2014年全国成人高考数学模拟试题及答案

2014年成人高考数学模拟题1

一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合Mx|1x3,Bx|2x1,则M

B( )

A. (2,1) B. (1,1) C. (1,3) D. (2,3) (2)若tan0,则

A. sin0 B. cos0 C. sin20 D. cos20 (3)设z

1

i,则|z| 1i

A.

123 B. C. D. 2 222

x2y2

1(a0)的离心率为2,则a (4)已知双曲线2

a3

A. 2 B.

65

C. D. 1 22

(5)设函数f(x),g(x)的定义域为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的

A. f(x)g(x)是偶函数 B. |f(x)|g(x) 是奇函数 C. f(x)|g(x)| 是奇函数 D. |f(x)g(x)|是奇函数

(6)设D,E,F分别为ABC的三边BC,CA,AB的中点,则EBFC

A. B.

11

C. D. 22

(7)在函数①ycos|2x|,②y|cosx| ,③ycos(2x

期为的所有函数为

A.①②③ B. ①③④ C. ②④ D. ①③

),④ytan(2x)中,最小正周

64

(8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是

( )

A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱

(9)执行右面的程序框图,若输入的a,b,k分别为1,2,3,则输出的M( )

A.

7161520

B. C. D.

258

3

(10) 已知抛物线C:yx的焦点为F,A

A. 1 B. 2 C. 4 D. 8 (11)设x,y满足约束条件

2

x,y是C上一点,AF5,则xx4

( )

xya,

且zxay的最小值为7,则a

xy1,

A.-5 B. 3 C.-5或3 D. 5或-3

32

(12)已知函数f(x)ax3x1,若f(x)存在唯一的零点x0,且x00,则a的取值范围是

A.2, B.1, C.,2 D.,1

第II 卷

二、填空题:本大题共4小题,每小题5分

(13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____. (14)甲、乙、丙三位同学被问到是否去过A、B、C三个城市时, 甲说:我去过的城市比乙多,但没去过B城市; 乙说:我没去过C城市; 丙说:我们三人去过同一城市; 由此可判断乙去过的城市为________.

ex1,x1,

(15)设函数fx1则使得fx2成立的x的取值范围是________.

3x,x1,

(16)如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得 M点的仰

角MAN60,C点的仰角CAB45以及MAC75;从C点测得MCA60.已知山高BC100m,则山高MN________m

.

三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)

已知an是递增的等差数列,a2,a4是方程x5x60的根。

2

(I)求an的通项公式; (II)求数列

an

的前n项和. n2

(18)(本小题满分12分)

从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:

(I)在答题卡上作出这些数据的频率分布直方图:

(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表); (III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的

产品至少要占全部产品的80%”的规定?

(19)(本题满分12分)

如图,三棱柱ABCA1B1C1中,侧面BB1C1C为菱形,且AO平面BB1C1C. B1C的中点为O,(1)证明:B1CAB;

(2)若ACAB1,CBB160,BC1,求三棱柱ABCA1B1C1的高.

(20) (本小题满分12分)

已知点P(2,2),圆C:x2y28y0,过点P的动直线l与圆C交于A,B两点,线段

AB的中点为M,O为坐标原点.

(1)求M的轨迹方程;

(2)当OPOM时,求l的方程及POM的面积

(21)(本小题满分12分)

设函数fxalnx(1)求b;

(2)若存在x01,使得fx0

1a2

xbxa1,曲线yfx在点1,f1处的切线斜率为0 2

a

,求a的取值范围。 a1

请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,解答时请写清题号.

(22)(本小题满分10分)选修4-1,几何证明选讲 如图,四边形ABCD是

O的内接四边形,AB的延长线与

DC的延长线交于点E,且CBCE.

(I)证明:DE;

BMC,(II)设AD不是O的直径,AD的中点为M,且M

证明:ABC为等边三角形.

(23)(本小题满分10分)选修4-4:坐标系与参数方程

x2tx2y2

1,直线l:已知曲线C:(t为参数)

49y22t

(1)写出曲线C的参数方程,直线l的普通方程;

(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求的最大值与最小值.

(24)(本小题满分10分)选修4-5;不等式选讲

若a0,b0,且

3

3

11

ab ab

(I)求ab的最小值;

(II)是否存在a,b,使得2a3b6?并说明理由.

参考答案

一、选择题

1-5. BABDA 6-10. CCBDC 11-12. BA 二、填空题

13.

2

14. A 15. (,8] 16. 150 3

三、解答题 17. 解:

(1)方程x5x60的两个根为2,3,由题意得因为a22,a43

设数列{an}的公差为d,则a4a22d,故d所以{an}的通项公式为an(2)设{

2

13,从而a1 22

1

n1 2

ann2an

n1,则 的前项和为,由(1)知Snn

2n22n

34n1n2

Sn23...nn1 ①

2222134n1n2

Sn34...n1n2 ② 22222

①-②得

1311n1n2Sn34...n1n2 242222

311n2(1n1)n2 4422

n4

所以,Sn2n1

2

18.解:

(1)

„„„„„„„„„„4分

(2)质量指标值的样本平均数为x

质量指标值的样本方差为

所以,这种产品质量指标的平均数估计值为100,方差的估计值为104.

„„„„„„„„„„„„„„10分

(3)依题意

806902610038110221208

100

100

38228

= 68%

100

所以该企业生产的这种产品不符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定。„„„„„„„„„„„„„„12分

19.

(1)证明:

连接BC1,则O为B1C与BC1的交点,因为侧面

BB1C1C为菱形,所以B1CBC1

又AO平面BB1C1C,所以B1CAO,故 B1C平面ABO

由于AB平面ABO,故B1CAB„„„„„„„„„„„6分

(2)解:

做ODBC,垂足为D,连接AD,做OHAD,垂足为H。 由于BCAO,BCOD,故BC平面AOD,所以OHBC 又OHAD,所以OH平面ABC

因为CBB160,所以CBB1为等边三角形,又BC

1,可得OD由于ACAB1,所以AO

11B1C 22

由OHADOD

OA,且AD

,得OH,故三棱柱ABCA1B1C1的

又O为B1C的中点,所以点B1到平面ABC

高为20.解:

„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„12分 7

(1)方法一:

圆C的方程可化为x2(y4)216,所以,圆心为C(0,4),半径为4, 设M(x,y),则CM(x,y4),MP(2x,2y), 由题设知CMMP0,故

x(2x)(y4)(2y)0,即(x1)2(y3)22

由于点P在圆C的内部,所以M的轨迹方程是(x1)2(y3)22„„„„„6分 方法二:

圆C的方程可化为x(y4)16,所以,圆心为C(0,4),半径为4, 设M(x,y), 设kAB

2

2

y2y4

,kCM, x2x

y2y4

,kCM x2x

y2y4

1 所以kABkCM

x2x

则kAB

化简得,x2y22x6y80,即(x1)2(y3)22 所以M的轨迹方程是(x1)2(y3)22 (2)方法一:

由(1)可知M的轨迹是以点N

(1,3) 由于|OP||OM|,故O在线段PM的垂直平分线上, 又P在圆N上,从而ONPM 因为ON的斜率为3,所以l的斜率为所以l的方程为y

1, 3

18x

33

又|OM||OP|O到l

所以POM的面积为PM|

16

5

方法二:

依题意,|OP|

|OM||OP| 所以,M也在x2y28上

22xy8所以2 2

xy2x6y80

两式相减,得2x6y160,即y

2

18

x,此方程也就是l的方程 33

2

由(1)知,M的轨迹方程是(x1)(y3)2, 设此方程的圆心为N,则N(1,3)

所以d

又|NP|

所以|MP| 5

O到l

的距离h

所以,SPOM116 25

1816x,POM的面积为 335综上所述,l的方程为y

21.(1)解:f(x)a(1a)xb x

由题设知f(1)a(1a)b0

解得b1„„„„„„„„„„„„„„„„„„„„„„„„„„„„„4分

(2)解:f(x)的定义域为(0,),由(1)知,f(x)alnx1a2xx, 2

a1aa(1a)x1(x)(x1) xx1a

1a1, (ⅰ)若a,则21af(x)

故当x(1,)时,f(x)0,f(x)在(1,)单调递增,

所以,存在x01,使得f(x0)

即aa的充要条件为f(1), a1a11aa1,

2a1

解得1a1 (ⅱ)若1aa1,则1, 21a

a)时,f(x)0; 故当x(1,1a

a,)时,f(x)0; 当x(1a

aa)单调递减,在(,)单调递增, 所以f(x)在(1,1a1a

所以,存在x01,使得f(x0)aaa)的充要条件为f( a11aa1

a1a2aa而f(,所以不合题意 )aln1a1a2(1a)a1a1

(ⅲ)若a1,则f(1)1aa1a1 22a1

综上所述,a

的取值范围是(11)(1,)„„„„„„„„„„„12分

22.(本小题满分10分)

(1)证明:由题设得,A,B,C,D四点共圆,所以,DCBE

又CBCE,CBEE

所以DE„„„„„„„„„5分

(2)证明:设BC的中点为N,连结MN,则由MBMC知

MNBC,故O在直线MN上

又AD不是O的直径,M为AD的中点,故

OMAD,即MNAD

所以AD//BC,故ACBE

又CBEE,故AE,由(1)知,DE,所以ADE为等边三角形。„„„„„„„„„„„„„„„„„„„„„„„„„10分

23.解:

(1)曲线C的参数方程为x2cos(为参数)

y3sin

直线l的普通方程为2xy60

(2)曲线C上任意一点P(2cos,3sin)到l的距离为

d|4cos3sin6|

则|PA|4d|5sin()6|,其中为锐角,且tan

3sin30

当sin()1时,|PA

|当sin()1时,|PA

|取得最小值,最小值为

24.解:

(1

„„„„„„„„„„„„„10分 511,得ab

2,且当ab

ab故a3b3

ab时等号成立

所以a

b的最小值为5分

(2)由(1

)知,2a3b

由于6,从而不存在a,b,使得2a3b6„„„„„„„„„„„„10分 33

2014年成人高考数学模拟题1

一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合Mx|1x3,Bx|2x1,则M

B( )

A. (2,1) B. (1,1) C. (1,3) D. (2,3) (2)若tan0,则

A. sin0 B. cos0 C. sin20 D. cos20 (3)设z

1

i,则|z| 1i

A.

123 B. C. D. 2 222

x2y2

1(a0)的离心率为2,则a (4)已知双曲线2

a3

A. 2 B.

65

C. D. 1 22

(5)设函数f(x),g(x)的定义域为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的

A. f(x)g(x)是偶函数 B. |f(x)|g(x) 是奇函数 C. f(x)|g(x)| 是奇函数 D. |f(x)g(x)|是奇函数

(6)设D,E,F分别为ABC的三边BC,CA,AB的中点,则EBFC

A. B.

11

C. D. 22

(7)在函数①ycos|2x|,②y|cosx| ,③ycos(2x

期为的所有函数为

A.①②③ B. ①③④ C. ②④ D. ①③

),④ytan(2x)中,最小正周

64

(8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是

( )

A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱

(9)执行右面的程序框图,若输入的a,b,k分别为1,2,3,则输出的M( )

A.

7161520

B. C. D.

258

3

(10) 已知抛物线C:yx的焦点为F,A

A. 1 B. 2 C. 4 D. 8 (11)设x,y满足约束条件

2

x,y是C上一点,AF5,则xx4

( )

xya,

且zxay的最小值为7,则a

xy1,

A.-5 B. 3 C.-5或3 D. 5或-3

32

(12)已知函数f(x)ax3x1,若f(x)存在唯一的零点x0,且x00,则a的取值范围是

A.2, B.1, C.,2 D.,1

第II 卷

二、填空题:本大题共4小题,每小题5分

(13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____. (14)甲、乙、丙三位同学被问到是否去过A、B、C三个城市时, 甲说:我去过的城市比乙多,但没去过B城市; 乙说:我没去过C城市; 丙说:我们三人去过同一城市; 由此可判断乙去过的城市为________.

ex1,x1,

(15)设函数fx1则使得fx2成立的x的取值范围是________.

3x,x1,

(16)如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得 M点的仰

角MAN60,C点的仰角CAB45以及MAC75;从C点测得MCA60.已知山高BC100m,则山高MN________m

.

三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)

已知an是递增的等差数列,a2,a4是方程x5x60的根。

2

(I)求an的通项公式; (II)求数列

an

的前n项和. n2

(18)(本小题满分12分)

从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:

(I)在答题卡上作出这些数据的频率分布直方图:

(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表); (III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的

产品至少要占全部产品的80%”的规定?

(19)(本题满分12分)

如图,三棱柱ABCA1B1C1中,侧面BB1C1C为菱形,且AO平面BB1C1C. B1C的中点为O,(1)证明:B1CAB;

(2)若ACAB1,CBB160,BC1,求三棱柱ABCA1B1C1的高.

(20) (本小题满分12分)

已知点P(2,2),圆C:x2y28y0,过点P的动直线l与圆C交于A,B两点,线段

AB的中点为M,O为坐标原点.

(1)求M的轨迹方程;

(2)当OPOM时,求l的方程及POM的面积

(21)(本小题满分12分)

设函数fxalnx(1)求b;

(2)若存在x01,使得fx0

1a2

xbxa1,曲线yfx在点1,f1处的切线斜率为0 2

a

,求a的取值范围。 a1

请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,解答时请写清题号.

(22)(本小题满分10分)选修4-1,几何证明选讲 如图,四边形ABCD是

O的内接四边形,AB的延长线与

DC的延长线交于点E,且CBCE.

(I)证明:DE;

BMC,(II)设AD不是O的直径,AD的中点为M,且M

证明:ABC为等边三角形.

(23)(本小题满分10分)选修4-4:坐标系与参数方程

x2tx2y2

1,直线l:已知曲线C:(t为参数)

49y22t

(1)写出曲线C的参数方程,直线l的普通方程;

(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求的最大值与最小值.

(24)(本小题满分10分)选修4-5;不等式选讲

若a0,b0,且

3

3

11

ab ab

(I)求ab的最小值;

(II)是否存在a,b,使得2a3b6?并说明理由.

参考答案

一、选择题

1-5. BABDA 6-10. CCBDC 11-12. BA 二、填空题

13.

2

14. A 15. (,8] 16. 150 3

三、解答题 17. 解:

(1)方程x5x60的两个根为2,3,由题意得因为a22,a43

设数列{an}的公差为d,则a4a22d,故d所以{an}的通项公式为an(2)设{

2

13,从而a1 22

1

n1 2

ann2an

n1,则 的前项和为,由(1)知Snn

2n22n

34n1n2

Sn23...nn1 ①

2222134n1n2

Sn34...n1n2 ② 22222

①-②得

1311n1n2Sn34...n1n2 242222

311n2(1n1)n2 4422

n4

所以,Sn2n1

2

18.解:

(1)

„„„„„„„„„„4分

(2)质量指标值的样本平均数为x

质量指标值的样本方差为

所以,这种产品质量指标的平均数估计值为100,方差的估计值为104.

„„„„„„„„„„„„„„10分

(3)依题意

806902610038110221208

100

100

38228

= 68%

100

所以该企业生产的这种产品不符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定。„„„„„„„„„„„„„„12分

19.

(1)证明:

连接BC1,则O为B1C与BC1的交点,因为侧面

BB1C1C为菱形,所以B1CBC1

又AO平面BB1C1C,所以B1CAO,故 B1C平面ABO

由于AB平面ABO,故B1CAB„„„„„„„„„„„6分

(2)解:

做ODBC,垂足为D,连接AD,做OHAD,垂足为H。 由于BCAO,BCOD,故BC平面AOD,所以OHBC 又OHAD,所以OH平面ABC

因为CBB160,所以CBB1为等边三角形,又BC

1,可得OD由于ACAB1,所以AO

11B1C 22

由OHADOD

OA,且AD

,得OH,故三棱柱ABCA1B1C1的

又O为B1C的中点,所以点B1到平面ABC

高为20.解:

„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„12分 7

(1)方法一:

圆C的方程可化为x2(y4)216,所以,圆心为C(0,4),半径为4, 设M(x,y),则CM(x,y4),MP(2x,2y), 由题设知CMMP0,故

x(2x)(y4)(2y)0,即(x1)2(y3)22

由于点P在圆C的内部,所以M的轨迹方程是(x1)2(y3)22„„„„„6分 方法二:

圆C的方程可化为x(y4)16,所以,圆心为C(0,4),半径为4, 设M(x,y), 设kAB

2

2

y2y4

,kCM, x2x

y2y4

,kCM x2x

y2y4

1 所以kABkCM

x2x

则kAB

化简得,x2y22x6y80,即(x1)2(y3)22 所以M的轨迹方程是(x1)2(y3)22 (2)方法一:

由(1)可知M的轨迹是以点N

(1,3) 由于|OP||OM|,故O在线段PM的垂直平分线上, 又P在圆N上,从而ONPM 因为ON的斜率为3,所以l的斜率为所以l的方程为y

1, 3

18x

33

又|OM||OP|O到l

所以POM的面积为PM|

16

5

方法二:

依题意,|OP|

|OM||OP| 所以,M也在x2y28上

22xy8所以2 2

xy2x6y80

两式相减,得2x6y160,即y

2

18

x,此方程也就是l的方程 33

2

由(1)知,M的轨迹方程是(x1)(y3)2, 设此方程的圆心为N,则N(1,3)

所以d

又|NP|

所以|MP| 5

O到l

的距离h

所以,SPOM116 25

1816x,POM的面积为 335综上所述,l的方程为y

21.(1)解:f(x)a(1a)xb x

由题设知f(1)a(1a)b0

解得b1„„„„„„„„„„„„„„„„„„„„„„„„„„„„„4分

(2)解:f(x)的定义域为(0,),由(1)知,f(x)alnx1a2xx, 2

a1aa(1a)x1(x)(x1) xx1a

1a1, (ⅰ)若a,则21af(x)

故当x(1,)时,f(x)0,f(x)在(1,)单调递增,

所以,存在x01,使得f(x0)

即aa的充要条件为f(1), a1a11aa1,

2a1

解得1a1 (ⅱ)若1aa1,则1, 21a

a)时,f(x)0; 故当x(1,1a

a,)时,f(x)0; 当x(1a

aa)单调递减,在(,)单调递增, 所以f(x)在(1,1a1a

所以,存在x01,使得f(x0)aaa)的充要条件为f( a11aa1

a1a2aa而f(,所以不合题意 )aln1a1a2(1a)a1a1

(ⅲ)若a1,则f(1)1aa1a1 22a1

综上所述,a

的取值范围是(11)(1,)„„„„„„„„„„„12分

22.(本小题满分10分)

(1)证明:由题设得,A,B,C,D四点共圆,所以,DCBE

又CBCE,CBEE

所以DE„„„„„„„„„5分

(2)证明:设BC的中点为N,连结MN,则由MBMC知

MNBC,故O在直线MN上

又AD不是O的直径,M为AD的中点,故

OMAD,即MNAD

所以AD//BC,故ACBE

又CBEE,故AE,由(1)知,DE,所以ADE为等边三角形。„„„„„„„„„„„„„„„„„„„„„„„„„10分

23.解:

(1)曲线C的参数方程为x2cos(为参数)

y3sin

直线l的普通方程为2xy60

(2)曲线C上任意一点P(2cos,3sin)到l的距离为

d|4cos3sin6|

则|PA|4d|5sin()6|,其中为锐角,且tan

3sin30

当sin()1时,|PA

|当sin()1时,|PA

|取得最小值,最小值为

24.解:

(1

„„„„„„„„„„„„„10分 511,得ab

2,且当ab

ab故a3b3

ab时等号成立

所以a

b的最小值为5分

(2)由(1

)知,2a3b

由于6,从而不存在a,b,使得2a3b6„„„„„„„„„„„„10分 33


相关文章

  • 2014年全国各省市各科高考试题及答案汇总
  • 来源:高考网整合 2014-06-07 14:48:17 [标签:高考试题高考试题及答案] [当前105434家长在线讨论] 2014年全国各省市各科高考试题及答案开始陆续公布,预祝考生金榜题名! 2014年全国各省市各科高考试题及答案汇总 ...查看


  • 2014黑龙江数学(文)高考试题答案
  • 2014年普通高等学校招生全国统一考试 文科数学试题参考答案 一. 选择题 (1)B (2)B (3)C (4)A (5)A (6)C (7)C (8)D (9)B (10)C(11)D(12)A 二.填空题 11(13) (14)1 (1 ...查看


  • 近五年全国新课标高考生物卷试题命题分析
  • 近五年全国新课标高考生物卷试题命题分析 一.试题总体分析 综合分析2011- 2015年的新课标高考生物学试题可以看出: 对必修与选修.主干与非主干以及重.难点知识的考查既全面,又强调双基(基础生物 知识.生物技术).突出对重点知识和思维能 ...查看


  • CAD天正建筑TArch2014从入门到提高视频教程
  • 江西省南昌市2015-2016学年度第一学期期末试卷 (江西师大附中使用)高三理科数学分析 试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度.多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中, ...查看


  • 2016年山东理科综合高考试题及答案
  • 点击查看>>> 相关资讯: 2016年全国卷1语文作文题目(漫画) 2016年全国1卷高考数学(文)试题 2016年全国卷1理科数学高考试题及答案 2016年全国卷1理科综合高考试题及答案 2016年全国卷1文科综合高考试 ...查看


  • 名校名师解析2015高考试题
  • 名校名师解析2015高考试题 2015年高考在昨日落下帷幕,为了服务广大读者,西安日报教育工作室力邀西安名校一线名师对试题加以解析,直击命题要点.所提供的解析试题具有权威性.快捷性.易于使用.便于教学.是高中毕业生的学习指南. 语文-综合 ...查看


  • 2014年吉林省高考卷物理试题分析
  • 2014年吉林省高考卷物理试题分析 2014年吉林省高考理综考题仍采用新课标Ⅱ卷,考查形式与以往新课标考查形式相同,8道选择题,2道实验题,2道计算题,选修部分各为一道选择和一道计算,试题难度较去年有所上升,但是没有偏题.怪题,完全符合考纲 ...查看


  • 高考阅卷老师:2014年高考数学如何拿高分?
  • 高考阅卷老师:2014年高考数学如何拿高分? 高考阅卷老师:2014年高考数学如何拿高分? 考题解析:高考各类题型基本固定 张天德教授说,对于数学高考来说,同学们首先应该熟悉考题基本类型,在抓重点的同时全面地兼顾掌握各类知识点.与此同时还要 ...查看


  • 2015年国家考试中心对全国高考题的评价
  • 摸清2015年高考命题脉络, 提高2016年高考复习备考效率 高考理综试题的核心是:增强基础性和综合性,加强应用和创新能力考查. 2015年普通高考理科综合能力测试(以下简称"理综")体现立德树人的导向性,注重考查内容的 ...查看


热门内容