初三几何教案
第六章:解直角三角形
第3课时:正弦和余弦(三)
教学目标:
1、使学生了解一个锐角的正弦(余弦) 值与它的余角的余弦(正弦) 值之间的关系.
2、逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力.
教学重点:
使学生了解一个锐角的正弦(余弦) 值与它的余角的余弦(正弦) 值之间的关系并会应用.
教学难点:
一个锐角的正弦(余弦) 与它的余角的余弦(正弦) 之间的关系的应用. 教学目标:
一、新课引入:
(1)、什么是∠A 的正弦、什么是∠A 的余弦,结合图形请学生回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施.
(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书) .
(3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”.
2.导入新课
根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦) 值等于它的余角的余弦(正弦) 值.”这是否是真命题呢?引出课题.
关于锐角的正弦(余弦) 值与它的余角的余弦(正弦) 值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明.引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式.在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明.
二、新课讲解:
1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦) 值等于它的余角的余弦(正弦) 值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃.
2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱.因此教师应进一步引导:
sinA=cos(90°-A) ,cosA=sin(90°-A)(A是锐角) 成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神.
3.板书:
任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值.
sinA=cos(90°-A) ,cosA=sin(90°-A) .
4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆.因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固.
完成P9中1.
已知∠A 和∠B 都是锐角,
(1)把cos(90°-A) 写成∠A 的正弦.
(2)把sin(90°-A) 写成∠A 的余弦.
这一练习只能起到巩固定理的作用.为了运用定理,教材安排了例3.
(2)已知sin35°=0.5736,求cos55°;
(3)已知cos47°6′=0.6807,求sin42°54′.
(1)问比较简单,对照定理,学生立即可以回答.(2)、(3)比(1)则更深一步,因为(1)明确指出∠B 与∠A 互余,(2)、(3)让学生自己发现35°与55°的角,47°6′分42°54′的角互余,从而根据定理得出答案,因此(2)、(3)问在课堂上应该请基础好一些的同学讲清思维过程,便于全体学生掌握,在三个问题处理完之后,最好将题目变形:
(2)已知sin35°=0.5736,则cos______=0.5736.
(3)cos47°6′=0.6807,则sin______=0.6807,以培养学生思维能力.
为了配合例3的教学,教材中配备了练习P .9中2.
(2)已知sin67°18′=0.9225,求cos22°42′;
(3)已知cos4°24′=0.9971,求sin85°36′.
学生独立完成练习2,就说明定理的教学较成功,学生基本会运用. P .9中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下一节查正余弦表做了准备.
三、课堂小结:
1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分.
2.本节课我们由特殊角的正弦(余弦) 和它的余角的余弦(正弦) 值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值.
四、布置作业
教材P .18习题6.1A 组4、5.
初三几何教案
第六章:解直角三角形
第3课时:正弦和余弦(三)
教学目标:
1、使学生了解一个锐角的正弦(余弦) 值与它的余角的余弦(正弦) 值之间的关系.
2、逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力.
教学重点:
使学生了解一个锐角的正弦(余弦) 值与它的余角的余弦(正弦) 值之间的关系并会应用.
教学难点:
一个锐角的正弦(余弦) 与它的余角的余弦(正弦) 之间的关系的应用. 教学目标:
一、新课引入:
(1)、什么是∠A 的正弦、什么是∠A 的余弦,结合图形请学生回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施.
(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书) .
(3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”.
2.导入新课
根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦) 值等于它的余角的余弦(正弦) 值.”这是否是真命题呢?引出课题.
关于锐角的正弦(余弦) 值与它的余角的余弦(正弦) 值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明.引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式.在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明.
二、新课讲解:
1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦) 值等于它的余角的余弦(正弦) 值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃.
2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱.因此教师应进一步引导:
sinA=cos(90°-A) ,cosA=sin(90°-A)(A是锐角) 成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神.
3.板书:
任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值.
sinA=cos(90°-A) ,cosA=sin(90°-A) .
4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆.因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固.
完成P9中1.
已知∠A 和∠B 都是锐角,
(1)把cos(90°-A) 写成∠A 的正弦.
(2)把sin(90°-A) 写成∠A 的余弦.
这一练习只能起到巩固定理的作用.为了运用定理,教材安排了例3.
(2)已知sin35°=0.5736,求cos55°;
(3)已知cos47°6′=0.6807,求sin42°54′.
(1)问比较简单,对照定理,学生立即可以回答.(2)、(3)比(1)则更深一步,因为(1)明确指出∠B 与∠A 互余,(2)、(3)让学生自己发现35°与55°的角,47°6′分42°54′的角互余,从而根据定理得出答案,因此(2)、(3)问在课堂上应该请基础好一些的同学讲清思维过程,便于全体学生掌握,在三个问题处理完之后,最好将题目变形:
(2)已知sin35°=0.5736,则cos______=0.5736.
(3)cos47°6′=0.6807,则sin______=0.6807,以培养学生思维能力.
为了配合例3的教学,教材中配备了练习P .9中2.
(2)已知sin67°18′=0.9225,求cos22°42′;
(3)已知cos4°24′=0.9971,求sin85°36′.
学生独立完成练习2,就说明定理的教学较成功,学生基本会运用. P .9中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下一节查正余弦表做了准备.
三、课堂小结:
1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分.
2.本节课我们由特殊角的正弦(余弦) 和它的余角的余弦(正弦) 值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值.
四、布置作业
教材P .18习题6.1A 组4、5.