世纪金榜数学知能综合检测(十二)

温馨提示:

此套题为Word 版,请按住Ctrl, 滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

知能综合检测(十二)

(40分钟 60分)

一、选择题(每小题5分,共20分)

1.(2012·苏州中考) 若点(m,n)在函数y=2x+1的图象上,则2m-n 的值是( )

(A)2 (B)-2 (C)1 (D)-1

2.(2012·济南中考) 一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为

( )

(A)x=2 (B)y=2

(C)x=-1 (D)y=-1

3.(2012·潍坊中考) 若直线y=-2x-4与直线y=4x+b的交点在第三象限,则b 的取值范围是( )

(A)-4<b <8 (B)-4<b <0

(C)b<-4或b >8 (D)-4≤b ≤8

4.(2012·娄底中考) 对于一次函数y=-2x+4,下列结论错误的是( )

(A)函数值随自变量的增大而减小

(B)函数的图象不经过第三象限

(C)函数的图象向下平移4个单位长度得y=-2x的图象

(D)函数的图象与x 轴的交点坐标是(0,4)

二、填空题(每小题5分,共15分)

5.(2012·南京中考) 已知一次函数y=kx+k-3的图象经过点(2,3) ,则k 的值为 ___________.

6.(2012·上海中考) 已知正比例函数y=kx(k≠0) ,点(2,-3)在函数上,则y 随x 的增大而_______________(增大或减小).

7. 将直线y=2x-4向上平移5个单位后,所得直线的解析式是___________.

三、解答题(共25分)

8.(12分)(1)(2012·梅州中考) 一辆警车在高速公路的A 处加满油,以每小时60千米的速度匀速行驶. 已知警车一次加满油后,油箱内的余油量y(升) 与行驶时间x(小时) 的函数关系的图象是如图所示的直线l 上的一部分

.

①求直线l 的函数关系式;

②如果警车要回到A 处,且要求警车中的余油量不能少于10升,那么警车可以行驶到离A 处的最远距离是多少?

(2)(2012·菏泽中考) 如图,一次函数y =-x +2的图象分别与x 轴,y 轴交于点A ,B ,以线段AB 为边在第一象限内作等腰Rt △ABC ,∠BAC=90°,求过B ,C 两

23

点直线的解析式

.

【探究创新】

9.(13分)2011年4月28日,以“天人长安,创意自然——城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园. 这次世园会的门票分为个人票、团体票两大类,其中个人票设置有三种:

某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B 种票张数是A 种票张数的3倍还多8张. 设需购A 种票张数为x ,C 种票张数为y.

(1)写出y 与x 之间的函数关系式;

(2)设购票总费用为w 元,求出w(元) 与x(张) 之间的函数关系式;

(3)若每种票至少购买1张,其中购买A 种票不少于20张,则共有几种购票方案?并求出购票总费用最少时,购买A,B,C 三种票的张数.

答案解析

1. 【解析】选D. 把点(m,n)代入函数关系式得n=2m+1,∴2m-n=-1.

2. 【解析】选C. ∵直线y=kx+b与x 轴的交点坐标是(-1,0),则x=-1时,y=0,∴关于x 的方程kx+b=0的解是x=-1.

b +4⎧x =-, ⎧y =-2x -4, ⎪⎪6得⎨3. 【解析】选A. 由⎨ y =4x +b , b -8⎩⎪y =, ⎪⎩3

⎧b +4-<0, ⎪⎪6∵交点在第三象限,∴⎨解得-4<b <8. b -8⎪

4. 【解析】选D. 求函数y=-2x+4的图象与x 轴的交点坐标,令y=0,则-2x+4=0,解得x=2,∴函数y=-2x+4的图象与x 轴的交点坐标是(2,0).

5. 【解析】将(2,3)代入y=kx+k-3中,得3=2k+k-3,解得k=2.

答案:2

6. 【解析】把点(2,-3) 代入函数关系式得k =-<0,所以y 随x 的增大而减小. 答案:减小

7. 【解析】直线y=2x-4与y 轴的交点坐标为(0,-4),则向上平移5个单位后交点坐标为(0,1) ,则所得直线方程为y=2x+1.

答案:y=2x+1

【归纳整合】直线的平移

1. 直线y=kx+b(k≠0) 平移后k 不变;

2. 直线y=kx+b(k≠0) 向上平移h(h>0) 单位后, 解析式为y=kx+b+h((k≠0) ;直线y=kx+b(k≠0) 向下平移h(h>0) 单位后, 解析式为y=kx+b-h(k≠0).

32

3. 直线y=kx+b(k≠0) 向左平移m(m>0) 单位后, 解析式为y=k(x+m)+b(k≠0) ; 直线y=kx+b(k≠0) 向右平移m(m>0) 单位后, 解析式为y=k(x-m)+b(k≠0).

8.(1)【解析】①设直线l 的关系式是y=kx+b,由题意得

⎧k +b =54,⎧k =-6,∴y=-6x+60. 解得⎨⎨⎩3k +b =42,⎩b =60,

②由题意得y=-6x+60≥10,解得x ≤

∴警车最远的距离可以到:60⨯

2

325, 3251⨯=250千米. 32(2)【解析】y=-x +2与x 轴、y 轴的交点坐标为(3,0) ,(0,2). 如图,过点C

作CD ⊥x 轴,因为Rt △ABC 是等腰三角形,所以AB=AC,因为∠BAO+∠CAD=90°, ∠BAO+∠ABO=90°, 所以∠CAD=∠ABO, ∠BOA=∠CDA=90°,所以△AOB ≌△CDA, 所以AO=CD=3,BO=AD=2,所以OD=5,即C(5,3).把B(0,2) 与C(5,3) 代入过B ,C

1⎧⎧2=b , ⎪k =, 解之得⎨两点直线的解析式y=kx+b得,⎨5 3=5k +b , ⎩⎪⎩b =2,

所以直线解析式为y =x +

2. 1

5

9. 【解析】(1)y=-4x+92.

(2)w=60x+100(3x+8)+150(-4x+92).

w=-240x+14 600.

(3)由题意,得⎨⎧x ≥20, 解之得20≤x <23. ⎩92-4x >0.

∵x 是正整数,∴x 可取20,21,22.

∴共有3种购票方案. ∵k=-240<0, ∴w 随着x 的增大而减小,当x=22时,w 的取值最小.

即当购买A 票22张时,购票的总费用最少.

∴购票的总费用最少时,购买A,B,C 三种票的张数分别为22,74,4.

温馨提示:

此套题为Word 版,请按住Ctrl, 滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

知能综合检测(十二)

(40分钟 60分)

一、选择题(每小题5分,共20分)

1.(2012·苏州中考) 若点(m,n)在函数y=2x+1的图象上,则2m-n 的值是( )

(A)2 (B)-2 (C)1 (D)-1

2.(2012·济南中考) 一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为

( )

(A)x=2 (B)y=2

(C)x=-1 (D)y=-1

3.(2012·潍坊中考) 若直线y=-2x-4与直线y=4x+b的交点在第三象限,则b 的取值范围是( )

(A)-4<b <8 (B)-4<b <0

(C)b<-4或b >8 (D)-4≤b ≤8

4.(2012·娄底中考) 对于一次函数y=-2x+4,下列结论错误的是( )

(A)函数值随自变量的增大而减小

(B)函数的图象不经过第三象限

(C)函数的图象向下平移4个单位长度得y=-2x的图象

(D)函数的图象与x 轴的交点坐标是(0,4)

二、填空题(每小题5分,共15分)

5.(2012·南京中考) 已知一次函数y=kx+k-3的图象经过点(2,3) ,则k 的值为 ___________.

6.(2012·上海中考) 已知正比例函数y=kx(k≠0) ,点(2,-3)在函数上,则y 随x 的增大而_______________(增大或减小).

7. 将直线y=2x-4向上平移5个单位后,所得直线的解析式是___________.

三、解答题(共25分)

8.(12分)(1)(2012·梅州中考) 一辆警车在高速公路的A 处加满油,以每小时60千米的速度匀速行驶. 已知警车一次加满油后,油箱内的余油量y(升) 与行驶时间x(小时) 的函数关系的图象是如图所示的直线l 上的一部分

.

①求直线l 的函数关系式;

②如果警车要回到A 处,且要求警车中的余油量不能少于10升,那么警车可以行驶到离A 处的最远距离是多少?

(2)(2012·菏泽中考) 如图,一次函数y =-x +2的图象分别与x 轴,y 轴交于点A ,B ,以线段AB 为边在第一象限内作等腰Rt △ABC ,∠BAC=90°,求过B ,C 两

23

点直线的解析式

.

【探究创新】

9.(13分)2011年4月28日,以“天人长安,创意自然——城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园. 这次世园会的门票分为个人票、团体票两大类,其中个人票设置有三种:

某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B 种票张数是A 种票张数的3倍还多8张. 设需购A 种票张数为x ,C 种票张数为y.

(1)写出y 与x 之间的函数关系式;

(2)设购票总费用为w 元,求出w(元) 与x(张) 之间的函数关系式;

(3)若每种票至少购买1张,其中购买A 种票不少于20张,则共有几种购票方案?并求出购票总费用最少时,购买A,B,C 三种票的张数.

答案解析

1. 【解析】选D. 把点(m,n)代入函数关系式得n=2m+1,∴2m-n=-1.

2. 【解析】选C. ∵直线y=kx+b与x 轴的交点坐标是(-1,0),则x=-1时,y=0,∴关于x 的方程kx+b=0的解是x=-1.

b +4⎧x =-, ⎧y =-2x -4, ⎪⎪6得⎨3. 【解析】选A. 由⎨ y =4x +b , b -8⎩⎪y =, ⎪⎩3

⎧b +4-<0, ⎪⎪6∵交点在第三象限,∴⎨解得-4<b <8. b -8⎪

4. 【解析】选D. 求函数y=-2x+4的图象与x 轴的交点坐标,令y=0,则-2x+4=0,解得x=2,∴函数y=-2x+4的图象与x 轴的交点坐标是(2,0).

5. 【解析】将(2,3)代入y=kx+k-3中,得3=2k+k-3,解得k=2.

答案:2

6. 【解析】把点(2,-3) 代入函数关系式得k =-<0,所以y 随x 的增大而减小. 答案:减小

7. 【解析】直线y=2x-4与y 轴的交点坐标为(0,-4),则向上平移5个单位后交点坐标为(0,1) ,则所得直线方程为y=2x+1.

答案:y=2x+1

【归纳整合】直线的平移

1. 直线y=kx+b(k≠0) 平移后k 不变;

2. 直线y=kx+b(k≠0) 向上平移h(h>0) 单位后, 解析式为y=kx+b+h((k≠0) ;直线y=kx+b(k≠0) 向下平移h(h>0) 单位后, 解析式为y=kx+b-h(k≠0).

32

3. 直线y=kx+b(k≠0) 向左平移m(m>0) 单位后, 解析式为y=k(x+m)+b(k≠0) ; 直线y=kx+b(k≠0) 向右平移m(m>0) 单位后, 解析式为y=k(x-m)+b(k≠0).

8.(1)【解析】①设直线l 的关系式是y=kx+b,由题意得

⎧k +b =54,⎧k =-6,∴y=-6x+60. 解得⎨⎨⎩3k +b =42,⎩b =60,

②由题意得y=-6x+60≥10,解得x ≤

∴警车最远的距离可以到:60⨯

2

325, 3251⨯=250千米. 32(2)【解析】y=-x +2与x 轴、y 轴的交点坐标为(3,0) ,(0,2). 如图,过点C

作CD ⊥x 轴,因为Rt △ABC 是等腰三角形,所以AB=AC,因为∠BAO+∠CAD=90°, ∠BAO+∠ABO=90°, 所以∠CAD=∠ABO, ∠BOA=∠CDA=90°,所以△AOB ≌△CDA, 所以AO=CD=3,BO=AD=2,所以OD=5,即C(5,3).把B(0,2) 与C(5,3) 代入过B ,C

1⎧⎧2=b , ⎪k =, 解之得⎨两点直线的解析式y=kx+b得,⎨5 3=5k +b , ⎩⎪⎩b =2,

所以直线解析式为y =x +

2. 1

5

9. 【解析】(1)y=-4x+92.

(2)w=60x+100(3x+8)+150(-4x+92).

w=-240x+14 600.

(3)由题意,得⎨⎧x ≥20, 解之得20≤x <23. ⎩92-4x >0.

∵x 是正整数,∴x 可取20,21,22.

∴共有3种购票方案. ∵k=-240<0, ∴w 随着x 的增大而减小,当x=22时,w 的取值最小.

即当购买A 票22张时,购票的总费用最少.

∴购票的总费用最少时,购买A,B,C 三种票的张数分别为22,74,4.


相关文章

  • 学习与检测九下(答案)
  • 参害苔案 搬 <新课程学习与检测·数学>(九年级下册) 黔 蕊 ′蕊嚣 §露燕:镶` □绢口P: □ ° 日 :: : □出] 日 △ .q塌 拓展提升 第一章直角三角形的边角关系 §1 锐角三角函数 第1课时 L6M& ...查看


  • 20120904--§1.2 静电力 库仑定律-1
  • (1)理解掌握点电荷模型: (2)掌握库仑定律的内容及其应用(库仑力的合成.库 仑力作用下物体的平衡). (3)能够区别库仑力和万有引力. 触,电量平分,带异种电荷的小球先中和后平分.(举例) 如果两个都带正电荷,接触后AB 电荷如何分配? ...查看


  • 检测·课时达标知能达标演练6.17
  • 第17课 空前严重的资本主义世界经济危机 检测·课时达标┃知能达标演练 [基础组] 1.1926年美国出售的汽车约70%是用分期付款的形式进行,当时美国流传的说法是"一美元首付,一美元月供".这种现象造成的影响是( ) ...查看


  • 04高考试卷分析
  • 04高考湖北卷数学试题评价报告 2004年普通高等学校招生全国统一考试(湖北卷)数学试题依据教育部考试中心新颁布的<数学考试大纲>(以下简称"考纲")的各项要求,在遵循"在三个有肋于"原则 ...查看


  • 加强高中数学集体备课
  • 加强高中数学教师集体备课教研的探究 辽宁省绥中县利伟实验中学数学组 尚尔震 备课是教师的基本功,是上好课的先决条件,新课程理念的提出,已经使传统的"单兵 作战"的备课方式跟不上课程改革的要求.集体备课活动可以形成一种交流 ...查看


  • 世纪金榜2016最新版数学文科 单元评估检测(五)
  • 圆学子梦想 铸金字品牌 温馨提示: 此套题为Word 版,请按住Ctrl, 滑动鼠标滚轴,调节合适的观看比例,答案解析附后.关闭Word 文档返回原板块. 单元评估检测(五) 第五章 (120分钟 150分) 一.选择题(本大题共12小题, ...查看


  • 动物和人体生命活动的调节(单元复习)
  • 世纪金榜 圆您梦想 www.jb1000.com 第2章 动物和人体生命活动的调节 [单元知识网络] 一.通过神经系统的调节 神经调节 的结构基 础和反射 兴奋的 传导 反射 神经调节的基本方式 概念:在神经系统地参与下,动物体对内外刺激变 ...查看


  • 高三数学高分策略
  • 2011年高三数学高分策略 华南师范大学附属中学 刘景亮 2010年起广东省开始新一轮的高考改革,实行"3+文科综合/理科综合"考试模式,其中高考数学试题要求体现符合新教材的理念:强化素养淡化专精:强化能力淡化知识:强化 ...查看


  • 高中语文教师面临的挑战
  • [摘 要] 新时期高中语文课程,应正确把握语文教育的特点,积极倡导自主.合作.探究的学习方式.新课标对高中语文教师应具备的素养也提出了更新.更高的要求,提出了要实现教师素质.学生能力和语文课程同步发展的目标.新时期,语文教学成了重中之重,作 ...查看


热门内容