT,SmalleyRE(1998)Fullerenepipes.Science280:1253
22.DujardinE,EbbesenTW,KrishnanA,TreacyMMJ(1998)
Purificationofsingle-shellnanotubes.AdvMater10:611
23.HillDE,LinY,RaoAM,AllardLF,SunYP(2002)Function-alizationofcarbonnanotubeswithpolystyrene.Macromolecules35:9466
24.LiS,QinY,ShiJ,GuoZX,LiY,ZhuD(2005)Electrical
propertiesofsolublecarbonnanotube/polymercompositefilms.ChemMater17:130
25.EitanA,JiangK,DukesD,AndrewsR,SchadlerLS(2003)
Surfacemodificationofmultiwalledcarbonnanotubes:towardthetailoringoftheinterfaceinpolymercomposites.ChemMater15:3198
26.SunYP,ZhouB,HenbestK,FuK,HuangW,LinY,TaylorS,
CarrollDL(2002)Luminescenceanisotropyoffunctionalizedcarbonnanotubesinsolution.ChemPhysLett351:349
27.ChenJ,HamonMA,HuH,ChenY,RaoAM,EklundPC,
HaddonRD(1998)Solutionpropertiesofsingle-walledcarbonnanotube.Science282:95
28.GarrettRH,CrishanCM(1995)Biochemistry.SaundersCollege,
Orlando
40
29.WangZ,LiuJ,LiangQ,WangY,LuoG(2002)Carbonnanotube-modifiedelectrodesforthesimultaneousdeterminationofdopamineandascorbicacid.Analyst127:653
30.ZhangS,YiD,WuT(1993)Infraredspectroscopicanalysisandnew
techniques(inChinese).ChinaMedicineScienceandTechnology,Beijing
31.NicholsonRS,ShainI(1964)Theoryofstationaryelectrode
polarography.Singlescanandcyclicmethodsappliedtorevers-ible,irreversible,andkineticsystems.AnalChem36(4):706
X.Tuetal.
32.LavironE(1979)Generalexpressionofthelinearpotentialsweep
voltammograminthecaseofdiffusionlesselectrochemicalsystems.JElectroanalChem101:19
33.WangZH,XiaoSF,ChenY(2006)β-Cyclodextrinincorpo-ratedcarbonnanotubes-modifiedelectrodesforsimultaneousdeterminationofadenineandguanine.JElectroanalChem589:237
34.DavidsonN(1972)Thebiochemistryofthenucleicacids,7th
edn.Cox&Nyman,Norfolk,p129