奥数行程问题50道详解(一)

行程问题50道详解一

1、甲、乙二人以均匀的速度分别从A 、B 两地同时出发,相向而行,他们第一次相遇地点离A 地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B 地3千米处第二次相遇,求两次相遇地点之间的距离.

解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,

通过画图,我们发现甲走了一个全程多了回来那一段,就是距B 地的3千米,所以全程是12-3=9千米,

所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?

解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差

所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A ,B 两地相距540千米。甲、乙两车往返行驶于A ,B 两地之间,都是到达一地之后立即返回,乙车较甲车快。设两辆车同时从A 地出发后第一次和第二次相遇都在途中P 地。那么两车第三次相遇为止,乙车共走了多少千米?

解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P 点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P 点到第二个P 点,路程正好是第一次的路程。所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。第二次相遇,乙正好走了1份到B 地,又返回走了1份。这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)

解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。总路程就是=100×30=3000米。

5、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇. 问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?

解:画示意图如下.

第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了

3.5×3=10.5(千米).

从图上可看出,第二次相遇处离乙村2千米. 因此,甲、乙两村距离是

10.5-2=8.5(千米).

每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程. 第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程. 其中张走了

3.5×7=24.5(千米),

24.5=8.5+8.5+7.5(千米).

就知道第四次相遇处,离乙村

8.5-7.5=1(千米).

答:第四次相遇地点离乙村1千米.

行程问题50道详解一

1、甲、乙二人以均匀的速度分别从A 、B 两地同时出发,相向而行,他们第一次相遇地点离A 地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B 地3千米处第二次相遇,求两次相遇地点之间的距离.

解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,

通过画图,我们发现甲走了一个全程多了回来那一段,就是距B 地的3千米,所以全程是12-3=9千米,

所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?

解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差

所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A ,B 两地相距540千米。甲、乙两车往返行驶于A ,B 两地之间,都是到达一地之后立即返回,乙车较甲车快。设两辆车同时从A 地出发后第一次和第二次相遇都在途中P 地。那么两车第三次相遇为止,乙车共走了多少千米?

解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P 点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P 点到第二个P 点,路程正好是第一次的路程。所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。第二次相遇,乙正好走了1份到B 地,又返回走了1份。这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)

解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。总路程就是=100×30=3000米。

5、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇. 问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?

解:画示意图如下.

第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了

3.5×3=10.5(千米).

从图上可看出,第二次相遇处离乙村2千米. 因此,甲、乙两村距离是

10.5-2=8.5(千米).

每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程. 第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程. 其中张走了

3.5×7=24.5(千米),

24.5=8.5+8.5+7.5(千米).

就知道第四次相遇处,离乙村

8.5-7.5=1(千米).

答:第四次相遇地点离乙村1千米.


相关文章

  • [四年级]奥数 速算与巧算 (1-17)
  • 奥数 > 奥数题库 > 奥数练习题 > 四年级奥数 > 速算与巧算 奥数练习题 一年级 二年级 三年级 四年级 速算与巧算定义新运算等差数列及其应用倒推法的妙用行程问题几何中的计数问题图形的剪拼格点与面积填横式数学竞 ...查看


  • 非桃李的思维培忧
  • 0-2小学奥数系统讲义完整版--打印 阅13  转2  评0  公众公开  13-05-30 14:55 小学数学解题思路大全 [小学数学解题思路大全]式题的巧解妙算?(四)[小学数学解题思路大全]式题的巧解妙算?(四)数学网继[小学数学趣 ...查看


  • 六年级奥数题
  • 2011-02-18图形面积(六年级奥数题及答案) 1.有10张扑克牌,点数分别为1,2,3, ,9,10.从中任意取出若干张牌,为了使其中必有几张牌的点数之和等于15,问最少要取多少张牌? 2.在三角形ABC中,点E是BC边上的中点,点F ...查看


  • 描写秋天的古诗词10首
  • 奥数网首页| 小升初| 招生| 重点中学| 奥数题库| 奥数竞赛| 课件教案| 趣味乐园| 一年级| 二年级| 三年级| 四年级| 五年级| 六年级| 超常教育| 进入初一 奥数 > 趣味乐园 > 诗歌鉴赏 > 正文 描写 ...查看


  • 数学奥数练习
  • 三年级乘除法中的速算(一) 小学三年级奥数题:乘除法中的速算 三年级乘除法中的速算(二) 小学三年级奥数题:乘除法中的速算(二) 三年级乘除法中的速算(三) 小学三年级奥数题:乘除法中的速算(三) 三年级奥数题:吨的认识.测量 小学三年级奥 ...查看


  • ?(详解)初中奥数总复习第一部分:七年级奥数
  • (详解)初中奥数总复习第一部分:七年级奥数 若需:八年级奥数,九年就奥数 请点击右上角关注按钮! 分享qq/微信:150250120 此资料价值上万,请好好使用! 数学 教育 收藏 举报 7 条评论 评论 小桥流水19637982 4天前 ...查看


  • 小学三年级奥数题库 1
  • 小学三年级奥数题库:和差倍数问题(一) 1.南京长江大桥共分两层,上层是公路桥,下层是铁路桥.铁路桥和公路桥共长11270米,铁路桥比公路桥长2270米,问南京长江大桥的公路和铁路桥各长多少米? 分析:和差根本问题,和1127米,差2270 ...查看


  • 学而思 奥数 四年级 相遇与追及问题详解
  • 第十一讲 相遇与追及 1. 乙两辆汽车分别从A .B 两地出发相对而行,甲车先行1小时,甲车每小时行48千米, 乙车每小时行50千米,5小时相遇,求A .B 两地间的距离. [解析] A ,B 两地的距离就是甲乙两辆汽车的路程和,都当5小时 ...查看


  • 奥数课程简介
  • 课程体系:小学奥数十二级课程体系介绍 小学部 2012-10-11 19:42:46 数学--学而思奥数十二级课程体系 经典课程 年级 对应级别 对应课程 解决问题 免费试听 一级(上) 暑期班 一年级暑期班是整个奥数十二级体系的开始.通过 ...查看


热门内容