线面.面面平行和垂直的八大定理

线面、面面平行和垂直的八大定理

一、线面平行。

1、判定定理:平面外一条直线与平面内一条直线平行,那么这条直线与这个平

a ⊄β⎫⎪b ⊂β⎬⇒a //β

面平行。符合表示: a //b ⎪ ⎭

2、性质定理:如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 符号表示:

⎫⎪a //α⎪⎬⇒a //b a ⊂β⎪

α β=b ⎪⎭a ⊄α

二、面面平行。

1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。

n //b ⎫⎪m //a ⎪⎪a b =M ⎬⇒α//β

m n =N ⎪⎪⎪ 符号表示: ⎭

2、性质定理:如果两个平面平行同时与第三个平面相交,那它们的交线平行。

α//β⎫⎪ 符号表示: α γ=l ⎬⇒l //d (更加实用的性质:一个平

β γ=d ⎪⎭

面内的任一直线平行另一平面)

三、线面垂直。

1、判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直

⎫⎪a ⊥c ⎪⎪a ⊥b ⎪线垂直这个平面。 符号表示: ⎬⇒a ⊥α b c =M ⎪⎪⎪⎪⎭

$:三垂线定理:(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

符号表示:

a ⊂α ⎫⎪oA ⊂α⎪ ⎬⇒a ⊥PA po ⊥α⎪

a ⊥oA =A ⎪⎭

2、性质定理:垂直同一平面的两条直线互相平行。(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线。)

四、面面垂直。

1、判定定理:经过一个平面的垂线的平面与该平面垂直。

a ⊥β, a ⊂α⇒α⊥β

2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。α⊥β,α⋂β=b , a ⊂α, a ⊥b ⇒a ⊥β

线面、面面平行和垂直的八大定理

一、线面平行。

1、判定定理:平面外一条直线与平面内一条直线平行,那么这条直线与这个平

a ⊄β⎫⎪b ⊂β⎬⇒a //β

面平行。符合表示: a //b ⎪ ⎭

2、性质定理:如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 符号表示:

⎫⎪a //α⎪⎬⇒a //b a ⊂β⎪

α β=b ⎪⎭a ⊄α

二、面面平行。

1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。

n //b ⎫⎪m //a ⎪⎪a b =M ⎬⇒α//β

m n =N ⎪⎪⎪ 符号表示: ⎭

2、性质定理:如果两个平面平行同时与第三个平面相交,那它们的交线平行。

α//β⎫⎪ 符号表示: α γ=l ⎬⇒l //d (更加实用的性质:一个平

β γ=d ⎪⎭

面内的任一直线平行另一平面)

三、线面垂直。

1、判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直

⎫⎪a ⊥c ⎪⎪a ⊥b ⎪线垂直这个平面。 符号表示: ⎬⇒a ⊥α b c =M ⎪⎪⎪⎪⎭

$:三垂线定理:(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

符号表示:

a ⊂α ⎫⎪oA ⊂α⎪ ⎬⇒a ⊥PA po ⊥α⎪

a ⊥oA =A ⎪⎭

2、性质定理:垂直同一平面的两条直线互相平行。(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线。)

四、面面垂直。

1、判定定理:经过一个平面的垂线的平面与该平面垂直。

a ⊥β, a ⊂α⇒α⊥β

2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。α⊥β,α⋂β=b , a ⊂α, a ⊥b ⇒a ⊥β


相关文章

  • 必修2立体几何(公理.定理)
  • 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面. 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有 一条过该点的公共直线. 公理4:平行于同一条直线的两条直线互 ...查看


  • 平面几何概念
  • 平面几何概念 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一 ...查看


  • 初中几何知识点
  • 初中几何知识点 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外 ...查看


  • 高中数学基础知识--初中高中衔接部分
  • 高中数学基础知识(熟记部分) 一. 初高中接洽部分 平方数:12=1 22=4 32=9 42=16 52=25 72 =49 102 =100 112=12 1 122=14 4 132=16 9 142 =19 6 152 =22 5 ...查看


  • 初中几何定理总结
  • 初中几何定理 1过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点 ...查看


  • 公理和定理
  • 公理和定理大全 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外 ...查看


  • 初中几何公式.定理.推论总结146条
  • 初中几何公式.定理.推论总结146条 时间: 2010年02月08日 作者:中 考网编辑 来源:中考网整合 1过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知 ...查看


  • 初中阶段公理
  • 初中阶段公理,定理总汇 1过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过 ...查看


  • 山东初中数学常用公式大全
  • 山东初中数学常用公式大全 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 ...查看


热门内容