细胞工程应用及发展前景

细胞工程的应用及发展前景

姓名:刘长红 学号:[1**********]0 专业:生物科学3班

摘要:细胞工程,就是以细胞为单位,按人们的意志,应用细胞生物学、分子生物学等理论和技术,有目的地进行精心设计,精心操作,使细胞的某些遗传特性发生改变,达到改良或产生新品种的目的,以及使细胞增加或重新获得产生某种特定产物的能力,从而在离体条件下进行大量培养、增殖,并提取出对人类有用的产品的一门应用科学和技术。它主要由上游工程(包括细胞培养、细胞遗传操作和细胞保藏)和下游工程(即将已转化的细胞应用到生产实践中用以生产生物产品的过程)两部分构成。当前细胞工程所涉及的主要技术领域包括细胞融合技术、细胞器特别是细胞核移植技术、染色体改造技术、转基因动植物技术和细胞大量培养技术等方面。

关键字:细胞工程,实际应用,发展前景

1. 引言

当前细胞工程细胞工程是生物工程的一个重要方面。总的来说,它是应用细胞生物学和分子生物学的理论和方法,按照人们的设计蓝图,进行在细胞水平上的遗传操作及进行大规模的细胞和组织培养。。所涉及的主要技术领域有细胞培养、细胞融合、细胞拆合、染色体操作及基因转移等方面通过细胞工程可以生产有用的生物产品或培养有价值的植株,并可以产生新的物种或品系。细胞工程与基因工程一起代表着生物技术最新的发展前沿,伴随着试管植物、试管动物、转基因生物反应器等相继问世,细胞工程在生命科学、农业、医药、食品、环境保护等领域发挥着越来越重要的作用。

1. 细胞工程的概念及研究内容

1.1细胞工程

具体是指应用现代细胞生物学、发育生物学、遗传学和分子生物学的理论与方法,按照人们的需要和设计,在细胞水平上的遗传操作,重组细胞的结构和内含物,以改变生物的结构和功能,即通过细胞融合、核质移植、染色体或基因移植以及组织和细胞培养等方法,快速繁殖和培养出人们所需要的新物种的生物工程技术。21世纪合成生物学的发展,采用计算机辅助设计、DNA 或基因合成技术,人工设计细胞的信号传导与基因表达调控网络,乃至整个基因组与细胞的人工设计与合成,从而刷新了基因工程与细胞工程技术,并将带来生物计算机、细胞制药厂、生物炼制石油等技术与产业革命。

1.2细胞工程的研究内容

动植物细胞与组织培养、细胞融合(新的物种或品系、单克隆抗体)、细胞核移植(无性繁殖、克隆动物)、染色体工程(多倍体育种,例:八倍体小黑麦)、胚胎工程(优良品种、试管婴儿)、干细胞与组织工程(胚胎干细胞、组织干细胞)、转基因生物与生物反应器(转基因动物、转基因植物)

2. 细胞工程的应用

2.1细胞工程在植物方面的应用

2.1.1细胞大量培养与有用次生代谢产物生产

细胞大量培养有用次生代谢产物是植物细胞工程另一个重要应用领域。通过细胞工程技术,刺激植物体内某些重要次生代谢产物的合成和积累,然后进行分离、提纯,如某些名贵药物、香精、色素等,实现植物产品的工业化生产。早在1964年我国就开始进行人参细胞培养。1980年以后,我国研究者相继开展了紫草、三七、红豆杉、青蒿、红景天和水母雪莲等植物的细胞大量培养和研究,并利用生物反应器进行药用植物的细胞大量培养的小试和中试。其中新疆紫草中试的规模达到100L ,并小批量生产了紫草素,用于研制化妆品及抗菌、抗病毒和抗肿瘤药物。红豆杉细胞大量培养在我国也获得初步成功,从细胞培养物中得到了珍贵的抗癌药物紫杉醇,但产率还有待提高。

2.1.2微繁殖技术的应用

微繁殖技术,即以植物的器官、组织、细胞或原生质体为外植体,在离体培养条件下进行植株再生的技术。应用微繁殖技术既可用于克服高度杂合物种因有性繁殖而引起的后代严重分离,如澳大利亚的番木瓜;有可用于名优或濒危物种的快速繁殖,如凤梨、草莓。通过微繁技术已获再生植株的树种主要有番木瓜、柑橘、龙眼、荔枝、苹果、梨、葡萄等,草莓、香蕉等以实现了商品化生产。通过茎尖培养或微嫁接技术,可以脱去植物体内的病毒,获得无病毒苗木,如苹果、草莓等。另外,在组织培养过程中,如愈伤组织培养、细胞悬浮培养、原生质体培养等,通过pH 值、温度、离子浓度等条件的变化,可增加其变异,从中可筛选出优良的突变体,从而为新品种的选育开辟一条崭新的途径。愈伤组织、悬浮细胞、原生质体等是基因转化的良好受体材料,并且在离体培养条件下进行植株再生也是实现植物遗传转化的重要环节。

2.1.3单倍体技术的应用

和相关研究在农业和园艺植物中得到了广泛的应用。用Blakeslee 等和Kostoff 分别得到了单倍体植株单倍体有利于突变的检测和抗性细胞系的筛选,并且大大缩短了育种的时间。此外单倍体在基因图谱、基因转移研究中具有重要作用。自然形成的单倍体是极少见的,并且仅限于几种植物。花药培养是单倍体形成的重要途径。自1964年第一例花药培养获得成功以来,花药培养技术已取得了显著的进展,尤其在水稻、小麦、玉米等作物中已获得巨大成功。现已取得成功的果树树种主要有番荔枝、番木瓜、4个柑橘品种、龙眼、荔枝、苹果、梨、葡萄等。薛光荣等对东方草莓(四倍体)的单核期花粉进行培养,成功的诱导出单倍体植株。花药培养主要是受基因型、花药的发育阶段、预处理和培养条件的影响,其存在的主要问题是单倍体的诱导频率低,单倍体自发加倍形成的二倍体与体细胞组织形成的二倍体很难区分。例如,Fowler 等、Nishi 等和Rosati 等以八倍体草莓花药为材料诱导愈伤组织,并分化出植株,发现其再生植株仍为八倍体,这些八倍体是由无性器官发育而来,还是由单倍体自发加倍而成则难以区分。除花药培养外,植物的卵细胞、助细胞、反足细胞等单倍体细胞通过离体培养可以分化成单倍体胚或愈伤组织。胚珠、子房培养也曾进行了大量尝试,但大多数情况下,在愈伤组织阶段生长停止。

2.1.4胚培养

胚的离体培养是直接应用于植物改良最早的组织培养技术。胚培养可以克服杂交后胚的衰亡,保证种内或种间杂交的成功,或用于无性繁殖困难的植物的培养。胚培养还可以克服种子的休眠和败育。Magdalita 等和Drew 等分别进行了番木瓜的种内杂交,得到合适的胚子后,进行了胚培养,以促进杂交成功。Jordan

得到了愈伤组织,但未得到再生植株。澳大利亚国际农业技术研究中心对番木瓜和其野生种的杂交胚进行了培养研究,已获成功,并得到了杂交后代,野生种的抗性、高含糖量等优良性状得到了遗传。荔枝是较难进行离体培养的果树树种之一,Kantharajah 等培养了长度为3mm 的荔枝幼胚。其他通过未成熟胚培养进行再生的树种有鳄梨、番荔枝和番木瓜等。姚强对桃、油桃和番桃花后60d 的未成熟胚进行培养,获得了再生植株

2.1.5原生质体培养与体细胞杂交

原生质体是去掉细胞壁的单细胞,它是在离体培养条件下能够再生完整植株的最小单位。每个原生质体都含有该个体的全部遗传信息,在适宜的培养条件下,具有再生成与其亲本相似的个体的全能性。原生质体培养的主要目的是通过原生质体的融合,克服远缘杂交障碍,实现体细胞杂交,从而产生杂交后代。在原生质体培养过程中,往往产生大量的变异,可从中选择优良突变体。Nyman 等首先报道了草莓栽培品种Sengana 和Canaga 试管苗叶肉原生质体培养及植株再生。1992年,他们获得了草莓试管苗幼叶和叶柄原生质体的再生植株。Infante 等以森林草莓用Alpine 营养系试管苗叶片和叶柄为材料分离原生质体,并获得了再生植株。愈伤组织和悬浮细胞是制备原生质体的重要材料,但在落叶果树上,只有少数树种利用愈伤组织或悬浮细胞分离原生质体并获得培养的成功,其中最成功的树种当属猕猴桃。蔡起贵等通过愈伤组织分离出中华猕猴桃的原生质体,并获得了再生植株。林定波等以胚性愈伤组织为材料,分离得到锦橙的原生质体,并获得了再生植株。易干军等也以胚性愈伤组织为材料,分离得到柑橘(红江橘)的原生质体,并获得再生植株。但以叶肉为材料分离得到的原生质体未获得成功。丁爱萍等曾对苹果进行了原生质体培养和植株再生研究,以胚性愈伤组织建立的悬浮细胞系为材料,分离得到原生质体,并获得了再生植株。目前两种最有效的融合系统PEG ——高pH/Ca2+ 方法和电击融合方法。第一例体细胞杂交是通过西红柿和马铃薯的原生质体融合实现的。原生质体融合技术在柑橘种间杂交中得到大量应用。Ohgawary 将甜橙的原生质体与飞龙的原生质体融合,得到了体细胞杂种植株。美国学者Grosser 将甜橙的悬浮培养细胞的原生质体与豪壳刺属的Severinia disticha 愈伤组织的原生质体融合,得到了属间异源四倍体的体细胞杂种植株。S.distcha 具有抗病、耐寒、耐盐等优良性状,适合作柑橘的砧木。

2.1.6转化

分子生物学的飞速发展,导致了植物科学的一场新革命。经过多年的探索,人们从分子水平对生物学和遗传学有了深刻的认识,与组织培养技术相结合,分子生物学技术已开始应用于植物基因组的修饰和改变。由于基因编码的同一性,任何有机体内(如病毒、菌类、昆虫)的有用基因都可以转入到植物体。由于基因(如抗虫或抗病基因)的导入,导致了新的基因型的出现或实现基因型的改良,可选育出抗虫或抗病的基因型。目前已经分离或应用的目的基因主要有抗植物病虫害基因、抗非生物胁迫、改良作物产量品质的基因、改变植物其他性状的基因等。有关外源基因导入植物细胞的方法有多种,如农杆菌质粒介导法(包括Ti 质粒的Ri 质粒)、植物病毒载体介导法、DNA 直接导入法(包括PEG 介导、脂质体介导等化学诱导DNA 直接转化法,电激法、超声波、显微注射、激光微束、基因枪法等物理诱导DNA 直接转化法等)和种质系统介导基因转化法(包括花粉管导入法,生殖细胞浸泡法,囊胚、子房注射法等)。目前最常用且最为有效的方法为根癌农杆菌介导法和基因枪法。自1983年首次用农杆菌介导法在烟草和马铃薯上取得成功以来,约有120种植物采用此方法进行转化。农杆菌介导法对双

子叶植物十分有效,但在单子叶植物中也已开始应用。基因枪法既可以愈伤组织作为受体,又可以悬浮细胞作为受体,并且对单双子叶植物都十分有效。

2.2 细胞工程在动物方面的应用

2.2.1供医学器官修复或移植的组织工程

运用细胞工程技术使人体残余器官的少量正常细胞在体外繁殖,从而获得患者所需要的、具有相同功能又不存在排斥反应的器官,供器官移植只需。例如,一些骨骼、软骨、血管和皮肤都正在实验室培育,肝脏、胰脏、心脏、乳房、手指和耳朵等在实验室生长成形。

2.2.2快速繁殖优良、濒危品种及新品种

借腹怀胎提高种畜的利用率。20世纪30年代胚胎移植在绵羊和山羊中取得成功;1982年美国学者获得世界上第一胎试管牛。通过体外受精、细胞核移植技术、胚胎分割、胚胎融合等技术达到快速繁殖的目的,也有可能创造出高产奶牛、瘦肉型猪等新品种。通过胚胎工程、克隆技术等进行大熊猫、东北虎等珍稀动物的繁殖。

2.2.3利用动殖物细胞培养生产活性产物、药品

主要各种疫苗、抗体等。1975年英国剑桥大学利用动物细胞融合技术首次获得单克隆抗体。已启用300L 和1000L 的培养罐分别用于生产单克隆抗体和灰色脊髓炎等疫苗。20世纪90年代国际上兴起了一种用活细胞作为治疗剂的“活细胞疗法”,主要是在体外繁殖患者的自体细胞,使之扩增或具有疗效物质,然后再注入到体内,该法对癌症、白血病、糖尿病、烧伤、艾滋病等都有潜在的治疗效果。

2.2.4转基因动物的生物反应器

与传统动物细胞培养相比,转基因动物制药技术具有很高的效益,一头转基因动物就是一座天然的基因药物制造厂。1992年,上海医学遗传所培育携带人体蛋白基因的中国首例转基因试管牛。2000年,我国培育出转有人α抗胰蛋白酶基因的转基因山羊,可从转基因山羊奶中提取治疗慢性肺气肿、先天性肺纤维化囊肿等疾病的特效药物。

2.3. 细胞工程在能源、环境保护等领域的应用

为了获得能分解利用纤维素水解物,并高效产生乙醇的菌株,将利用纤维二糖能力强的Candida abtusa 和产乙醇率高的发酵接合糖酵母进行融合,获得的融合子不但以纤维二糖为唯一碳源,而且产乙醇能力高于双亲绿孢链霉菌TTA 和西康氏链霉菌75viz 进行融合,得到4株降解玉米杆纤维素能力比亲株高出155%~264% 。通过电融合法对酿酒酵母和季也蒙假丝酵母进行融合,筛选出既能利用木糖又能利用纤维二糖生产乙醇的菌种,对纤维素再生资源的利用和减少环境污染具有重要意义。

2.4. 细胞工程在制药工业方面的应用

在我国目前动物细胞工程的发展中,技术最成熟的当数细胞融合。其中淋巴细胞杂交瘤在国内已普遍开展,并培育了许多具有很高实用价值的杂交瘤细胞株系,它们能分泌产生在诊断和治疗病症方面发挥重要作用的单克隆抗体。如甲肝病毒单克隆抗体、抗人IgM 单克隆抗体、肿瘤疫苗等可用于治疗疾病;抗人结肠癌杂交瘤细胞系分泌的单克隆抗体、抗M -CSFR (Macrophage Colony -Stimulating Factor Receptor,巨噬细胞集落刺激因子受体)胞外区的单克隆抗体等则对诊断疾病具有重要价值。由于技术已趋成熟,目前许多单克隆抗体已经进入产业化的生产阶段。

2.4.1 核移植 就是将一个动物的细胞核,移植到卵细胞中,并发育生长。核移植技术可用于具有良好发展前景的生物反应器的制备。其中乳腺生物反应器的研制是最为看好的一个转基因制药方向。利用转基因动物乳腺作为生物反应器,生产基因工程人类蛋白质药物,其成本较微生物发酵、动物细胞培养生产基因工程药物大大降低。但十几年来,显微注射技术一直是生产乳腺生物反应器的唯一实用手段,由于它本身固有的缺点,使得乳腺生物反应器未能有长足的进步。基因把靶与核移植结合很可能成为生产乳腺生物反 应器更有效的途径,它在外源基因定点整合、消除位点效应、降低生产成本、节省时间方面具有明显的优势。 2.4.2动物细胞培养 是指离散的动物活细胞在体外人工条件下的生长、增殖的过程。动物细胞培养开始于本世纪初,到1962年规模开始扩大,发展至今已成为生物、医学研究和应用中广泛采用的技术方法,利用动物细胞培养生产的具有重要医用价值的生物制品有各类疫苗、干扰素、激素、酶、生长因子、病毒杀虫剂、单克隆抗体等,已成为医药生物高技术产业的重要部分,其销售收入已占到世界生物技术产品的一半以上。

3. 细胞工程应用的展望

进入新世纪,细胞工程的研究进展及其在生产实践中的应用产生的效益,已是有目共睹。它已成为高新技术开发的重要领域。据测算,优良品种对农作物增产的贡献率一般为33%。因此,大力推广优良品种,就成为实现中国农业“高产、优质、低耗”发展目标的主要途径随着农业科技进步,农业生产的不断发展与人类对农产品的日益增长的需要,必然要求育成更多高产、优质、多抗与用途多样化的农作物品种用于农业生产。要实现上述育种目标,就必须采用科学、先进与创新的育种新技术。通过以上染色体工程技术、原生质体培养、花药培养与无性系变异筛选、组织与体细胞杂交技术在农作物育种上开发应用所取得新进展的综述,充分展示了植物细胞工程技术对加快农作物新品种的育种进程,缩短育种年限,扩大变异范围,拓宽育种领域,打破种问杂交障碍,提高育种水平所起到的重要作用。展望未来,我们可以信心满怀地说,细胞工程的研究、开发与应用必会在新世纪得到更快速的发展,我们要抓住这一时机促进我国细胞工程在林业、农业、畜牧业以及制药业更加快速而稳步的发展。

参考文献:

孙毅.细胞工程的研究进展及前景展望 2006年第16卷第12期

孙毅.生物技术研究的新进展[J].科技信息杂志,1995(5):10-11.

王鸣.现代育种学的发展[M] 北京:农业出版社。1974.72—84,141—148

赵军良,等.植物原生质体培养方法上的进展[J].山西农业科学,1994,(1):55-58

胡彦,等.植物组织培养技术的应用[J].陕西师范大学学报(自然科学版) ,32 Sup,130-134 周元昌.作物育种科学发展的趋势.世界农业,2003(7):38-41

王爱云.植物细胞工程技术在油菜育种的应用现状与进展[J].中国农学通报,2005,21(4):64-458 Dapeng Li, Zhou Zhigang, Liu Haihang, Wu Chaoyuan, 1999. A new method of Luminary japonica strain selection and spore ling raising by the use of gametophyte clones. Hydro-biologia, 398/399:473-476.

Fan Tsung-ci, Tai Chi-hsun, Ou YU-lin. Some genetic observations on the monoploid of Laminaria japonica. Scientia Sinica,21:401-408.

细胞工程的应用及发展前景

姓名:刘长红 学号:[1**********]0 专业:生物科学3班

摘要:细胞工程,就是以细胞为单位,按人们的意志,应用细胞生物学、分子生物学等理论和技术,有目的地进行精心设计,精心操作,使细胞的某些遗传特性发生改变,达到改良或产生新品种的目的,以及使细胞增加或重新获得产生某种特定产物的能力,从而在离体条件下进行大量培养、增殖,并提取出对人类有用的产品的一门应用科学和技术。它主要由上游工程(包括细胞培养、细胞遗传操作和细胞保藏)和下游工程(即将已转化的细胞应用到生产实践中用以生产生物产品的过程)两部分构成。当前细胞工程所涉及的主要技术领域包括细胞融合技术、细胞器特别是细胞核移植技术、染色体改造技术、转基因动植物技术和细胞大量培养技术等方面。

关键字:细胞工程,实际应用,发展前景

1. 引言

当前细胞工程细胞工程是生物工程的一个重要方面。总的来说,它是应用细胞生物学和分子生物学的理论和方法,按照人们的设计蓝图,进行在细胞水平上的遗传操作及进行大规模的细胞和组织培养。。所涉及的主要技术领域有细胞培养、细胞融合、细胞拆合、染色体操作及基因转移等方面通过细胞工程可以生产有用的生物产品或培养有价值的植株,并可以产生新的物种或品系。细胞工程与基因工程一起代表着生物技术最新的发展前沿,伴随着试管植物、试管动物、转基因生物反应器等相继问世,细胞工程在生命科学、农业、医药、食品、环境保护等领域发挥着越来越重要的作用。

1. 细胞工程的概念及研究内容

1.1细胞工程

具体是指应用现代细胞生物学、发育生物学、遗传学和分子生物学的理论与方法,按照人们的需要和设计,在细胞水平上的遗传操作,重组细胞的结构和内含物,以改变生物的结构和功能,即通过细胞融合、核质移植、染色体或基因移植以及组织和细胞培养等方法,快速繁殖和培养出人们所需要的新物种的生物工程技术。21世纪合成生物学的发展,采用计算机辅助设计、DNA 或基因合成技术,人工设计细胞的信号传导与基因表达调控网络,乃至整个基因组与细胞的人工设计与合成,从而刷新了基因工程与细胞工程技术,并将带来生物计算机、细胞制药厂、生物炼制石油等技术与产业革命。

1.2细胞工程的研究内容

动植物细胞与组织培养、细胞融合(新的物种或品系、单克隆抗体)、细胞核移植(无性繁殖、克隆动物)、染色体工程(多倍体育种,例:八倍体小黑麦)、胚胎工程(优良品种、试管婴儿)、干细胞与组织工程(胚胎干细胞、组织干细胞)、转基因生物与生物反应器(转基因动物、转基因植物)

2. 细胞工程的应用

2.1细胞工程在植物方面的应用

2.1.1细胞大量培养与有用次生代谢产物生产

细胞大量培养有用次生代谢产物是植物细胞工程另一个重要应用领域。通过细胞工程技术,刺激植物体内某些重要次生代谢产物的合成和积累,然后进行分离、提纯,如某些名贵药物、香精、色素等,实现植物产品的工业化生产。早在1964年我国就开始进行人参细胞培养。1980年以后,我国研究者相继开展了紫草、三七、红豆杉、青蒿、红景天和水母雪莲等植物的细胞大量培养和研究,并利用生物反应器进行药用植物的细胞大量培养的小试和中试。其中新疆紫草中试的规模达到100L ,并小批量生产了紫草素,用于研制化妆品及抗菌、抗病毒和抗肿瘤药物。红豆杉细胞大量培养在我国也获得初步成功,从细胞培养物中得到了珍贵的抗癌药物紫杉醇,但产率还有待提高。

2.1.2微繁殖技术的应用

微繁殖技术,即以植物的器官、组织、细胞或原生质体为外植体,在离体培养条件下进行植株再生的技术。应用微繁殖技术既可用于克服高度杂合物种因有性繁殖而引起的后代严重分离,如澳大利亚的番木瓜;有可用于名优或濒危物种的快速繁殖,如凤梨、草莓。通过微繁技术已获再生植株的树种主要有番木瓜、柑橘、龙眼、荔枝、苹果、梨、葡萄等,草莓、香蕉等以实现了商品化生产。通过茎尖培养或微嫁接技术,可以脱去植物体内的病毒,获得无病毒苗木,如苹果、草莓等。另外,在组织培养过程中,如愈伤组织培养、细胞悬浮培养、原生质体培养等,通过pH 值、温度、离子浓度等条件的变化,可增加其变异,从中可筛选出优良的突变体,从而为新品种的选育开辟一条崭新的途径。愈伤组织、悬浮细胞、原生质体等是基因转化的良好受体材料,并且在离体培养条件下进行植株再生也是实现植物遗传转化的重要环节。

2.1.3单倍体技术的应用

和相关研究在农业和园艺植物中得到了广泛的应用。用Blakeslee 等和Kostoff 分别得到了单倍体植株单倍体有利于突变的检测和抗性细胞系的筛选,并且大大缩短了育种的时间。此外单倍体在基因图谱、基因转移研究中具有重要作用。自然形成的单倍体是极少见的,并且仅限于几种植物。花药培养是单倍体形成的重要途径。自1964年第一例花药培养获得成功以来,花药培养技术已取得了显著的进展,尤其在水稻、小麦、玉米等作物中已获得巨大成功。现已取得成功的果树树种主要有番荔枝、番木瓜、4个柑橘品种、龙眼、荔枝、苹果、梨、葡萄等。薛光荣等对东方草莓(四倍体)的单核期花粉进行培养,成功的诱导出单倍体植株。花药培养主要是受基因型、花药的发育阶段、预处理和培养条件的影响,其存在的主要问题是单倍体的诱导频率低,单倍体自发加倍形成的二倍体与体细胞组织形成的二倍体很难区分。例如,Fowler 等、Nishi 等和Rosati 等以八倍体草莓花药为材料诱导愈伤组织,并分化出植株,发现其再生植株仍为八倍体,这些八倍体是由无性器官发育而来,还是由单倍体自发加倍而成则难以区分。除花药培养外,植物的卵细胞、助细胞、反足细胞等单倍体细胞通过离体培养可以分化成单倍体胚或愈伤组织。胚珠、子房培养也曾进行了大量尝试,但大多数情况下,在愈伤组织阶段生长停止。

2.1.4胚培养

胚的离体培养是直接应用于植物改良最早的组织培养技术。胚培养可以克服杂交后胚的衰亡,保证种内或种间杂交的成功,或用于无性繁殖困难的植物的培养。胚培养还可以克服种子的休眠和败育。Magdalita 等和Drew 等分别进行了番木瓜的种内杂交,得到合适的胚子后,进行了胚培养,以促进杂交成功。Jordan

得到了愈伤组织,但未得到再生植株。澳大利亚国际农业技术研究中心对番木瓜和其野生种的杂交胚进行了培养研究,已获成功,并得到了杂交后代,野生种的抗性、高含糖量等优良性状得到了遗传。荔枝是较难进行离体培养的果树树种之一,Kantharajah 等培养了长度为3mm 的荔枝幼胚。其他通过未成熟胚培养进行再生的树种有鳄梨、番荔枝和番木瓜等。姚强对桃、油桃和番桃花后60d 的未成熟胚进行培养,获得了再生植株

2.1.5原生质体培养与体细胞杂交

原生质体是去掉细胞壁的单细胞,它是在离体培养条件下能够再生完整植株的最小单位。每个原生质体都含有该个体的全部遗传信息,在适宜的培养条件下,具有再生成与其亲本相似的个体的全能性。原生质体培养的主要目的是通过原生质体的融合,克服远缘杂交障碍,实现体细胞杂交,从而产生杂交后代。在原生质体培养过程中,往往产生大量的变异,可从中选择优良突变体。Nyman 等首先报道了草莓栽培品种Sengana 和Canaga 试管苗叶肉原生质体培养及植株再生。1992年,他们获得了草莓试管苗幼叶和叶柄原生质体的再生植株。Infante 等以森林草莓用Alpine 营养系试管苗叶片和叶柄为材料分离原生质体,并获得了再生植株。愈伤组织和悬浮细胞是制备原生质体的重要材料,但在落叶果树上,只有少数树种利用愈伤组织或悬浮细胞分离原生质体并获得培养的成功,其中最成功的树种当属猕猴桃。蔡起贵等通过愈伤组织分离出中华猕猴桃的原生质体,并获得了再生植株。林定波等以胚性愈伤组织为材料,分离得到锦橙的原生质体,并获得了再生植株。易干军等也以胚性愈伤组织为材料,分离得到柑橘(红江橘)的原生质体,并获得再生植株。但以叶肉为材料分离得到的原生质体未获得成功。丁爱萍等曾对苹果进行了原生质体培养和植株再生研究,以胚性愈伤组织建立的悬浮细胞系为材料,分离得到原生质体,并获得了再生植株。目前两种最有效的融合系统PEG ——高pH/Ca2+ 方法和电击融合方法。第一例体细胞杂交是通过西红柿和马铃薯的原生质体融合实现的。原生质体融合技术在柑橘种间杂交中得到大量应用。Ohgawary 将甜橙的原生质体与飞龙的原生质体融合,得到了体细胞杂种植株。美国学者Grosser 将甜橙的悬浮培养细胞的原生质体与豪壳刺属的Severinia disticha 愈伤组织的原生质体融合,得到了属间异源四倍体的体细胞杂种植株。S.distcha 具有抗病、耐寒、耐盐等优良性状,适合作柑橘的砧木。

2.1.6转化

分子生物学的飞速发展,导致了植物科学的一场新革命。经过多年的探索,人们从分子水平对生物学和遗传学有了深刻的认识,与组织培养技术相结合,分子生物学技术已开始应用于植物基因组的修饰和改变。由于基因编码的同一性,任何有机体内(如病毒、菌类、昆虫)的有用基因都可以转入到植物体。由于基因(如抗虫或抗病基因)的导入,导致了新的基因型的出现或实现基因型的改良,可选育出抗虫或抗病的基因型。目前已经分离或应用的目的基因主要有抗植物病虫害基因、抗非生物胁迫、改良作物产量品质的基因、改变植物其他性状的基因等。有关外源基因导入植物细胞的方法有多种,如农杆菌质粒介导法(包括Ti 质粒的Ri 质粒)、植物病毒载体介导法、DNA 直接导入法(包括PEG 介导、脂质体介导等化学诱导DNA 直接转化法,电激法、超声波、显微注射、激光微束、基因枪法等物理诱导DNA 直接转化法等)和种质系统介导基因转化法(包括花粉管导入法,生殖细胞浸泡法,囊胚、子房注射法等)。目前最常用且最为有效的方法为根癌农杆菌介导法和基因枪法。自1983年首次用农杆菌介导法在烟草和马铃薯上取得成功以来,约有120种植物采用此方法进行转化。农杆菌介导法对双

子叶植物十分有效,但在单子叶植物中也已开始应用。基因枪法既可以愈伤组织作为受体,又可以悬浮细胞作为受体,并且对单双子叶植物都十分有效。

2.2 细胞工程在动物方面的应用

2.2.1供医学器官修复或移植的组织工程

运用细胞工程技术使人体残余器官的少量正常细胞在体外繁殖,从而获得患者所需要的、具有相同功能又不存在排斥反应的器官,供器官移植只需。例如,一些骨骼、软骨、血管和皮肤都正在实验室培育,肝脏、胰脏、心脏、乳房、手指和耳朵等在实验室生长成形。

2.2.2快速繁殖优良、濒危品种及新品种

借腹怀胎提高种畜的利用率。20世纪30年代胚胎移植在绵羊和山羊中取得成功;1982年美国学者获得世界上第一胎试管牛。通过体外受精、细胞核移植技术、胚胎分割、胚胎融合等技术达到快速繁殖的目的,也有可能创造出高产奶牛、瘦肉型猪等新品种。通过胚胎工程、克隆技术等进行大熊猫、东北虎等珍稀动物的繁殖。

2.2.3利用动殖物细胞培养生产活性产物、药品

主要各种疫苗、抗体等。1975年英国剑桥大学利用动物细胞融合技术首次获得单克隆抗体。已启用300L 和1000L 的培养罐分别用于生产单克隆抗体和灰色脊髓炎等疫苗。20世纪90年代国际上兴起了一种用活细胞作为治疗剂的“活细胞疗法”,主要是在体外繁殖患者的自体细胞,使之扩增或具有疗效物质,然后再注入到体内,该法对癌症、白血病、糖尿病、烧伤、艾滋病等都有潜在的治疗效果。

2.2.4转基因动物的生物反应器

与传统动物细胞培养相比,转基因动物制药技术具有很高的效益,一头转基因动物就是一座天然的基因药物制造厂。1992年,上海医学遗传所培育携带人体蛋白基因的中国首例转基因试管牛。2000年,我国培育出转有人α抗胰蛋白酶基因的转基因山羊,可从转基因山羊奶中提取治疗慢性肺气肿、先天性肺纤维化囊肿等疾病的特效药物。

2.3. 细胞工程在能源、环境保护等领域的应用

为了获得能分解利用纤维素水解物,并高效产生乙醇的菌株,将利用纤维二糖能力强的Candida abtusa 和产乙醇率高的发酵接合糖酵母进行融合,获得的融合子不但以纤维二糖为唯一碳源,而且产乙醇能力高于双亲绿孢链霉菌TTA 和西康氏链霉菌75viz 进行融合,得到4株降解玉米杆纤维素能力比亲株高出155%~264% 。通过电融合法对酿酒酵母和季也蒙假丝酵母进行融合,筛选出既能利用木糖又能利用纤维二糖生产乙醇的菌种,对纤维素再生资源的利用和减少环境污染具有重要意义。

2.4. 细胞工程在制药工业方面的应用

在我国目前动物细胞工程的发展中,技术最成熟的当数细胞融合。其中淋巴细胞杂交瘤在国内已普遍开展,并培育了许多具有很高实用价值的杂交瘤细胞株系,它们能分泌产生在诊断和治疗病症方面发挥重要作用的单克隆抗体。如甲肝病毒单克隆抗体、抗人IgM 单克隆抗体、肿瘤疫苗等可用于治疗疾病;抗人结肠癌杂交瘤细胞系分泌的单克隆抗体、抗M -CSFR (Macrophage Colony -Stimulating Factor Receptor,巨噬细胞集落刺激因子受体)胞外区的单克隆抗体等则对诊断疾病具有重要价值。由于技术已趋成熟,目前许多单克隆抗体已经进入产业化的生产阶段。

2.4.1 核移植 就是将一个动物的细胞核,移植到卵细胞中,并发育生长。核移植技术可用于具有良好发展前景的生物反应器的制备。其中乳腺生物反应器的研制是最为看好的一个转基因制药方向。利用转基因动物乳腺作为生物反应器,生产基因工程人类蛋白质药物,其成本较微生物发酵、动物细胞培养生产基因工程药物大大降低。但十几年来,显微注射技术一直是生产乳腺生物反应器的唯一实用手段,由于它本身固有的缺点,使得乳腺生物反应器未能有长足的进步。基因把靶与核移植结合很可能成为生产乳腺生物反 应器更有效的途径,它在外源基因定点整合、消除位点效应、降低生产成本、节省时间方面具有明显的优势。 2.4.2动物细胞培养 是指离散的动物活细胞在体外人工条件下的生长、增殖的过程。动物细胞培养开始于本世纪初,到1962年规模开始扩大,发展至今已成为生物、医学研究和应用中广泛采用的技术方法,利用动物细胞培养生产的具有重要医用价值的生物制品有各类疫苗、干扰素、激素、酶、生长因子、病毒杀虫剂、单克隆抗体等,已成为医药生物高技术产业的重要部分,其销售收入已占到世界生物技术产品的一半以上。

3. 细胞工程应用的展望

进入新世纪,细胞工程的研究进展及其在生产实践中的应用产生的效益,已是有目共睹。它已成为高新技术开发的重要领域。据测算,优良品种对农作物增产的贡献率一般为33%。因此,大力推广优良品种,就成为实现中国农业“高产、优质、低耗”发展目标的主要途径随着农业科技进步,农业生产的不断发展与人类对农产品的日益增长的需要,必然要求育成更多高产、优质、多抗与用途多样化的农作物品种用于农业生产。要实现上述育种目标,就必须采用科学、先进与创新的育种新技术。通过以上染色体工程技术、原生质体培养、花药培养与无性系变异筛选、组织与体细胞杂交技术在农作物育种上开发应用所取得新进展的综述,充分展示了植物细胞工程技术对加快农作物新品种的育种进程,缩短育种年限,扩大变异范围,拓宽育种领域,打破种问杂交障碍,提高育种水平所起到的重要作用。展望未来,我们可以信心满怀地说,细胞工程的研究、开发与应用必会在新世纪得到更快速的发展,我们要抓住这一时机促进我国细胞工程在林业、农业、畜牧业以及制药业更加快速而稳步的发展。

参考文献:

孙毅.细胞工程的研究进展及前景展望 2006年第16卷第12期

孙毅.生物技术研究的新进展[J].科技信息杂志,1995(5):10-11.

王鸣.现代育种学的发展[M] 北京:农业出版社。1974.72—84,141—148

赵军良,等.植物原生质体培养方法上的进展[J].山西农业科学,1994,(1):55-58

胡彦,等.植物组织培养技术的应用[J].陕西师范大学学报(自然科学版) ,32 Sup,130-134 周元昌.作物育种科学发展的趋势.世界农业,2003(7):38-41

王爱云.植物细胞工程技术在油菜育种的应用现状与进展[J].中国农学通报,2005,21(4):64-458 Dapeng Li, Zhou Zhigang, Liu Haihang, Wu Chaoyuan, 1999. A new method of Luminary japonica strain selection and spore ling raising by the use of gametophyte clones. Hydro-biologia, 398/399:473-476.

Fan Tsung-ci, Tai Chi-hsun, Ou YU-lin. Some genetic observations on the monoploid of Laminaria japonica. Scientia Sinica,21:401-408.


相关文章

  • 基因组测序
  • 基因组测序.干细胞.基因工程与未来人类社会 近些年来,随着分子生物学的发展,基因组测序.干细胞.基因工程等一系列高新生物技术蓬勃发展,同时也在改变着人类的生活.有人预言"二十一世纪将是生物的世纪",而这些生物技术的发展与 ...查看


  • 生物技术在制药方面的应用与前景
  • 摘 要:生物制药中生物技术研究开发和应用最为活跃.邻域进展的也是最快,在我国的制药产业中是最具有前途的产业之一.目前生物制药的研究成果数量日益增长,在新药研发中生物技术制药形式相对比较重要,使生物技术制药成为了研发主流.在未来的发展过程中, ...查看


  • 骨组织工程基础研究与临床应用:回顾与展望
  • 中国修复重建外科杂志2008年2月第22卷第2期 ·129· • 述 评 • 赵春华 [关键词] 骨组织工程 基础研究 临床应用中图分类号: R318 Q813 文献标志码:C 组织工程学作为21世纪生命科学领域的重大前沿课题,至今仅20余 ...查看


  • 植物细胞工程
  • 细胞生物学论文 植物细胞工程研究及展望 摘要 此文概要介绍了植物细胞工程的主要分支学科及其研究进展.包括原生质体培养.细胞融合与体细胞杂交.胚胎培养和试管受精.组织和细胞培养生产有用物质.单倍体育种.体细胞无性系变异.细胞突变体的筛选.植物 ...查看


  • 生物科技背景资料整理
  • 生物科技(生物技术) 1.概念 生物科技即生物技术. 定义:生物技术(biotechnology ),是指人们以现代生命科学为基础,结合其他基础科学的科学原理,采用先进的科学技术手段,按照预先的设计改造生物体或加工生物原料,为人类生产出所需 ...查看


  • 高中生物教材目录
  • 人教版高中生物教材目录表 生物1 必修 分子与细胞 第1章 走近细胞 第1节 从生物圈到细胞 第2节 细胞的多样性和统一性 科学前沿 组装细胞 第2章 组成细胞的分子 第1节 细胞中的元素和化合物 第2节 生命活动的主要承担者 科学史话 世 ...查看


  • 第一章 生物技术概论
  • 第一章 生物技术概论 1. 医学遗传学发展到现代医学分子遗传学与先进技术的发展密切相关, 特别两项生物技术: 细胞融合技术和DNA重组技术所起的作用十分重要. 2.19世纪: 细胞是生命的 基本单位 细胞学说:细胞是动植物结构和功能的基本单 ...查看


  • 生物工程论文[1]
  • 生物工程在生物领域中的发展 摘要:本文介绍有关生物工程的四大工程,即基因工程.细胞工程.蛋白质工程和发酵工程, 的概念和发展. 关键词:基因工程 细胞工程 发酵工程 蛋白质工程 1 基因工程 1.1 基因工程的概念 遗传工程,又称基因工程, ...查看


  • 高考必备--人教版高中生物目录
  • 人教版高中生物目录 生物1 必修 分子与细胞 科学家访谈 探索生物大分子的奥秘 第1章 走近细胞 第1节 从生物圈到细胞 第2节 细胞的多样性和统一性 科学前沿 组装细胞 第2章 组成细胞的分子 第1节 细胞中的元素和化合物 第2节 生命活 ...查看


热门内容