可控硅元件
一、概述
一种以硅单晶为基本材料的P1N1P2N2四层三端器件,由于它特性类似于真空闸流管,所以国际上通称为硅晶体闸流管,简称晶闸管T。又由于晶闸管最初应用于可控整流方面所以又称为硅可控整流元件,简称为可控硅SCR(旧标准)。在电路中用文字符号―V‖、―VT‖表示(新标准)。
在性能上,可控硅不仅具有单向导电性,而且还具有比硅整流元件(谷称“死硅”)更为可贵的可控性。它只有导通和关断两种状态。
可控硅能以毫安级电流控制大功率的机电设备,如果超过此频率,因元件开关损髦显著增加,允许通过的平均电流相降低,此时,标称电流应降级使用。
可控硅的优点很多,例如:以小功率控制大功率,功率放大倍数高达几十万倍;反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪音;效率高,成本低等等。
可控硅的弱点:静态及动态的过载能力较差;容易受干扰而误导通。
可控硅从外形上分类主要有:螺栓形、平板形和平底形。
二、可控硅元件的结构和型号
1、 结构
不管可控硅的外形如何,它们的管芯都是由P型硅和N型硅组成的四层P1N1P2N2结构。见图1。它有三个PN结(J1、J2、J3),从J1结构的P1层引出阳极A,从N2层引出阴级K,从P2层引出控制极G,所以它是一种四层三端的半导体器件
图1、可控硅结构示意图和符号图
三、可控硅元件的工作原理及基本特性
1、 工作原理
可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图2所示
图2、可控硅等效图解图
当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。
由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。
由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表三
表三、可控硅导通和关断条件
2、基本伏安特性 可控硅的基本伏安特性见图3
(1)反向特性 当控制极开路,阳极加上反向电压时(见图4),J2结正偏,但J1、J2结反偏。此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。此时,可控硅会发生永久性反向击穿。
(2)正向特性 当控制极开路,阳极上加上正向电压时(见图5),J1、J3结正偏,但J2结反偏,这与普通PN结的反向特性相似,也只能流过很小电流,这叫正向阻断状态,当电压增加,图3的特性发生了弯曲,如特性OA段所示,弯曲处的是UBO叫:正向转折电压
图4、阳极加反向电压 图5、阳极加正向电压
由于电压升高到J2结的雪崩击穿电压后,J2结发生雪崩倍增效应,在结区产生大量的电子和空穴,电子时入N1区,空穴时入P2区。进入N1区的电子与由P1区通过J1结注入
N1区的空穴复合,同样,进入P2区的空穴与由N2区通过J3结注入P2区的电子复合,雪崩击穿,进入N1区的电子与进入P2区的空穴各自不能全部复合掉,这样,在N1区就有电子积累,在P2区就有空穴积累,结果使P2区的电位升高,N1区的电位下降,J2结变成正偏,只要电流稍增加,电压便迅速下降,出现所谓负阻特性,见图3的虚线AB段。
这时J1、J2、J3三个结均处于正偏,可控硅便进入正向导电状态---通态,此时,它的特性与普通的PN结正向特性相似,见图3中的BC段
3、触发导通
在控制极G上加入正向电压时(见图6)因J3正偏,P2区的空穴时入N2区,N2区的电子进入P2区,形成触发电流IGT。在可控硅的内部正反馈作用(见图2)的基础上,加上IGT的作用,使可控硅提前导通,导致图3的伏安特性OA段左移,IGT越大,特性左移越快。
图6、阳极和控制极均加正向电压
四、晶闸管(thyristor)的分类
晶闸管(thyristor)有多种分类方法。
(一)按关断、导通及控制方式分类
晶闸管按其关断、导通及控制方式可分为普通晶闸管(SCR)即单向可控硅、双向晶闸管(TRIAC)、逆导晶闸管、门极关断晶闸管(GTO)、BTG晶闸管、温控晶闸管和光控晶闸管等多种。
(二)按引脚和极性分类
晶闸管按其引脚和极性可分为二极晶闸管、三极晶闸管和四极晶闸管。
(三)按封装形式分类
晶闸管按其封装形式可分为金属封装晶闸管、塑封晶闸管和陶瓷封装晶闸管三种类型。其中,金属封装晶闸管又分为螺栓形、平板形、圆壳形等多种;塑封晶闸管又分为带散热片型和不带散热片型两种。
(四)按电流容量分类
晶闸管按电流容量可分为大功率晶闸管、中功率晶闸管和小功率晶闸管三种。通常,大功率晶闸管多采用金属壳封装,而中、小功率晶闸管则多采用塑封或陶瓷封装。
(五)按关断速度分类
晶闸管按其关断速度可分为普通晶闸管和高频(快速)晶闸管
五、各种晶闸管解析
1.单向可控硅(SCR)
(一)单向晶闸管的特性
普通晶闸管(SCR)是由PNPN四层半导体材料构成的三端半导体器件,三个引出端分别为阳极A、阴极K和门极G。电路符号如下图:
当单向晶闸管反向连接(即A极接电源负端,K极接电源正端)时,无论门极G所加电压是什么极性,晶闸管均处于阻断状态。当晶闸管正向连接(即A极接电源正端,K极接电源负端)时,若门极G所加触发电压为负时,则晶闸管也不导通,只有其门极G加上适当的正向触发电压时,晶闸管才能由阻断状态变为导通状态。此时,晶闸管阳极A极与阴极K极之间呈低阻导通状态,A、K极之间压降约为1V。
普通晶闸管受触发导通后,其门极G即使失去触发电压,只要阳极A和阴极K之间仍保持正向电压,晶闸管将维持低阻导通状态。只有把阳极A电压撤除或阳极A、阴极K之间电压极性发生改变(如交流过零)时,普通晶闸管才由低阻导通状态转换为高阻阻断状态。普通晶闸管一旦阻断,即使其阳极A与阴极K之间又重新加上正向电压,仍需在门极G和阴极K之间重新加上正向触发电压后方可导通。
普通晶闸管的导通与阻断状态相当于开关的闭合和断开状态,用它可以制成无触点电子开关,去控制直流电源电路。
(二)单向可控硅的原理分析
单向可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示
图1 可控硅等效图解图
当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,形成正反馈,使ib2不断增大,如此正向反馈循环使两个管子的电流剧增,可控硅饱和导通。
由于BG1和BG2所构成的正反馈作用,所以一旦单向可控硅导通后,即使控制极G的电流消失了,单向可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种单向可控硅是不可关断的。
2、双向可控硅(TRIAC)
双向晶闸管属于NPNPN五层器件,三个电极分别是T1、T2、G。T1、T2统称为主电极或第一电极(T1)、第二电极(T2),不再划分成阳极或阴极。其结构如图2所示,双向可控硅等效于两只单向可控硅反向并联而成:即其中一只单向硅阳极与另一只单向硅阴极相连,其引出端称T1极,其中一只单向硅阴极与另一只阳极相连,其引出端称T2极,剩下则为控制极(G)。
双向晶闸管可以双向导通。对主端子T1、T2来说无所谓正向和反向。但一般为了叙述方便和普通晶闸管对应,则把T2对应阳极,而和门极在一侧的T1端对应阴极端。于是,T2为正T1为负时称为正向,伏安特性画在第Ⅰ象限;T2为负T1为正时称为反向,伏安特性画在第Ⅲ象限。
双向晶闸管具有四种触发方式,既可在正向时触发导通,也可在反向时触发导通;门极信号既可是正的触发信号,也可是负的触发信号。它可有Ⅰ+,Ⅰ-,Ⅲ+,Ⅲ-四种触发方式:
Ⅰ+触发:器件T2端相对T1端为正时,在门极G上加一相对于T1为正的触发信号使晶闸管在第Ⅰ象限导通。这和普通晶闸管触发导通完全相同。
Ⅰ-触发:器件T2端相对T1端为正时,在门极G上加一相对于T1为负的触发信号使晶闸管在第Ⅰ象限导通。
Ⅲ+触发:器件T1端相对T2端为正时,在门极G上加一相对于T1为正的触发信号使晶闸管在第Ⅲ象限导通。
Ⅲ-触发:器件T1端相对T2端为正时,在门极G上加一相对于T1为负的触发信号使晶闸管在第Ⅲ象限导通。
由于四种触发方式作用原理不同,触发灵敏度也不同。一般是Ⅰ+>Ⅲ->Ⅰ->Ⅲ+。
Ⅲ+触发由于灵敏度太低,即门极触发电流很大,比其他三种状态触发电流大一倍乃至数倍,功率稍大一点的双向晶闸管一般不用Ⅲ+这种状态。
因此使用双向可控硅时应尽量使用Ⅰ+和Ⅲ-触发方式,避免采用Ⅲ+触发方式。当采用Ⅰ+和Ⅲ-触发方式时,具有特点为:当G极和T2极相对于T1的电压均为正时,T2是阳极,T1是阴极;当G极和T2极相对于T1的电压均为负时,T1变成阳极,T2为阴极。
晶闸管触发导通后呈低阻状态。此时,主电极T1、T2间压降约为1V左右。
双向晶闸管一旦导通,即使失去触发电压,也能继续维持导通状态。当主电极T1、T2电流减小至维持电流以下或T1、T2间电压改变极性,且无触发电压时,双向晶闸管阻断,只有重新施加触发电压,才能再次导通。
单向、双向可控硅具有的共同特点是:当有一触发信号输入其控制极而使管子导通后,即使是断开其触发控制极,该管子仍能正常维持导通,直至其导通的正向电流低于管子维持电流,或是加大其反向电压方能使其截止。
3、门极关断晶闸管(GTO)
门极关断晶闸管(GTO)(以P型门极为例)是由PNPN四层半导体材料构成,其三个电极分别为阳极A、阴极K和门极G。
门极关断晶闸管也具有单向导电特性,即当其阳极A、阴极K两端为正向电压,在门极G上加正的触发电压时,晶闸管将导通,导通方向A→K。
在门极关断晶闸管处于导通状态时,若在其门极G上加一个适当的负电压,则能使导通的晶闸管关断(普通晶闸管在靠门极正电压触发之后,撤掉触发电压也能维持导通,只有切断电源使正向电流低于维持电流或加上反向电压,才能使其关断)。
4、光控晶闸管
光控晶闸管(LTT——Light Triggered Thyristor)俗称光控硅,内部由PNPN四层半导体材料构成,可等效为由两只晶体管和一只电容、一只光敏二极管组成的电路。
光控晶闸管不但可以作为光电耦合器的输出部分,而且可以直接做成各种各样的交直流继电器、接触器,还可以用于光电逻辑电路、光控计数电路以及各种检测和保护电路。
光控晶闸管包括两端器件、三端器件、四端器件。就三端器件来说,又有单向光控晶闸管及双向光控晶闸管。就功率来分,有小功率和大功率之分。
由于光控晶闸管的控制信号来自光的照射,门极为受光窗口(小功率晶闸管)或光导纤维、光缆等。 当在光控晶闸管的阳极A加上正向电压、阴极K上加负电压时,再用足够强的光照射一下其受光窗口,晶闸管即可导通。晶闸管受光触发导通后,即使光源消失也能维持导通,除非加在阳极A和阴极K之间的电压消失或极性改变,晶闸管才能关断。
光控晶闸管的触发光源有激光器、激光二极管和发光二极管等。
5、逆导晶闸管
逆导晶闸管(RCT)俗称逆导可控硅,它在普通晶闸管的阳极A与阴极K间反向并联了一只二极管(制作于同一管芯中)。
逆导晶闸管较普通晶闸管的工作频率高,关断时间短、误动作小,可广泛应用于超声波电路、电磁灶、开关电源、电子镇流器、超导磁能储存系统等领域。
6、BTG晶闸管
BTG晶闸管也称程控单结晶体管PUT,是由PNPN四层半导体材料构成的三端逆阻型晶闸管,其电路图形符号,内部结构和等效电路如下图:
BTG晶闸管的参数可调,改变其外部偏置电阻的阻值,即可改变BTG晶闸管门极电压和工作电流。它还具有触发灵敏度高、脉冲上升时间短、漏电流小、输出功率大等优点,被广泛应用于可编程脉冲电路、锯齿波发生器、过电压保护器、延时器及大功率晶体管的触发电路中,既可作为小功率晶闸管使用,还可作为单结晶体管〔双基极二极管(UJT)〕使用。
7、温控晶闸管
温控晶闸管是一种新型温度敏感开关器件,它将温度传感器与控制电路结合为一体,输出驱动电流大,可直接驱动继电器等执行部件或直接带动小功率负荷。
温控晶闸管的结构与普通晶闸管的结构相似(电路图形符号也与普通晶闸管相同),也是由PNPN半导体材料制成的三端器件,但在制作时,温控晶闸管中间的PN结中注入了对温度极为敏感的成分(如氩离子),因此改变环境温度,即可改变其特性曲线。
在温控晶闸管的阳极A接上正电压,在阴极K接上负电压,在门极G和阳极A之间接入分流电阻,就可以使它在一定温度范围内(通常为–40~+130℃)起开关作用。温控晶闸管由断态到通态的转折电压随温度变化而改变,温度越高,转折电压值就越低。
8、四极晶闸管
四极晶闸管也称硅控制开关管(SCS),是一种由PNPN四层半导体材料构成的多功能半导体器件,其电路图形符号、内部结构和等效电路如下图:
四极晶闸管的四个电极分别为阳极A、阴极K、阳极控制极GA和阴极控制极GK。若将四极晶闸管的阳极控制极GA空着不用,则四极晶闸管可以代替普通晶闸管或门极关断晶闸管使用;若将其阴极控制极GK空着不用,则可以代替BTG晶闸管或门极关断晶闸管、单结晶体管使用;若将其阳极门极GA与阳极A短接,则可以代替逆导晶闸管或NPN型硅晶体管使用。
9、晶闸管模块
晶闸管模块,它是将两只参数一致的普通晶闸管串联(跟图中所示不同,有疑问)在一起构成的,如下图:
晶闸管模块具有体积小、重量轻、散热好、安装方便等优点,被广泛应用于电动机调速、无触点开关、交流调压、低压逆变、高压控制、整流、稳压等电子电路中。
10、快速可控硅
快速可控硅元件的特点是,开通时间和关断时间短,开关损耗小,能承受较高的电流上升率和电压上升率,因此它可以在一般可控硅不能胜任的较高的频率的场合工作。例如,一般快速可控硅开通时间减
小到l—2微秒,关断时间也只需数微秒,电流上升率可达数百安/微秒,所以允许工作在数十或数百千周/秒的频率范围。
六、不同晶闸管的检测方式介绍
(一)单向晶闸管的检测
1.判别各电极 根据普通晶闸管的结构可知,其门极G与阴极K极之间为一个PN结,具有单向导电特性,而阳极A与门极之间有两个反极性串联的PN结。因此,通过用万用表R×100A或R×1k档测量普通晶闸管各引脚之间的电阻值,即能确定三个电极。
具体方法是:将万用表黑表笔任接晶闸管某一极,红表笔依次去触碰另外两个电极。若测量结果有一次阻值为几千欧姆(kΩ),而另一次阻值为几百欧姆(Ω),则可判定黑表笔接的是门极G。在阻值为几百欧姆的测量中,红表笔接的是阴极K,而在阻值为几千欧姆的那次测量中,红表笔接的是阳极A,若两次测出的阻值均很大,则说明黑表笔接的不是门极G,应用同样方法改测其它电极,直到找出三个电极为止。
也可以测任两脚之间的正、反向电阻,若正、反向电阻均接近无穷大,则此两极即为阳极A和阴极K,而另一脚即为门极G。
普通晶闸管也可以根据其封装形式来判断出各电极。例如:
螺栓形普通晶闸管的螺栓一端为阳极A,较细的引线端为门极G,较粗的引线端为阴极K。
平板形普通晶闸管的引出线端为门极G,平面端为阳极A,另一端为阴极K。
金属壳封装(TO–3)的普通晶闸管,其外壳为阳极A。
塑封(TO–220)的普通晶闸管的中间引脚为阳极A,且多与自带散热片相连。下图为几种普通晶闸管的引脚排列。
2.判断其好坏 用万用表R×1k档测量普通晶体管阳极A与阴极K之间的正、反向电阻,正常时均应为无穷大(∞)若测得A、K之间的正、反向电阻值为零或阻值较小,则说明晶闸管内部击穿短路或漏电。
测量门极G与阴极K之间的正、反向电阻值,正常时应有类似二极管的正、反向电阻值(实际测量结果较普通二极管的正、反向电阻值小一些),即正向电阻值较小(小于2 kΩ),反向电阻值较大(大于80 kΩ)。若两次测量的电阻值均很大或均很小,则说明该晶闸管G、K极之间开路或短路。若正、反电阻值均相等或接近,则说明该晶闸管已失效,其G、K极间PN结已失去单向导电作用。
测量阳极A与门极G之间的正、反向电阻,正常时两个阻值均应为几百千欧姆(kΩ)或无穷大,若出现正、反向电阻值不一样(有类似二极管的单向导电),则是G、A极之间反向串联的两个PN结中的一个已击穿短路。
3.触发能力检测 对于小功率(工作电流为5A以下)的普通晶闸管,可用万用表R×1档测量。测量时黑表笔接阳极A,红表笔接阴极K,此时表针不动,显示阻值为无穷大(∞)。用镊子或导线将晶闸管的阳极A与门极短路(见下图),相当于给G极加上正向触发电压,此时若电阻值为几欧姆至几十欧姆(具体阻值根据晶闸管的型号不同会有所差异),则表明晶闸管因正向触发而导通。再断开A极与G极的连接
(A、K极上的表笔不动,只将G极的触发电压断掉),若表针示值仍保持在几欧姆至几十欧姆的位置不动,则说明此晶闸管的触发性能良好。
对于电流在5A以上的中、大功率普通晶闸管,因其通态压降VT、维持电流IH及门极触发电压VG均相对较大,万用表R×1档所提供的电流偏低,晶闸管不能完全导通,故检测时可在黑表笔端串接一只200Ω可调电阻和1~3节1.5V干电池(视被测晶闸管的容量而定,其工作电流大于100A的,应用3节1.5V干电池),如下图所示。
也可以用下图中的测试电路测试普通晶闸管的触发能力。电路中,VT为被测晶闸管,HL为6.3V指示灯(手电筒中的小电珠),GB为6V电源(可使用4节1.5V干电池或6V稳压电源),S为按钮,R为限流电阻。
当按钮S未接通时,晶闸管VT处于阻断状态,指示灯HL不亮(若此时HL亮,则是VT击穿或漏电损坏)。按动一下按钮S后(使S接通一下,为晶闸管VT的门极G提供触发电压),若指示灯HL一
直点亮,则说明晶闸管的触发能力良好。若指示灯亮度偏低,则表明晶闸管性能不良、导通压降大(正常时导通压降应为1V左右)。若按钮S接通时,指示灯亮,而按钮断开时,指示灯熄灭,则说明晶闸管已损坏,触发性能不良。
(二)双向晶闸管的检测
1.判别各电极 用万用表R×1或R×10档分别测量双向晶闸管三个引脚间的正、反向电阻值,若测得某一管脚与其它两脚均不通,则此脚便是主电极T2。
找出T2极之后,剩下的两脚便是主电极T1和门极G3。测量这两脚之间的正反向电阻值,会测得两个均较小的电阻值。在电阻值较小(约几十欧姆)的一次测量中,黑表笔接的是主电极T1,红表笔接的是门极G。
螺栓形双向晶闸管的螺栓一端为主电极T2,较细的引线端为门极G,较粗的引线端为主电极T1。 金属封装(TO–3)双向晶闸管的外壳为主电极T2。
塑封(TO–220)双向晶徊管的中间引脚为主电极T2,该极通常与自带小散热片相连。
下图是几种双向晶闸管的引脚排列。
2.判别其好坏 用万用表R×1或R×10档测量双向晶闸管的主电极T1与主电极T2之间、主电极T2与门极G之间的正、反向电阻值,正常时均应接近无穷大。若测得电阻值均很小,则说明该晶闸管电极间已击穿或漏电短路。
测量主电极T1与门极G之间的正、反向电阻值,正常时均应在几十欧姆(Ω)至一百欧姆(Ω)之间(黑表笔接T1极,红表笔接G极时,测得的正向电阻值较反向电阻值略小一些)。若测得T1极与G极之间的正、反处电阻值均为无穷大,则说明该晶闸管已开路损坏。
3.触发能力检测 对于工作电流为8A以下的小功率双向晶闸管,可用万用表R×1档直接测量。测量时先将黑表笔接主电极T2,红表笔接主电极T1,然后用镊子将T2极与门极G短路,给G极加上正极性触发信号,若此时测得的电阻值由无穷大变为十几欧姆(Ω),则说明该晶闸管已被触发导通,导通方向为T2→T1。
再将黑表笔接主电极T1,红表笔接主电极T2,用镊子将T2极与门极G之间短路,给G极加上负极性触发信号时,测得的电阻值应由无穷大变为十几欧姆,则说明该晶闸管已被触发导通,导通方向为T1→T2。
若在晶闸管被触发导通后断开G极,T2、T1极间不能维持低阻导通状态而阻值变为无穷大,则说明该双向晶闸管性能不良或已经损坏。若给G极加上正(或负)极性触发信号后,晶闸管仍不导通(T1与T2间的正、反向电阻值仍为无穷大),则说明该晶闸管已损坏,无触发导通能力。
对于工作电流以8A以上的中、大功率双向晶闸管,在测量其触发能力时,可先在万用表的某支表笔上串接1~3节1.5V干电池,然后再用R×1档按上述方法测量。
对于耐压为400V以上的双向晶闸管,也可以用220V交流电压来测试其触发能力及性能好坏。 下图是双向晶闸管的测试电路。电路中,EL为60W/220V白炽灯泡,VT为被测双向晶闸管,R为100Ω限流电阻,S为按钮。
将电源插头接入市电后,双向晶闸管处于截止状态,灯泡不亮(若此时灯泡正常发光,则说明被测晶闸管的T1、T2极之间已击穿短路;若灯泡微亮,则说明被测晶闸管漏电损坏)。按动一下按钮S,为晶闸管的门极G提供触发电压信号,正常时晶闸管应立即被触发导通,灯泡正常发光。若灯泡不能发光,则说明被测晶闸管内部开路损坏。若按动按钮S时灯泡点亮,松手后灯泡又熄灭,则表明被测晶闸管的触发性能不良。(有疑问,交流过零时极性改变晶闸管本来就应该不通了,要重加触发电压才行)
(三)门极关断晶闸管的检测
1.判别各电极 门极关断晶闸管三个电极的判别方法与普通晶闸管相同,即用万用表的R×100档,找出具有二极管特性的两个电极,其中一次为低阻值(几百欧姆),另一次为阻值较大。在阻值小的那一次测量中,红表笔接的是阴极K,黑表笔接的是门极G,剩下的一只引脚为阳极A。
2.触发能力和关断能力的检测 可关断晶闸管触发能力的检测方法与普通晶闸管相同。检测门极关断晶闸管的关断能力时,可先按检测触发能力的方法使晶闸管处于导通状态,即用万用表R×1档,黑表笔接阳极A,红表笔接阴极K,测得电阻值为无穷大。再将A极与门极G短路,给G极加上正向触发信号时,晶闸管被触发导通,其A、K极间电阻值由无穷大变为低阻状态。断开A极与G极的短路点后,晶闸管维持低阻导通状态,说明其触发能力正常。再在晶闸管的门极G与阳极A之间加上反向触发信号,若此时A极与K极间电阻值由低阻值变为无穷大,则说明晶闸管的关断能力正常,下图是关断能力的检测示意图。
也可以用下图所示电路来检测门极关断晶闸管的触发能力和关断能力。电路中,EL为6.3V指示灯(小电珠),S为转换开关,VT为被测晶闸管。当开关S关断时,晶闸管不导通,指示灯不亮。将开关S的K1触点接通时,为G极加上正向触发信号,指示灯亮,说明晶闸管已被触发导通。若将开关S断开,指示灯维持发光,则说明晶闸管的触发能力正常。若将开关S的K2触点接通,为G极加上反向触发信号,指示灯熄灭,则说明晶闸管的关断能力正常。
(四)温控晶闸管的检测
1.判别各电极 温控晶闸管的内部结构与普通晶闸管相似,因此也可以用判别普通晶闸管电极的方法来找出温控晶闸管的电极。
2.性能检测 温控晶闸管的好坏也可以用万用表大致测出来,具体方法可参考普通晶闸管的检测方法。
下图是温控晶闸管的测试电路。电路中,R是分流电阻,用来设定晶闸管VT的开关温度,其阻值越小,开关温度设置值就越高。C为抗干扰电容,可防止晶闸管VT误触发。HL为6.3V指示灯(小电珠),S为电源开关。
接通电源开关S后,晶闸管VT不导通,指示灯HL不亮。用电吹风―热风档‖给晶闸管VT加温,当其温度达到设定温度值时,指示灯亮,说明晶闸管VT已被触发导通。若再用电吹风―冷风‖档给晶闸管VT降温(或待其自然冷却)至一定温度值时,指示灯能熄灭,则说明该晶闸管性能良好。若接通电源开关后指示灯即亮或给晶闸管加温后指示灯不亮、或给晶闸管降温后指示灯不熄灭,则是被测晶闸管击穿损坏或性能不良。
(五)光控晶闸管的检测
用万用表检测小功率光控晶闸管时,可将万用表置于R×1档,在黑表笔上串接1~3节1.5V干电池,测量两引脚之间的正、反向电阻值,正常时均应为无穷大。然后再用小手电筒或激光笔照射光控晶闸管的受光窗口,此时应能测出一个较小的正向电阻值,但反向电阻值仍为无穷大。在较小电阻值的一次测量中,黑笔接的是阳极A,红表笔接的是阴极K。
也可用下图电路对光控晶闸管进行测量。按通电源开关S,用手电筒照射晶闸管VT的受光窗口、为其加上触发光源(大功率光控晶闸管自带光源,只要将其光缆中的发光二极管或半导体激光器加上工作电压即可,不用外加光源)后,指示灯EL应点亮,撤离光源后指示灯EL应维持发光。
若接通电源开关S后(尚未加光源),指示灯EL即点亮,则说明被测晶闸管已击穿短路。若接通电源开关、并加上触发光源后,指示灯EL仍不亮,在被测晶闸管电极连接正确的情况下,则是该晶闸管内部损坏。若加上触发光源后,指示灯发光,但取消光源后指示灯即熄灭,则说明该晶闸管触发性能不良。
(六)BTG晶闸管的检测
1.判别各电极 根据BTG晶闸管的内部结构可知,其阻极A、阴极K之间和门极G、阴极K之间均包含有多个正、反向串联有PN结,而阳极A与门极G之间却只有一个PN结。因此,只要用万用表测出A极和G极即可。
将万用表置于R×1k档,两表笔任接被测晶闸管的某两个引脚(测其正、反向电阻值),若测出某对引脚为低阻值时,则黑表笔接的阳极A,而红表笔接的是门极G,另外一个引脚即是阴极K。
2.判断其好坏 用万用表R×1k档测量BTG晶闸管各电极之间的正、反向电阻值。正常时,阳极A与阴极K之间的正、反向电阻均为无穷大;阳极A与门极G之间的正向电阻值(指黑表笔接A极时)为
几百欧姆至几千欧姆,反向电阻值为无穷大。若测得某两极之间的正、反向电阻值均很小,则说明该晶闸管已短路损坏。
3.触发能力检测 将万用表置于R×1档,黑表笔接阳极A,红表笔接阴极K,测得阻值应为无穷大。然后用手指触摸门极G,给其加一个人体感应信号,若此时A、K之间的电阻值由无穷大变为低阻值(数欧姆),则说明晶闸管的触发能力良好。否则说明此晶闸管的性能不良。
(七)逆导晶闸管的检测
1.判别各电极 根据逆导晶闸管内部结构可知,在阳极A与阴极K之间并接有一只二极管(正极接K极),而门极G与阴极K之间有一个PN结,阳极A与门极之间有多个反向串联有PN结。
用万用表R×100档测量各电极之间的正反向电阻值时,会发现有一个电极与另外两个电极之间正、反向测量时均会有一个低阻值,这个电极就是阴极K。将黑表笔接阴极K,红表笔依次去触碰另外两个电极,显示为低阻值的一次测量中,红表笔接的是阳极A。再将红表笔接阴极K,黑表笔依次触碰另外两电极,显示低阻值的一次测量中,黑表笔接的便是门极G。
2.测量其好坏 用万用表R×100或R×1k档测量反向导通晶闸管的阳极A与阴极K之间的正、反向电阻值,正常时,正向电阻值(黑表笔接A极)为无穷大,反向电阻值为几百欧姆至几千欧姆(用R×1k档测量为7kΩ左右,用R×100档测量为900Ω左右)。若正、反向电阻值均为无穷大,则说明晶闸管内部并接的二极管已开路损坏。若正反向电阻值为很小,则是晶闸管短路损坏。
正常时反向导通晶闸管的阳极A与门极G之间的正、反向电阻值均为无穷大。若测得A、G极之间的正、反向电阻值均很小,则说明晶闸管的A、G极之间击穿短路。
正常时反向导通晶闸管的门极G与阴极K之间的正向电阻值(黑表笔接G极)为几百欧姆至几千欧姆,反向电阻值为无穷大。若测得其正、反向电阻值均为无穷大或均很小,则说明该晶闸管G、K极间已开路或短路损坏
3.触发能力检测 反向导通晶闸管的触发能力的检测方法与普通晶闸管相同。用万用表R×1档,黑表笔接阳极A,红表笔接阴极K(大功率晶闸管应在黑表笔或红表笔上串接1~3节1.5V干电池),将A、G极间瞬间短路,晶闸管即能被触发导通,万用表上的读数会由无穷大变为低阻值。若不能由无穷大变为低阻值,则说明被测晶闸管的触发能力不良。
(八)四端晶闸管的检测
1.判别各电极 四端晶闸管多采用金属壳封装,下图是其管脚排列底视图。从管键(管壳上的凸起处)开始看,顺时针方向依次为阴极K,阴极门极GK、阳极门极GA、阳极A。
2.判断其好坏 用万用表R×1k档,分别测量四端晶闸管各电极之间的正、反电阻值。正常时,阳极A与阳极门极GA之间的正向电阻值(黑表笔接A极)为无穷大,反向电阻值为4~12kΩ;阳极门极GA与阴极门极GK之间的正向电阻值(黑表笔接GA)为无穷大,反向电阻值为2~10 kΩ;阴极K与阴极控制极GK之间的正向电阻值(黑表笔接K)为无穷大,反向电阻值为4~12 kΩ。
若测得某两极之间的正、反向电阻值均较小或均为无穷大,则说明该晶闸管内部短路或开路。
3.触发能力检测 用万用表R×1k档,黑表笔接阳极A,红表笔接阴极K,此时电阻值为无穷大。若将K极与阳极门极GA瞬间短路、给GA极加上负触发脉冲电压时,A、K极间电阻值由无穷大迅速变为低阻值,则说明该晶闸管GA极的触发能力良好。
断开黑表笔后,再将其与阳极A连接好,红表笔仍接阴极K,万用表显示阻值为无穷大。若将A极与GK极瞬间短路,给GK极加上正向触发电压时,晶闸管A、K极之间的电阻值由无穷大变为低阻值,则可判定该晶闸管GK极的触发能力良好。
若将K、GA极或A、GA极短路时,A、K极之间的电阻值极仍为无穷大,则说明该晶闸管内部开路损坏或性能不良。
4.关断性能检测 在四端晶闸管被触发导通状态时,若将阳极A与阳极门极GA或阴极K与阴极门极GK瞬间短路,A、K极之间的电阻值由低阻值变为无穷大,则说明被测晶闸管的关断性能良好。
5.反向导通性能检测 分别将晶闸管的阳极A与阳极门极GA、阴极K与阴极门极短接后,用万用表R×1k档、黑表笔接A极,红表笔接K极,正常时阻值应为无穷大;再将两笔对调测量,K、A极间正常电阻值应为低阻值(数千欧姆)。
可控硅元件
一、概述
一种以硅单晶为基本材料的P1N1P2N2四层三端器件,由于它特性类似于真空闸流管,所以国际上通称为硅晶体闸流管,简称晶闸管T。又由于晶闸管最初应用于可控整流方面所以又称为硅可控整流元件,简称为可控硅SCR(旧标准)。在电路中用文字符号―V‖、―VT‖表示(新标准)。
在性能上,可控硅不仅具有单向导电性,而且还具有比硅整流元件(谷称“死硅”)更为可贵的可控性。它只有导通和关断两种状态。
可控硅能以毫安级电流控制大功率的机电设备,如果超过此频率,因元件开关损髦显著增加,允许通过的平均电流相降低,此时,标称电流应降级使用。
可控硅的优点很多,例如:以小功率控制大功率,功率放大倍数高达几十万倍;反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪音;效率高,成本低等等。
可控硅的弱点:静态及动态的过载能力较差;容易受干扰而误导通。
可控硅从外形上分类主要有:螺栓形、平板形和平底形。
二、可控硅元件的结构和型号
1、 结构
不管可控硅的外形如何,它们的管芯都是由P型硅和N型硅组成的四层P1N1P2N2结构。见图1。它有三个PN结(J1、J2、J3),从J1结构的P1层引出阳极A,从N2层引出阴级K,从P2层引出控制极G,所以它是一种四层三端的半导体器件
图1、可控硅结构示意图和符号图
三、可控硅元件的工作原理及基本特性
1、 工作原理
可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图2所示
图2、可控硅等效图解图
当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。
由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。
由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表三
表三、可控硅导通和关断条件
2、基本伏安特性 可控硅的基本伏安特性见图3
(1)反向特性 当控制极开路,阳极加上反向电压时(见图4),J2结正偏,但J1、J2结反偏。此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。此时,可控硅会发生永久性反向击穿。
(2)正向特性 当控制极开路,阳极上加上正向电压时(见图5),J1、J3结正偏,但J2结反偏,这与普通PN结的反向特性相似,也只能流过很小电流,这叫正向阻断状态,当电压增加,图3的特性发生了弯曲,如特性OA段所示,弯曲处的是UBO叫:正向转折电压
图4、阳极加反向电压 图5、阳极加正向电压
由于电压升高到J2结的雪崩击穿电压后,J2结发生雪崩倍增效应,在结区产生大量的电子和空穴,电子时入N1区,空穴时入P2区。进入N1区的电子与由P1区通过J1结注入
N1区的空穴复合,同样,进入P2区的空穴与由N2区通过J3结注入P2区的电子复合,雪崩击穿,进入N1区的电子与进入P2区的空穴各自不能全部复合掉,这样,在N1区就有电子积累,在P2区就有空穴积累,结果使P2区的电位升高,N1区的电位下降,J2结变成正偏,只要电流稍增加,电压便迅速下降,出现所谓负阻特性,见图3的虚线AB段。
这时J1、J2、J3三个结均处于正偏,可控硅便进入正向导电状态---通态,此时,它的特性与普通的PN结正向特性相似,见图3中的BC段
3、触发导通
在控制极G上加入正向电压时(见图6)因J3正偏,P2区的空穴时入N2区,N2区的电子进入P2区,形成触发电流IGT。在可控硅的内部正反馈作用(见图2)的基础上,加上IGT的作用,使可控硅提前导通,导致图3的伏安特性OA段左移,IGT越大,特性左移越快。
图6、阳极和控制极均加正向电压
四、晶闸管(thyristor)的分类
晶闸管(thyristor)有多种分类方法。
(一)按关断、导通及控制方式分类
晶闸管按其关断、导通及控制方式可分为普通晶闸管(SCR)即单向可控硅、双向晶闸管(TRIAC)、逆导晶闸管、门极关断晶闸管(GTO)、BTG晶闸管、温控晶闸管和光控晶闸管等多种。
(二)按引脚和极性分类
晶闸管按其引脚和极性可分为二极晶闸管、三极晶闸管和四极晶闸管。
(三)按封装形式分类
晶闸管按其封装形式可分为金属封装晶闸管、塑封晶闸管和陶瓷封装晶闸管三种类型。其中,金属封装晶闸管又分为螺栓形、平板形、圆壳形等多种;塑封晶闸管又分为带散热片型和不带散热片型两种。
(四)按电流容量分类
晶闸管按电流容量可分为大功率晶闸管、中功率晶闸管和小功率晶闸管三种。通常,大功率晶闸管多采用金属壳封装,而中、小功率晶闸管则多采用塑封或陶瓷封装。
(五)按关断速度分类
晶闸管按其关断速度可分为普通晶闸管和高频(快速)晶闸管
五、各种晶闸管解析
1.单向可控硅(SCR)
(一)单向晶闸管的特性
普通晶闸管(SCR)是由PNPN四层半导体材料构成的三端半导体器件,三个引出端分别为阳极A、阴极K和门极G。电路符号如下图:
当单向晶闸管反向连接(即A极接电源负端,K极接电源正端)时,无论门极G所加电压是什么极性,晶闸管均处于阻断状态。当晶闸管正向连接(即A极接电源正端,K极接电源负端)时,若门极G所加触发电压为负时,则晶闸管也不导通,只有其门极G加上适当的正向触发电压时,晶闸管才能由阻断状态变为导通状态。此时,晶闸管阳极A极与阴极K极之间呈低阻导通状态,A、K极之间压降约为1V。
普通晶闸管受触发导通后,其门极G即使失去触发电压,只要阳极A和阴极K之间仍保持正向电压,晶闸管将维持低阻导通状态。只有把阳极A电压撤除或阳极A、阴极K之间电压极性发生改变(如交流过零)时,普通晶闸管才由低阻导通状态转换为高阻阻断状态。普通晶闸管一旦阻断,即使其阳极A与阴极K之间又重新加上正向电压,仍需在门极G和阴极K之间重新加上正向触发电压后方可导通。
普通晶闸管的导通与阻断状态相当于开关的闭合和断开状态,用它可以制成无触点电子开关,去控制直流电源电路。
(二)单向可控硅的原理分析
单向可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示
图1 可控硅等效图解图
当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,形成正反馈,使ib2不断增大,如此正向反馈循环使两个管子的电流剧增,可控硅饱和导通。
由于BG1和BG2所构成的正反馈作用,所以一旦单向可控硅导通后,即使控制极G的电流消失了,单向可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种单向可控硅是不可关断的。
2、双向可控硅(TRIAC)
双向晶闸管属于NPNPN五层器件,三个电极分别是T1、T2、G。T1、T2统称为主电极或第一电极(T1)、第二电极(T2),不再划分成阳极或阴极。其结构如图2所示,双向可控硅等效于两只单向可控硅反向并联而成:即其中一只单向硅阳极与另一只单向硅阴极相连,其引出端称T1极,其中一只单向硅阴极与另一只阳极相连,其引出端称T2极,剩下则为控制极(G)。
双向晶闸管可以双向导通。对主端子T1、T2来说无所谓正向和反向。但一般为了叙述方便和普通晶闸管对应,则把T2对应阳极,而和门极在一侧的T1端对应阴极端。于是,T2为正T1为负时称为正向,伏安特性画在第Ⅰ象限;T2为负T1为正时称为反向,伏安特性画在第Ⅲ象限。
双向晶闸管具有四种触发方式,既可在正向时触发导通,也可在反向时触发导通;门极信号既可是正的触发信号,也可是负的触发信号。它可有Ⅰ+,Ⅰ-,Ⅲ+,Ⅲ-四种触发方式:
Ⅰ+触发:器件T2端相对T1端为正时,在门极G上加一相对于T1为正的触发信号使晶闸管在第Ⅰ象限导通。这和普通晶闸管触发导通完全相同。
Ⅰ-触发:器件T2端相对T1端为正时,在门极G上加一相对于T1为负的触发信号使晶闸管在第Ⅰ象限导通。
Ⅲ+触发:器件T1端相对T2端为正时,在门极G上加一相对于T1为正的触发信号使晶闸管在第Ⅲ象限导通。
Ⅲ-触发:器件T1端相对T2端为正时,在门极G上加一相对于T1为负的触发信号使晶闸管在第Ⅲ象限导通。
由于四种触发方式作用原理不同,触发灵敏度也不同。一般是Ⅰ+>Ⅲ->Ⅰ->Ⅲ+。
Ⅲ+触发由于灵敏度太低,即门极触发电流很大,比其他三种状态触发电流大一倍乃至数倍,功率稍大一点的双向晶闸管一般不用Ⅲ+这种状态。
因此使用双向可控硅时应尽量使用Ⅰ+和Ⅲ-触发方式,避免采用Ⅲ+触发方式。当采用Ⅰ+和Ⅲ-触发方式时,具有特点为:当G极和T2极相对于T1的电压均为正时,T2是阳极,T1是阴极;当G极和T2极相对于T1的电压均为负时,T1变成阳极,T2为阴极。
晶闸管触发导通后呈低阻状态。此时,主电极T1、T2间压降约为1V左右。
双向晶闸管一旦导通,即使失去触发电压,也能继续维持导通状态。当主电极T1、T2电流减小至维持电流以下或T1、T2间电压改变极性,且无触发电压时,双向晶闸管阻断,只有重新施加触发电压,才能再次导通。
单向、双向可控硅具有的共同特点是:当有一触发信号输入其控制极而使管子导通后,即使是断开其触发控制极,该管子仍能正常维持导通,直至其导通的正向电流低于管子维持电流,或是加大其反向电压方能使其截止。
3、门极关断晶闸管(GTO)
门极关断晶闸管(GTO)(以P型门极为例)是由PNPN四层半导体材料构成,其三个电极分别为阳极A、阴极K和门极G。
门极关断晶闸管也具有单向导电特性,即当其阳极A、阴极K两端为正向电压,在门极G上加正的触发电压时,晶闸管将导通,导通方向A→K。
在门极关断晶闸管处于导通状态时,若在其门极G上加一个适当的负电压,则能使导通的晶闸管关断(普通晶闸管在靠门极正电压触发之后,撤掉触发电压也能维持导通,只有切断电源使正向电流低于维持电流或加上反向电压,才能使其关断)。
4、光控晶闸管
光控晶闸管(LTT——Light Triggered Thyristor)俗称光控硅,内部由PNPN四层半导体材料构成,可等效为由两只晶体管和一只电容、一只光敏二极管组成的电路。
光控晶闸管不但可以作为光电耦合器的输出部分,而且可以直接做成各种各样的交直流继电器、接触器,还可以用于光电逻辑电路、光控计数电路以及各种检测和保护电路。
光控晶闸管包括两端器件、三端器件、四端器件。就三端器件来说,又有单向光控晶闸管及双向光控晶闸管。就功率来分,有小功率和大功率之分。
由于光控晶闸管的控制信号来自光的照射,门极为受光窗口(小功率晶闸管)或光导纤维、光缆等。 当在光控晶闸管的阳极A加上正向电压、阴极K上加负电压时,再用足够强的光照射一下其受光窗口,晶闸管即可导通。晶闸管受光触发导通后,即使光源消失也能维持导通,除非加在阳极A和阴极K之间的电压消失或极性改变,晶闸管才能关断。
光控晶闸管的触发光源有激光器、激光二极管和发光二极管等。
5、逆导晶闸管
逆导晶闸管(RCT)俗称逆导可控硅,它在普通晶闸管的阳极A与阴极K间反向并联了一只二极管(制作于同一管芯中)。
逆导晶闸管较普通晶闸管的工作频率高,关断时间短、误动作小,可广泛应用于超声波电路、电磁灶、开关电源、电子镇流器、超导磁能储存系统等领域。
6、BTG晶闸管
BTG晶闸管也称程控单结晶体管PUT,是由PNPN四层半导体材料构成的三端逆阻型晶闸管,其电路图形符号,内部结构和等效电路如下图:
BTG晶闸管的参数可调,改变其外部偏置电阻的阻值,即可改变BTG晶闸管门极电压和工作电流。它还具有触发灵敏度高、脉冲上升时间短、漏电流小、输出功率大等优点,被广泛应用于可编程脉冲电路、锯齿波发生器、过电压保护器、延时器及大功率晶体管的触发电路中,既可作为小功率晶闸管使用,还可作为单结晶体管〔双基极二极管(UJT)〕使用。
7、温控晶闸管
温控晶闸管是一种新型温度敏感开关器件,它将温度传感器与控制电路结合为一体,输出驱动电流大,可直接驱动继电器等执行部件或直接带动小功率负荷。
温控晶闸管的结构与普通晶闸管的结构相似(电路图形符号也与普通晶闸管相同),也是由PNPN半导体材料制成的三端器件,但在制作时,温控晶闸管中间的PN结中注入了对温度极为敏感的成分(如氩离子),因此改变环境温度,即可改变其特性曲线。
在温控晶闸管的阳极A接上正电压,在阴极K接上负电压,在门极G和阳极A之间接入分流电阻,就可以使它在一定温度范围内(通常为–40~+130℃)起开关作用。温控晶闸管由断态到通态的转折电压随温度变化而改变,温度越高,转折电压值就越低。
8、四极晶闸管
四极晶闸管也称硅控制开关管(SCS),是一种由PNPN四层半导体材料构成的多功能半导体器件,其电路图形符号、内部结构和等效电路如下图:
四极晶闸管的四个电极分别为阳极A、阴极K、阳极控制极GA和阴极控制极GK。若将四极晶闸管的阳极控制极GA空着不用,则四极晶闸管可以代替普通晶闸管或门极关断晶闸管使用;若将其阴极控制极GK空着不用,则可以代替BTG晶闸管或门极关断晶闸管、单结晶体管使用;若将其阳极门极GA与阳极A短接,则可以代替逆导晶闸管或NPN型硅晶体管使用。
9、晶闸管模块
晶闸管模块,它是将两只参数一致的普通晶闸管串联(跟图中所示不同,有疑问)在一起构成的,如下图:
晶闸管模块具有体积小、重量轻、散热好、安装方便等优点,被广泛应用于电动机调速、无触点开关、交流调压、低压逆变、高压控制、整流、稳压等电子电路中。
10、快速可控硅
快速可控硅元件的特点是,开通时间和关断时间短,开关损耗小,能承受较高的电流上升率和电压上升率,因此它可以在一般可控硅不能胜任的较高的频率的场合工作。例如,一般快速可控硅开通时间减
小到l—2微秒,关断时间也只需数微秒,电流上升率可达数百安/微秒,所以允许工作在数十或数百千周/秒的频率范围。
六、不同晶闸管的检测方式介绍
(一)单向晶闸管的检测
1.判别各电极 根据普通晶闸管的结构可知,其门极G与阴极K极之间为一个PN结,具有单向导电特性,而阳极A与门极之间有两个反极性串联的PN结。因此,通过用万用表R×100A或R×1k档测量普通晶闸管各引脚之间的电阻值,即能确定三个电极。
具体方法是:将万用表黑表笔任接晶闸管某一极,红表笔依次去触碰另外两个电极。若测量结果有一次阻值为几千欧姆(kΩ),而另一次阻值为几百欧姆(Ω),则可判定黑表笔接的是门极G。在阻值为几百欧姆的测量中,红表笔接的是阴极K,而在阻值为几千欧姆的那次测量中,红表笔接的是阳极A,若两次测出的阻值均很大,则说明黑表笔接的不是门极G,应用同样方法改测其它电极,直到找出三个电极为止。
也可以测任两脚之间的正、反向电阻,若正、反向电阻均接近无穷大,则此两极即为阳极A和阴极K,而另一脚即为门极G。
普通晶闸管也可以根据其封装形式来判断出各电极。例如:
螺栓形普通晶闸管的螺栓一端为阳极A,较细的引线端为门极G,较粗的引线端为阴极K。
平板形普通晶闸管的引出线端为门极G,平面端为阳极A,另一端为阴极K。
金属壳封装(TO–3)的普通晶闸管,其外壳为阳极A。
塑封(TO–220)的普通晶闸管的中间引脚为阳极A,且多与自带散热片相连。下图为几种普通晶闸管的引脚排列。
2.判断其好坏 用万用表R×1k档测量普通晶体管阳极A与阴极K之间的正、反向电阻,正常时均应为无穷大(∞)若测得A、K之间的正、反向电阻值为零或阻值较小,则说明晶闸管内部击穿短路或漏电。
测量门极G与阴极K之间的正、反向电阻值,正常时应有类似二极管的正、反向电阻值(实际测量结果较普通二极管的正、反向电阻值小一些),即正向电阻值较小(小于2 kΩ),反向电阻值较大(大于80 kΩ)。若两次测量的电阻值均很大或均很小,则说明该晶闸管G、K极之间开路或短路。若正、反电阻值均相等或接近,则说明该晶闸管已失效,其G、K极间PN结已失去单向导电作用。
测量阳极A与门极G之间的正、反向电阻,正常时两个阻值均应为几百千欧姆(kΩ)或无穷大,若出现正、反向电阻值不一样(有类似二极管的单向导电),则是G、A极之间反向串联的两个PN结中的一个已击穿短路。
3.触发能力检测 对于小功率(工作电流为5A以下)的普通晶闸管,可用万用表R×1档测量。测量时黑表笔接阳极A,红表笔接阴极K,此时表针不动,显示阻值为无穷大(∞)。用镊子或导线将晶闸管的阳极A与门极短路(见下图),相当于给G极加上正向触发电压,此时若电阻值为几欧姆至几十欧姆(具体阻值根据晶闸管的型号不同会有所差异),则表明晶闸管因正向触发而导通。再断开A极与G极的连接
(A、K极上的表笔不动,只将G极的触发电压断掉),若表针示值仍保持在几欧姆至几十欧姆的位置不动,则说明此晶闸管的触发性能良好。
对于电流在5A以上的中、大功率普通晶闸管,因其通态压降VT、维持电流IH及门极触发电压VG均相对较大,万用表R×1档所提供的电流偏低,晶闸管不能完全导通,故检测时可在黑表笔端串接一只200Ω可调电阻和1~3节1.5V干电池(视被测晶闸管的容量而定,其工作电流大于100A的,应用3节1.5V干电池),如下图所示。
也可以用下图中的测试电路测试普通晶闸管的触发能力。电路中,VT为被测晶闸管,HL为6.3V指示灯(手电筒中的小电珠),GB为6V电源(可使用4节1.5V干电池或6V稳压电源),S为按钮,R为限流电阻。
当按钮S未接通时,晶闸管VT处于阻断状态,指示灯HL不亮(若此时HL亮,则是VT击穿或漏电损坏)。按动一下按钮S后(使S接通一下,为晶闸管VT的门极G提供触发电压),若指示灯HL一
直点亮,则说明晶闸管的触发能力良好。若指示灯亮度偏低,则表明晶闸管性能不良、导通压降大(正常时导通压降应为1V左右)。若按钮S接通时,指示灯亮,而按钮断开时,指示灯熄灭,则说明晶闸管已损坏,触发性能不良。
(二)双向晶闸管的检测
1.判别各电极 用万用表R×1或R×10档分别测量双向晶闸管三个引脚间的正、反向电阻值,若测得某一管脚与其它两脚均不通,则此脚便是主电极T2。
找出T2极之后,剩下的两脚便是主电极T1和门极G3。测量这两脚之间的正反向电阻值,会测得两个均较小的电阻值。在电阻值较小(约几十欧姆)的一次测量中,黑表笔接的是主电极T1,红表笔接的是门极G。
螺栓形双向晶闸管的螺栓一端为主电极T2,较细的引线端为门极G,较粗的引线端为主电极T1。 金属封装(TO–3)双向晶闸管的外壳为主电极T2。
塑封(TO–220)双向晶徊管的中间引脚为主电极T2,该极通常与自带小散热片相连。
下图是几种双向晶闸管的引脚排列。
2.判别其好坏 用万用表R×1或R×10档测量双向晶闸管的主电极T1与主电极T2之间、主电极T2与门极G之间的正、反向电阻值,正常时均应接近无穷大。若测得电阻值均很小,则说明该晶闸管电极间已击穿或漏电短路。
测量主电极T1与门极G之间的正、反向电阻值,正常时均应在几十欧姆(Ω)至一百欧姆(Ω)之间(黑表笔接T1极,红表笔接G极时,测得的正向电阻值较反向电阻值略小一些)。若测得T1极与G极之间的正、反处电阻值均为无穷大,则说明该晶闸管已开路损坏。
3.触发能力检测 对于工作电流为8A以下的小功率双向晶闸管,可用万用表R×1档直接测量。测量时先将黑表笔接主电极T2,红表笔接主电极T1,然后用镊子将T2极与门极G短路,给G极加上正极性触发信号,若此时测得的电阻值由无穷大变为十几欧姆(Ω),则说明该晶闸管已被触发导通,导通方向为T2→T1。
再将黑表笔接主电极T1,红表笔接主电极T2,用镊子将T2极与门极G之间短路,给G极加上负极性触发信号时,测得的电阻值应由无穷大变为十几欧姆,则说明该晶闸管已被触发导通,导通方向为T1→T2。
若在晶闸管被触发导通后断开G极,T2、T1极间不能维持低阻导通状态而阻值变为无穷大,则说明该双向晶闸管性能不良或已经损坏。若给G极加上正(或负)极性触发信号后,晶闸管仍不导通(T1与T2间的正、反向电阻值仍为无穷大),则说明该晶闸管已损坏,无触发导通能力。
对于工作电流以8A以上的中、大功率双向晶闸管,在测量其触发能力时,可先在万用表的某支表笔上串接1~3节1.5V干电池,然后再用R×1档按上述方法测量。
对于耐压为400V以上的双向晶闸管,也可以用220V交流电压来测试其触发能力及性能好坏。 下图是双向晶闸管的测试电路。电路中,EL为60W/220V白炽灯泡,VT为被测双向晶闸管,R为100Ω限流电阻,S为按钮。
将电源插头接入市电后,双向晶闸管处于截止状态,灯泡不亮(若此时灯泡正常发光,则说明被测晶闸管的T1、T2极之间已击穿短路;若灯泡微亮,则说明被测晶闸管漏电损坏)。按动一下按钮S,为晶闸管的门极G提供触发电压信号,正常时晶闸管应立即被触发导通,灯泡正常发光。若灯泡不能发光,则说明被测晶闸管内部开路损坏。若按动按钮S时灯泡点亮,松手后灯泡又熄灭,则表明被测晶闸管的触发性能不良。(有疑问,交流过零时极性改变晶闸管本来就应该不通了,要重加触发电压才行)
(三)门极关断晶闸管的检测
1.判别各电极 门极关断晶闸管三个电极的判别方法与普通晶闸管相同,即用万用表的R×100档,找出具有二极管特性的两个电极,其中一次为低阻值(几百欧姆),另一次为阻值较大。在阻值小的那一次测量中,红表笔接的是阴极K,黑表笔接的是门极G,剩下的一只引脚为阳极A。
2.触发能力和关断能力的检测 可关断晶闸管触发能力的检测方法与普通晶闸管相同。检测门极关断晶闸管的关断能力时,可先按检测触发能力的方法使晶闸管处于导通状态,即用万用表R×1档,黑表笔接阳极A,红表笔接阴极K,测得电阻值为无穷大。再将A极与门极G短路,给G极加上正向触发信号时,晶闸管被触发导通,其A、K极间电阻值由无穷大变为低阻状态。断开A极与G极的短路点后,晶闸管维持低阻导通状态,说明其触发能力正常。再在晶闸管的门极G与阳极A之间加上反向触发信号,若此时A极与K极间电阻值由低阻值变为无穷大,则说明晶闸管的关断能力正常,下图是关断能力的检测示意图。
也可以用下图所示电路来检测门极关断晶闸管的触发能力和关断能力。电路中,EL为6.3V指示灯(小电珠),S为转换开关,VT为被测晶闸管。当开关S关断时,晶闸管不导通,指示灯不亮。将开关S的K1触点接通时,为G极加上正向触发信号,指示灯亮,说明晶闸管已被触发导通。若将开关S断开,指示灯维持发光,则说明晶闸管的触发能力正常。若将开关S的K2触点接通,为G极加上反向触发信号,指示灯熄灭,则说明晶闸管的关断能力正常。
(四)温控晶闸管的检测
1.判别各电极 温控晶闸管的内部结构与普通晶闸管相似,因此也可以用判别普通晶闸管电极的方法来找出温控晶闸管的电极。
2.性能检测 温控晶闸管的好坏也可以用万用表大致测出来,具体方法可参考普通晶闸管的检测方法。
下图是温控晶闸管的测试电路。电路中,R是分流电阻,用来设定晶闸管VT的开关温度,其阻值越小,开关温度设置值就越高。C为抗干扰电容,可防止晶闸管VT误触发。HL为6.3V指示灯(小电珠),S为电源开关。
接通电源开关S后,晶闸管VT不导通,指示灯HL不亮。用电吹风―热风档‖给晶闸管VT加温,当其温度达到设定温度值时,指示灯亮,说明晶闸管VT已被触发导通。若再用电吹风―冷风‖档给晶闸管VT降温(或待其自然冷却)至一定温度值时,指示灯能熄灭,则说明该晶闸管性能良好。若接通电源开关后指示灯即亮或给晶闸管加温后指示灯不亮、或给晶闸管降温后指示灯不熄灭,则是被测晶闸管击穿损坏或性能不良。
(五)光控晶闸管的检测
用万用表检测小功率光控晶闸管时,可将万用表置于R×1档,在黑表笔上串接1~3节1.5V干电池,测量两引脚之间的正、反向电阻值,正常时均应为无穷大。然后再用小手电筒或激光笔照射光控晶闸管的受光窗口,此时应能测出一个较小的正向电阻值,但反向电阻值仍为无穷大。在较小电阻值的一次测量中,黑笔接的是阳极A,红表笔接的是阴极K。
也可用下图电路对光控晶闸管进行测量。按通电源开关S,用手电筒照射晶闸管VT的受光窗口、为其加上触发光源(大功率光控晶闸管自带光源,只要将其光缆中的发光二极管或半导体激光器加上工作电压即可,不用外加光源)后,指示灯EL应点亮,撤离光源后指示灯EL应维持发光。
若接通电源开关S后(尚未加光源),指示灯EL即点亮,则说明被测晶闸管已击穿短路。若接通电源开关、并加上触发光源后,指示灯EL仍不亮,在被测晶闸管电极连接正确的情况下,则是该晶闸管内部损坏。若加上触发光源后,指示灯发光,但取消光源后指示灯即熄灭,则说明该晶闸管触发性能不良。
(六)BTG晶闸管的检测
1.判别各电极 根据BTG晶闸管的内部结构可知,其阻极A、阴极K之间和门极G、阴极K之间均包含有多个正、反向串联有PN结,而阳极A与门极G之间却只有一个PN结。因此,只要用万用表测出A极和G极即可。
将万用表置于R×1k档,两表笔任接被测晶闸管的某两个引脚(测其正、反向电阻值),若测出某对引脚为低阻值时,则黑表笔接的阳极A,而红表笔接的是门极G,另外一个引脚即是阴极K。
2.判断其好坏 用万用表R×1k档测量BTG晶闸管各电极之间的正、反向电阻值。正常时,阳极A与阴极K之间的正、反向电阻均为无穷大;阳极A与门极G之间的正向电阻值(指黑表笔接A极时)为
几百欧姆至几千欧姆,反向电阻值为无穷大。若测得某两极之间的正、反向电阻值均很小,则说明该晶闸管已短路损坏。
3.触发能力检测 将万用表置于R×1档,黑表笔接阳极A,红表笔接阴极K,测得阻值应为无穷大。然后用手指触摸门极G,给其加一个人体感应信号,若此时A、K之间的电阻值由无穷大变为低阻值(数欧姆),则说明晶闸管的触发能力良好。否则说明此晶闸管的性能不良。
(七)逆导晶闸管的检测
1.判别各电极 根据逆导晶闸管内部结构可知,在阳极A与阴极K之间并接有一只二极管(正极接K极),而门极G与阴极K之间有一个PN结,阳极A与门极之间有多个反向串联有PN结。
用万用表R×100档测量各电极之间的正反向电阻值时,会发现有一个电极与另外两个电极之间正、反向测量时均会有一个低阻值,这个电极就是阴极K。将黑表笔接阴极K,红表笔依次去触碰另外两个电极,显示为低阻值的一次测量中,红表笔接的是阳极A。再将红表笔接阴极K,黑表笔依次触碰另外两电极,显示低阻值的一次测量中,黑表笔接的便是门极G。
2.测量其好坏 用万用表R×100或R×1k档测量反向导通晶闸管的阳极A与阴极K之间的正、反向电阻值,正常时,正向电阻值(黑表笔接A极)为无穷大,反向电阻值为几百欧姆至几千欧姆(用R×1k档测量为7kΩ左右,用R×100档测量为900Ω左右)。若正、反向电阻值均为无穷大,则说明晶闸管内部并接的二极管已开路损坏。若正反向电阻值为很小,则是晶闸管短路损坏。
正常时反向导通晶闸管的阳极A与门极G之间的正、反向电阻值均为无穷大。若测得A、G极之间的正、反向电阻值均很小,则说明晶闸管的A、G极之间击穿短路。
正常时反向导通晶闸管的门极G与阴极K之间的正向电阻值(黑表笔接G极)为几百欧姆至几千欧姆,反向电阻值为无穷大。若测得其正、反向电阻值均为无穷大或均很小,则说明该晶闸管G、K极间已开路或短路损坏
3.触发能力检测 反向导通晶闸管的触发能力的检测方法与普通晶闸管相同。用万用表R×1档,黑表笔接阳极A,红表笔接阴极K(大功率晶闸管应在黑表笔或红表笔上串接1~3节1.5V干电池),将A、G极间瞬间短路,晶闸管即能被触发导通,万用表上的读数会由无穷大变为低阻值。若不能由无穷大变为低阻值,则说明被测晶闸管的触发能力不良。
(八)四端晶闸管的检测
1.判别各电极 四端晶闸管多采用金属壳封装,下图是其管脚排列底视图。从管键(管壳上的凸起处)开始看,顺时针方向依次为阴极K,阴极门极GK、阳极门极GA、阳极A。
2.判断其好坏 用万用表R×1k档,分别测量四端晶闸管各电极之间的正、反电阻值。正常时,阳极A与阳极门极GA之间的正向电阻值(黑表笔接A极)为无穷大,反向电阻值为4~12kΩ;阳极门极GA与阴极门极GK之间的正向电阻值(黑表笔接GA)为无穷大,反向电阻值为2~10 kΩ;阴极K与阴极控制极GK之间的正向电阻值(黑表笔接K)为无穷大,反向电阻值为4~12 kΩ。
若测得某两极之间的正、反向电阻值均较小或均为无穷大,则说明该晶闸管内部短路或开路。
3.触发能力检测 用万用表R×1k档,黑表笔接阳极A,红表笔接阴极K,此时电阻值为无穷大。若将K极与阳极门极GA瞬间短路、给GA极加上负触发脉冲电压时,A、K极间电阻值由无穷大迅速变为低阻值,则说明该晶闸管GA极的触发能力良好。
断开黑表笔后,再将其与阳极A连接好,红表笔仍接阴极K,万用表显示阻值为无穷大。若将A极与GK极瞬间短路,给GK极加上正向触发电压时,晶闸管A、K极之间的电阻值由无穷大变为低阻值,则可判定该晶闸管GK极的触发能力良好。
若将K、GA极或A、GA极短路时,A、K极之间的电阻值极仍为无穷大,则说明该晶闸管内部开路损坏或性能不良。
4.关断性能检测 在四端晶闸管被触发导通状态时,若将阳极A与阳极门极GA或阴极K与阴极门极GK瞬间短路,A、K极之间的电阻值由低阻值变为无穷大,则说明被测晶闸管的关断性能良好。
5.反向导通性能检测 分别将晶闸管的阳极A与阳极门极GA、阴极K与阴极门极短接后,用万用表R×1k档、黑表笔接A极,红表笔接K极,正常时阻值应为无穷大;再将两笔对调测量,K、A极间正常电阻值应为低阻值(数千欧姆)。