§5-2 剪切实用计算
一、剪切应力的计算
要获得剪切面上的应力,应当首先考查剪切面上的内力。当构件受剪切作用时,在剪切面上自然要产生内力,内力的大小和方向可用裁面法求得。还是以螺栓受力为例,如图5-9所示。利用裁面法将螺栓沿剪切面m-m 截开,取其中的一部分为研究对象(本例取下半部分) ,由平衡条件可知,螺栓上半部分对下半部分的作用力的合力与外力F 是一对平衡力,它们大小相等、方向相反、作用线相互平行,该力F s 与剪切面m-m 相切,称之为剪力。
图5-9 截面法求取剪力示意图
根据平衡条件可知,为保持下半部分螺栓的平衡,作用在剪切面上的内力F s 与外力F 平衡,运用平衡方程可求出内力即剪力的大小为:
F s =F (5-1)
虽然已经求得了剪切内力,但还不能对直接求取剪切应力,因为还不知道剪切面上的应力分布情况。一般情况下,剪力在剪切面上的分布是很复杂的,像螺栓在外力的作用下不仅发生剪切变形,还有微小的拉伸变形、弯曲变形等。如果进行精确计算,难度很大,但由于螺栓长度比较短、剪切面比较小,所以发生的拉伸变形、弯曲变形可以忽略不计,所以常采用较为实用的工程计算方法。此时只考虑连接件的主要变形——剪切变形,可以认为这时的剪切面上只有剪力作用,面且剪力在剪切面上是均匀分布的。因此,剪切面上的剪切应力(通常称为剪应力或切应力) 大小为:
(5-2)
式中,τ称为剪应力,F s 为剪切面上的剪力,A 为受剪构件的剪切面面积。剪应力τ的单位与正应力一样,用MPa(N/mm 2) 或Pa(N/m 2) 来表示。
注意,利用式(5-2)很出的剪应力数值,实际上是平均剪应力、是以剪切面上的剪力均匀分布这一假定为前提的,故又称为名义剪应力,名义剪应力实际上就是剪切面上的平均剪应力。
二、剪切应变的计算
为分析物体受剪力作用后的变形情况,从剪切面上取一直角六面体分析。如图5-10所示,在剪力作用下,相互垂直的两平面夹角发生了变化,即不再保持直角,则此角度的改变量γ称为剪应变、又称切应变。它是对剪切变形的一个度量标准,通常用弧度(rad)来度量。在小变形情况下,γ可用tanγ来近似,即
τ=
F s
A
γ≈tan γ=
ee 'ff '=
ae bf '
ae =bf '=dx
(5-3)
F
F
图5-10 物体受剪力作用、作用后的变形以及剪切应力应变关系示意图
三、剪应力互等定理简介
在受力物体中,我们可以围绕任意一点,用六个相互垂直的平面截取一个边长为dx ,dy ,dz 的微小正六而体,作为研究的单元体(如图5-11所示) 。在单元体中的相互垂直的两个平面上,剪应力(绝对值) 的大小相等,它们的方向不是共同指向这两个平面的交线,就是共同背离这两个平面的交线。即
τ=τ' (证明见§6-3)
图5-11 单元体示意图
1. 剪切胡克定律
通过实验可以获得剪切应力与应变的关系曲线,如图5-10(c)所示。实验证明:当剪应力不超过材料的剪切比例极限τp 时,剪应力τ与剪应变γ成正比例,这就是剪切胡克定律,可以写为:
(5-4)
式中的比例常数G 称为材料的剪切弹性模量。它的常用单位是GPa 。钢的剪切弹性模量G 值约为80GPa 。对于各向同性材料,G 值可由下式得出:
τ=G γ
G =
E
2(1+μ)
(5-5)
2. 剪切强度计算 (1) 剪切强度条件
剪切强度条件就是使构件的实际剪应力不超过材料的许用剪应力。
(5-6)
这里[τ]为许用剪应力,单价为Pa 或MPa 。
由于剪应力并非均匀分布,式(5-2)、(5-6)算出的只是剪切面上的平均剪应力,所以在使用实验的方式建立强度条件时,应使试件受力尽可能地接近实际联接件的情况,以确定试样
τ=
F s
≤[τ]A
失效时的极限载荷τ0,再除以安全系数n ,得许用剪应力[τ]。
n (5-7)
各种材料的剪切许用应力应尽量从相关规范中查取。
一般来说,材料的剪切许用应力[τ]与材料的许用拉应力[σ]之间,存在如下关系: 对塑性材料:
对脆性材料:
[τ]=
τ[τ]=0.6 0.8[σ]
(2) 剪切实用计算
剪切计算相应地也可分为强度校核、截面设计、确定许可载荷等三类问题,这里就不展开论述了。但在剪切计算中要正确判断剪切面积,在铆钉联接中还要正确判断单剪切和双剪切。下面通过几个简单的例题来说明。
例5-1 图5-12(a)所示电瓶车挂钩中的销钉材料为20号钢,[τ]=30MPa ,直径d=20mm。挂钩及被连接板件的厚度分别为t =8mm 和t 1=12mm 。牵引力F=15kN。试校核销钉的剪切强度。
[τ]=0.8 1.0[σ]
图5-12 电瓶车挂钩及其销钉受力分析示意图
解:销钉受力如图5-12(b)所示。根据受力情况,销钉中段相对于上、下两段沿m-m 和
n-n 两个面向左错动。所以有两个剪切面,是一个双剪切问题。由平衡方程容易求出:
F s =
销钉横截面上的剪应力为:
F 2
故销钉满足剪切强度要求。
例5-2 如图5-13所示冲床,F max =400KN,冲头[σ]=400MPa,冲剪钢板的极限剪应力τb =360 MPa。试设计冲头的最小直径及钢板最大厚度。
F s 15⨯103τ===23.9MPa
A 2⨯(20⨯10-3) 24
图5-13 冲床冲剪钢板及冲剪部分受力示意图
解:(1) 按冲头压缩强度计算d
σ=
所以
F
max F max
=≤[σ]πd 2A
4
(2) 钢板的剪切面是直径为d 高为t 的柱表面。
d ≥==0.034m =3.4cm
F s F max
=≥τb A πdt
τ=
所以
例5-3 如图5-14所示螺钉受轴向拉力F 作用,已知[τ]=0.6[σ],求其d :h 的合理比值。
F max 400⨯103
t ≤==0.0104m =1.04cm πd τb π⨯3.4⨯10-2⨯360⨯106
图5-14 螺钉受轴向拉力示意图
解:螺杆承受的拉应力小于等于许用应力值:
σ=
螺帽承受的剪应力小于等于许用剪应力值:
F N 4F =≤[σ]A πd 2
τ=
当σ、τ同时分别达到[σ]、[τ]时.材料的利用最合理,既
F s F =≤[τ]A πdh
所以可得
F 4F =0.62
πdh πd
d :h =2.4
------=extPart_01C9B6CD.
第二节 冲压常用材料的化学成分和力学
性能
一、黑色金属
二、有色金属
三、非金属
一、黑色金属
1. 深拉深用冷轧钢板发化学成分和力学性能 1)深拉深钢板的化学成分 深拉深用冷轧钢板主要有08Al 、08F 、08、及10、15、20钢。其化学成分如表8—44所示。
表8—44 深拉深冷轧薄钢板的化学成分(GB/T5213—1985和GB/T710—1991)
(2)影响钢板冲压性能的主要因素 化学成分、金属组织、力学性能和表面质量等均影响冲压性能
在上述钢号中用量最
大的是08钢,并有沸腾钢与镇静钢之分,沸腾钢08F 价廉,表面质量好,但偏析比较严重,且有“应变时效”倾向,对于冲压性能要求高,外观要求严格的零件不适合。08Al 镇静钢板价格较高,但性能均匀,“应变时效”倾向小,适用于汽车、拖拉机覆盖件的拉深 。
1)08钢中主要元素对冲压性能的影响(表8—45) 表8—45 主要元素对08钢冲压性能的影响
2)深拉深冷轧薄板铁素体晶粒度的标准(表8—46)
表8—46 深拉深冷轧薄钢板铁素体晶粒级别
1) 铝镇静钢08Al 按其拉深质量分为三级:ZF
—拉深最复杂零件;HF —拉深很复杂零件;F —拉深复杂零件
2) 其他深冲薄钢板(包括热轧板)按冲压性能
分级为:Z —最伸拉深件;S —深拉深件;P —普通拉深件
3) 深拉深冷轧薄钢板的力学性能(表8—47) 表8—47 深拉深冷轧薄钢板的力学性能(GB/T5213—1985和GB/T710—1991)
4) 深拉深冷轧薄钢板的杯突试验冲压深度(表8—48) 表8—48 深拉深冷轧薄钢板的杯突试验冲压深度 (GB/T5213—1985和GB/T710—1991)
2. 常用材料的力学性能
(1)黑色金属材料的力学性能(表8—49) 表8—49 黑色金属材料的力学性能
(2)钢在加热时的抗剪强度(表8—50) 表8—50 钢在加热状态的抗剪强度 (单位:MPa )
(3) 普通碳素钢冷弯实验指标(8-51)
表8—51 普通碳素钢冷弯试验指标 (GB700—1988)
注:B —试样宽度
二、有色金属
有色金属的力学性能(表8—52) 表8—52 有色金属的力学性能
三、非金属
(1)非金属材料的极限抗剪强度(表8—53) 表8—53 非金属材料的极限抗剪强度 (单位:MPa )
(2)非金属材料加热时的抗剪强度(表8—54) 表8—54 非金属材料加热时的抗剪强度
注:表列抗剪强度用于
模冲裁时的计算值。
普通凸
§5-2 剪切实用计算
一、剪切应力的计算
要获得剪切面上的应力,应当首先考查剪切面上的内力。当构件受剪切作用时,在剪切面上自然要产生内力,内力的大小和方向可用裁面法求得。还是以螺栓受力为例,如图5-9所示。利用裁面法将螺栓沿剪切面m-m 截开,取其中的一部分为研究对象(本例取下半部分) ,由平衡条件可知,螺栓上半部分对下半部分的作用力的合力与外力F 是一对平衡力,它们大小相等、方向相反、作用线相互平行,该力F s 与剪切面m-m 相切,称之为剪力。
图5-9 截面法求取剪力示意图
根据平衡条件可知,为保持下半部分螺栓的平衡,作用在剪切面上的内力F s 与外力F 平衡,运用平衡方程可求出内力即剪力的大小为:
F s =F (5-1)
虽然已经求得了剪切内力,但还不能对直接求取剪切应力,因为还不知道剪切面上的应力分布情况。一般情况下,剪力在剪切面上的分布是很复杂的,像螺栓在外力的作用下不仅发生剪切变形,还有微小的拉伸变形、弯曲变形等。如果进行精确计算,难度很大,但由于螺栓长度比较短、剪切面比较小,所以发生的拉伸变形、弯曲变形可以忽略不计,所以常采用较为实用的工程计算方法。此时只考虑连接件的主要变形——剪切变形,可以认为这时的剪切面上只有剪力作用,面且剪力在剪切面上是均匀分布的。因此,剪切面上的剪切应力(通常称为剪应力或切应力) 大小为:
(5-2)
式中,τ称为剪应力,F s 为剪切面上的剪力,A 为受剪构件的剪切面面积。剪应力τ的单位与正应力一样,用MPa(N/mm 2) 或Pa(N/m 2) 来表示。
注意,利用式(5-2)很出的剪应力数值,实际上是平均剪应力、是以剪切面上的剪力均匀分布这一假定为前提的,故又称为名义剪应力,名义剪应力实际上就是剪切面上的平均剪应力。
二、剪切应变的计算
为分析物体受剪力作用后的变形情况,从剪切面上取一直角六面体分析。如图5-10所示,在剪力作用下,相互垂直的两平面夹角发生了变化,即不再保持直角,则此角度的改变量γ称为剪应变、又称切应变。它是对剪切变形的一个度量标准,通常用弧度(rad)来度量。在小变形情况下,γ可用tanγ来近似,即
τ=
F s
A
γ≈tan γ=
ee 'ff '=
ae bf '
ae =bf '=dx
(5-3)
F
F
图5-10 物体受剪力作用、作用后的变形以及剪切应力应变关系示意图
三、剪应力互等定理简介
在受力物体中,我们可以围绕任意一点,用六个相互垂直的平面截取一个边长为dx ,dy ,dz 的微小正六而体,作为研究的单元体(如图5-11所示) 。在单元体中的相互垂直的两个平面上,剪应力(绝对值) 的大小相等,它们的方向不是共同指向这两个平面的交线,就是共同背离这两个平面的交线。即
τ=τ' (证明见§6-3)
图5-11 单元体示意图
1. 剪切胡克定律
通过实验可以获得剪切应力与应变的关系曲线,如图5-10(c)所示。实验证明:当剪应力不超过材料的剪切比例极限τp 时,剪应力τ与剪应变γ成正比例,这就是剪切胡克定律,可以写为:
(5-4)
式中的比例常数G 称为材料的剪切弹性模量。它的常用单位是GPa 。钢的剪切弹性模量G 值约为80GPa 。对于各向同性材料,G 值可由下式得出:
τ=G γ
G =
E
2(1+μ)
(5-5)
2. 剪切强度计算 (1) 剪切强度条件
剪切强度条件就是使构件的实际剪应力不超过材料的许用剪应力。
(5-6)
这里[τ]为许用剪应力,单价为Pa 或MPa 。
由于剪应力并非均匀分布,式(5-2)、(5-6)算出的只是剪切面上的平均剪应力,所以在使用实验的方式建立强度条件时,应使试件受力尽可能地接近实际联接件的情况,以确定试样
τ=
F s
≤[τ]A
失效时的极限载荷τ0,再除以安全系数n ,得许用剪应力[τ]。
n (5-7)
各种材料的剪切许用应力应尽量从相关规范中查取。
一般来说,材料的剪切许用应力[τ]与材料的许用拉应力[σ]之间,存在如下关系: 对塑性材料:
对脆性材料:
[τ]=
τ[τ]=0.6 0.8[σ]
(2) 剪切实用计算
剪切计算相应地也可分为强度校核、截面设计、确定许可载荷等三类问题,这里就不展开论述了。但在剪切计算中要正确判断剪切面积,在铆钉联接中还要正确判断单剪切和双剪切。下面通过几个简单的例题来说明。
例5-1 图5-12(a)所示电瓶车挂钩中的销钉材料为20号钢,[τ]=30MPa ,直径d=20mm。挂钩及被连接板件的厚度分别为t =8mm 和t 1=12mm 。牵引力F=15kN。试校核销钉的剪切强度。
[τ]=0.8 1.0[σ]
图5-12 电瓶车挂钩及其销钉受力分析示意图
解:销钉受力如图5-12(b)所示。根据受力情况,销钉中段相对于上、下两段沿m-m 和
n-n 两个面向左错动。所以有两个剪切面,是一个双剪切问题。由平衡方程容易求出:
F s =
销钉横截面上的剪应力为:
F 2
故销钉满足剪切强度要求。
例5-2 如图5-13所示冲床,F max =400KN,冲头[σ]=400MPa,冲剪钢板的极限剪应力τb =360 MPa。试设计冲头的最小直径及钢板最大厚度。
F s 15⨯103τ===23.9MPa
A 2⨯(20⨯10-3) 24
图5-13 冲床冲剪钢板及冲剪部分受力示意图
解:(1) 按冲头压缩强度计算d
σ=
所以
F
max F max
=≤[σ]πd 2A
4
(2) 钢板的剪切面是直径为d 高为t 的柱表面。
d ≥==0.034m =3.4cm
F s F max
=≥τb A πdt
τ=
所以
例5-3 如图5-14所示螺钉受轴向拉力F 作用,已知[τ]=0.6[σ],求其d :h 的合理比值。
F max 400⨯103
t ≤==0.0104m =1.04cm πd τb π⨯3.4⨯10-2⨯360⨯106
图5-14 螺钉受轴向拉力示意图
解:螺杆承受的拉应力小于等于许用应力值:
σ=
螺帽承受的剪应力小于等于许用剪应力值:
F N 4F =≤[σ]A πd 2
τ=
当σ、τ同时分别达到[σ]、[τ]时.材料的利用最合理,既
F s F =≤[τ]A πdh
所以可得
F 4F =0.62
πdh πd
d :h =2.4
------=extPart_01C9B6CD.
第二节 冲压常用材料的化学成分和力学
性能
一、黑色金属
二、有色金属
三、非金属
一、黑色金属
1. 深拉深用冷轧钢板发化学成分和力学性能 1)深拉深钢板的化学成分 深拉深用冷轧钢板主要有08Al 、08F 、08、及10、15、20钢。其化学成分如表8—44所示。
表8—44 深拉深冷轧薄钢板的化学成分(GB/T5213—1985和GB/T710—1991)
(2)影响钢板冲压性能的主要因素 化学成分、金属组织、力学性能和表面质量等均影响冲压性能
在上述钢号中用量最
大的是08钢,并有沸腾钢与镇静钢之分,沸腾钢08F 价廉,表面质量好,但偏析比较严重,且有“应变时效”倾向,对于冲压性能要求高,外观要求严格的零件不适合。08Al 镇静钢板价格较高,但性能均匀,“应变时效”倾向小,适用于汽车、拖拉机覆盖件的拉深 。
1)08钢中主要元素对冲压性能的影响(表8—45) 表8—45 主要元素对08钢冲压性能的影响
2)深拉深冷轧薄板铁素体晶粒度的标准(表8—46)
表8—46 深拉深冷轧薄钢板铁素体晶粒级别
1) 铝镇静钢08Al 按其拉深质量分为三级:ZF
—拉深最复杂零件;HF —拉深很复杂零件;F —拉深复杂零件
2) 其他深冲薄钢板(包括热轧板)按冲压性能
分级为:Z —最伸拉深件;S —深拉深件;P —普通拉深件
3) 深拉深冷轧薄钢板的力学性能(表8—47) 表8—47 深拉深冷轧薄钢板的力学性能(GB/T5213—1985和GB/T710—1991)
4) 深拉深冷轧薄钢板的杯突试验冲压深度(表8—48) 表8—48 深拉深冷轧薄钢板的杯突试验冲压深度 (GB/T5213—1985和GB/T710—1991)
2. 常用材料的力学性能
(1)黑色金属材料的力学性能(表8—49) 表8—49 黑色金属材料的力学性能
(2)钢在加热时的抗剪强度(表8—50) 表8—50 钢在加热状态的抗剪强度 (单位:MPa )
(3) 普通碳素钢冷弯实验指标(8-51)
表8—51 普通碳素钢冷弯试验指标 (GB700—1988)
注:B —试样宽度
二、有色金属
有色金属的力学性能(表8—52) 表8—52 有色金属的力学性能
三、非金属
(1)非金属材料的极限抗剪强度(表8—53) 表8—53 非金属材料的极限抗剪强度 (单位:MPa )
(2)非金属材料加热时的抗剪强度(表8—54) 表8—54 非金属材料加热时的抗剪强度
注:表列抗剪强度用于
模冲裁时的计算值。
普通凸