水泥粉煤灰稳定碎石基层应用技术

水泥粉煤灰稳定碎石基层应用技术

摘要:在国内路面基层设计中,未见采用水泥粉煤灰稳定碎石的形式,通过梨温高速的施工实践,形成了一套关于水泥粉煤灰稳定碎石基层的技术要求

关键词:水泥 粉煤灰应用技术

0简述

梨温高速公路是国道主干线上海至瑞丽公路江西境内的一段,全长244.749km,其中K125+000~K149+500段经过贵溪市,贵溪市火力实业总公司有大量的粉煤灰(湿排灰),考虑到因地制宜,就地取材的原则,该段路面基层设计时决定利用粉煤灰作为稳定材料,但梨温公路沿线石灰来源相当困难,并且在工艺流程中处理石灰的消解,过筛有相当的难度,在单位时间内所需供灰量大,而且需要大量的储料棚以及环境污染等问题,为了寻求改善和简化施工工序,又要力争在不增加工程造价,不降低质量标准的前提下,我们决定用水泥替代二灰结构中的石灰,笔者通过在梨温高速公路建设过程中的实践形成了一套水泥粉煤灰稳定碎石基层的技术要求。

1原理分析

粉煤灰中含有大量SiO2、AL2O3等能反应产生凝胶的活性物质,它们在粉煤灰中以球形玻璃体的形式存在,这种球形玻璃体比较稳定,表面又相当致密,不易水化,水泥粉煤灰早期反应主要是水泥遇水后产生水解与水化反应,水泥水化生成硅酸钙晶体,这些晶体产生部分强度,同时水泥水化生成氢氧化钙通过液相扩散到粉煤灰球形玻璃体表面,发生化学吸附和侵蚀,生成水化硅酸钙与水化铝酸钙,大部分水化产物开始以凝胶体出现,随着凝期的增长,逐步转化为纤维状晶体,并随着数量的不断增加,晶体相互交叉,形成连锁结构,填充混合物的孔隙,形成较高的强度,随着粉煤灰活性的不断调动,使水泥粉煤灰不仅有较高的早期强度,而且其后期强度也有较大提高。

2初定技术规范

众所周知,水泥粉煤灰稳定碎石结构目前尚无相应的技术标准及规范,但从上述原理分析上看,水泥与粉煤灰和石灰与粉煤灰的反应机理很相似,都实际上是氢氧化钙与粉煤灰玻璃体的反应,只不过水泥能够形成较高的早期强度,因此在工程初期我们综合参考石灰粉煤灰稳定碎石及水泥稳定碎石的相关技术标准及规范,决定暂时按下述要求进行配合比设计及试验段施工。

2.1原材料质量要求

2.1.1水泥:采用水泥稳定土基层技术规范中关于水泥的质量要求

2.1.2粉煤灰:采用石灰粉煤灰稳定土基层技术规范中关于粉煤灰的质量要求。

2.1.3碎石:采用石灰粉煤灰稳定土基层技术规范中关于碎石的质量要求。

2.2其他质量要求

2.2.1根据《公路路面基层施工技术规范》的规定梨温高速公路设计累计标准轴次超过12×106次,同时考虑工程进度的要求决定下基层7天无侧限抗压值≥3Mpa,上基层7天无侧限抗压值应≥4Mpa。

2.2.2水泥粉煤灰与集料的比初步采用20:80~15:85。

2.2.3集料级配采用规范级配的中值。

3配合比设计试验

按照上述要求,进行了配合比组成设计试验,测定不同的水泥、粉煤灰剂量的七天无侧限抗压强度。 采用水泥+粉煤灰占总量的15%、20%,水泥剂量为3.5%、4%、4.5%、5%、5.5%分别进行试验。具体试验数据如表1:

从上表可见碎石的用量对混合料的强度影响很大,在水泥剂量不变的情况下碎石用量从85%减少到80%,其七天强度下降28.8%。如果碎石用量为80%,水泥用量即使达5.5%,其七天强度也不能达到规范对上基层的强度要求。当然从经济效益上分析,碎石用量从85%减少80%,材料成本将减少

2.3%,其原因是一来粉煤灰比碎石单价便宜,二来是混合料中粉煤灰含量越多,混合料的最大干密度就越小,每立方米混合料所需材料越少。所以综合考虑将配合比暂定为下基层水泥:粉煤灰:碎石=4:16:80,上基层水泥:粉煤灰:碎石=5:10:85。

参考水泥稳定碎石中心站集中厂拌法施工规范进行施工,在采用上述配比施工的上、下基层都不同程度的出现了较多的开裂现象,特别是上基层平均每5~10m一道横向贯穿裂缝。针对这个问题,我们对水泥粉煤灰稳定碎石的开裂机理及防治办法进行了专项研究。

4开裂机理分析

水泥粉煤灰稳定碎石混合料产生开裂的原因是因为受到温缩和干缩的综合作用,但施工期间气温逐渐升高,因此主要是干缩造成了开裂。

水泥粉煤灰稳定碎石混合料经拌和压实后,由于蒸发和混合料内部发生水化作用,混合料的水份会不断减少。由于水的减少而发生的毛细管作用、吸附作用、分子间力的作用,材料矿物晶体或凝胶体间层间水的作用和碳化收缩作用等都会引起水泥粉煤灰稳定碎石材料产生体积收缩,其干缩性的大小与水泥、粉煤灰剂量,碎石粒料的含量,混合料中小于0.075mm的细颗粒的含量相关,针对上述原因我们进行了大量的试验分析。

4.1干缩系数试验

4.1.1不同水泥剂量对干缩系数的影响

4.1.2粒料含量与干缩温缩系数的关系

4.1.3集料级配及含量与干缩系数关系

对于水泥粉煤灰稳定碎石,采用5%的水泥剂量,当级配采用规范级配的上、中、下限时其干缩系数,分别为60×10-6、40×10-6、30×10-6。

二灰:碎石=15:85与二灰:碎石=20:80时,7天龄期的最大干缩应变和平均干缩系数为233×10-6、273×10-6、65×10-6、55×10-6。

4.2试验数据分析

4.2.1水泥剂量从5%增加到6%和7%,干缩系数增加20%和30%。所以在保证设计强度的情况应尽量控制水泥剂量,实际最大水泥剂量不能超过5.5%。

4.2.2在水泥剂量不变的情况下,粉煤灰剂量增大5%,干缩应变增加17%,干缩系数增加18%。所以粉煤灰应尽量少用,综合经济效应及强度要求,粉煤灰用量在8%-10%之间比较合适。

4.2.3粒料含量增加则干缩+温缩系数减小,集料级配越粗,则干缩系数越小。

通过上述室内试验分析及现场施工的实际调查,我们发现上、下基层开裂的主要原因在于粉煤灰用量过大,以及集料级配偏细。

4.3集料级配的调整

对照水泥稳定集料的颗粒组成范围与石灰粉煤灰稳定碎石颗粒组成范围见表4:

通过上述对比我们发现,水泥稳定碎石的颗粒组成级配明显比石灰粉煤灰稳定碎石的颗粒组成级配要更粗一些。所以我们通过室内配合比对照及试验段的施工,最后采用下述级配用于水泥粉煤灰稳定碎石层的施工

5结论

通过实验研究及理论分析,为减少水泥粉煤灰稳定碎石结构的干缩系数,尽量避免干缩裂缝的产生,我们调整配合比为:

上基层 水泥:粉煤灰:碎石=5:9:86

下基层 水泥:粉煤灰:碎石=4:10:86

其中碎石的级配由原来的悬浮密实结构改为骨架密实结构,即采用表5级配的中下限。采用上述配合比和级配施工的基层早期强度,7天强度都较高,并且基本克服了横向贯穿裂缝现象。

摘要:在国内路面基层设计中,未见采用水泥粉煤灰稳定碎石的形式,通过梨温高速的施工实践,形成了一套关于水泥粉煤灰稳定碎石基层的技术要求

关键词:水泥 粉煤灰应用技术

0简述

梨温高速公路是国道主干线上海至瑞丽公路江西境内的一段,全长244.749km,其中K125+000~K149+500段经过贵溪市,贵溪市火力实业总公司有大量的粉煤灰(湿排灰),考虑到因地制宜,就地取材的原则,该段路面基层设计时决定利用粉煤灰作为稳定材料,但梨温公路沿线石灰来源相当困难,并且在工艺流程中处理石灰的消解,过筛有相当的难度,在单位时间内所需供灰量大,而且需要大量的储料棚以及环境污染等问题,为了寻求改善和简化施工工序,又要力争在不增加工程造价,不降低质量标准的前提下,我们决定用水泥替代二灰结构中的石灰,笔者通过在梨温高速公路建设过程中的实践形成了一套水泥粉煤灰稳定碎石基层的技术要求。

1原理分析

粉煤灰中含有大量SiO2、AL2O3等能反应产生凝胶的活性物质,它们在粉煤灰中以球形玻璃体的形式存在,这种球形玻璃体比较稳定,表面又相当致密,不易水化,水泥粉煤灰早期反应主要是水泥遇水后产生水解与水化反应,水泥水化生成硅酸钙晶体,这些晶体产生部分强度,同时水泥水化生成氢氧化钙通过液相扩散到粉煤灰球形玻璃体表面,发生化学吸附和侵蚀,生成水化硅酸钙与水化铝酸钙,大部分水化产物开始以凝胶体出现,随着凝期的增长,逐步转化为纤维状晶体,并随着数量的不断增加,晶体相互交叉,形成连锁结构,填充混合物的孔隙,形成较高的强度,随着粉煤灰活性的不断调动,使水泥粉煤灰不仅有较高的早期强度,而且其后期强度也有较大提高。

2初定技术规范

众所周知,水泥粉煤灰稳定碎石结构目前尚无相应的技术标准及规范,但从上述原理分析上看,水泥与粉煤灰和石灰与粉煤灰的反应机理很相似,都实际上是氢氧化钙与粉煤灰玻璃体的反应,只不过水泥能够形成较高的早期强度,因此在工程初期我们综合参考石灰粉煤灰稳定碎石及水泥稳定碎石的相关技术标准及规范,决定暂时按下述要求进行配合比设计及试验段施工。

2.1原材料质量要求

2.1.1水泥:采用水泥稳定土基层技术规范中关于水泥的质量要求

2.1.2粉煤灰:采用石灰粉煤灰稳定土基层技术规范中关于粉煤灰的质量要求。

2.1.3碎石:采用石灰粉煤灰稳定土基层技术规范中关于碎石的质量要求。

2.2其他质量要求

2.2.1根据《公路路面基层施工技术规范》的规定梨温高速公路设计累计标准轴次超过12×106次,同时考虑工程进度的要求决定下基层7天无侧限抗压值≥3Mpa,上基层7天无侧限抗压值应≥4Mpa。

2.2.2水泥粉煤灰与集料的比初步采用20:80~15:85。

2.2.3集料级配采用规范级配的中值。

3配合比设计试验

按照上述要求,进行了配合比组成设计试验,测定不同的水泥、粉煤灰剂量的七天无侧限抗压强度。 采用水泥+粉煤灰占总量的15%、20%,水泥剂量为3.5%、4%、4.5%、5%、5.5%分别进行试验。具体试验数据如表1:

从上表可见碎石的用量对混合料的强度影响很大,在水泥剂量不变的情况下碎石用量从85%减少到80%,其七天强度下降28.8%。如果碎石用量为80%,水泥用量即使达5.5%,其七天强度也不能达到规范对上基层的强度要求。当然从经济效益上分析,碎石用量从85%减少80%,材料成本将减少

2.3%,其原因是一来粉煤灰比碎石单价便宜,二来是混合料中粉煤灰含量越多,混合料的最大干密度就越小,每立方米混合料所需材料越少。所以综合考虑将配合比暂定为下基层水泥:粉煤灰:碎石=4:16:80,上基层水泥:粉煤灰:碎石=5:10:85。

参考水泥稳定碎石中心站集中厂拌法施工规范进行施工,在采用上述配比施工的上、下基层都不同程度的出现了较多的开裂现象,特别是上基层平均每5~10m一道横向贯穿裂缝。针对这个问题,我们对水泥粉煤灰稳定碎石的开裂机理及防治办法进行了专项研究。

4开裂机理分析

水泥粉煤灰稳定碎石混合料产生开裂的原因是因为受到温缩和干缩的综合作用,但施工期间气温逐渐升高,因此主要是干缩造成了开裂。

水泥粉煤灰稳定碎石混合料经拌和压实后,由于蒸发和混合料内部发生水化作用,混合料的水份会不断减少。由于水的减少而发生的毛细管作用、吸附作用、分子间力的作用,材料矿物晶体或凝胶体间层间水的作用和碳化收缩作用等都会引起水泥粉煤灰稳定碎石材料产生体积收缩,其干缩性的大小与水泥、粉煤灰剂量,碎石粒料的含量,混合料中小于0.075mm的细颗粒的含量相关,针对上述原因我们进行了大量的试验分析。

4.1干缩系数试验

4.1.1不同水泥剂量对干缩系数的影响

4.1.2粒料含量与干缩温缩系数的关系

4.1.3集料级配及含量与干缩系数关系

对于水泥粉煤灰稳定碎石,采用5%的水泥剂量,当级配采用规范级配的上、中、下限时其干缩系数,分别为60×10-6、40×10-6、30×10-6。

二灰:碎石=15:85与二灰:碎石=20:80时,7天龄期的最大干缩应变和平均干缩系数为233×10-6、273×10-6、65×10-6、55×10-6。

4.2试验数据分析

4.2.1水泥剂量从5%增加到6%和7%,干缩系数增加20%和30%。所以在保证设计强度的情况应

尽量控制水泥剂量,实际最大水泥剂量不能超过5.5%。

4.2.2在水泥剂量不变的情况下,粉煤灰剂量增大5%,干缩应变增加17%,干缩系数增加18%。所以粉煤灰应尽量少用,综合经济效应及强度要求,粉煤灰用量在8%-10%之间比较合适。

4.2.3粒料含量增加则干缩+温缩系数减小,集料级配越粗,则干缩系数越小。

通过上述室内试验分析及现场施工的实际调查,我们发现上、下基层开裂的主要原因在于粉煤灰用量过大,以及集料级配偏细。

4.3集料级配的调整

对照水泥稳定集料的颗粒组成范围与石灰粉煤灰稳定碎石颗粒组成范围见表4:

通过上述对比我们发现,水泥稳定碎石的颗粒组成级配明显比石灰粉煤灰稳定碎石的颗粒组成级配要更粗一些。所以我们通过室内配合比对照及试验段的施工,最后采用下述级配用于水泥粉煤灰稳定碎石层的施工。

5结论

通过实验研究及理论分析,为减少水泥粉煤灰稳定碎石结构的干缩系数,尽量避免干缩裂缝的产生,我们调整配合比为:

上基层 水泥:粉煤灰:碎石=5:9:86

下基层 水泥:粉煤灰:碎石=4:10:86

其中碎石的级配由原来的悬浮密实结构改为骨架密实结构,即采用表5级配的中下限。采用上述配合比和级配施工的基层早期强度,7天强度都较高,并且基本克服了横向贯穿裂缝现象。

水泥粉煤灰稳定碎石基层应用技术

摘要:在国内路面基层设计中,未见采用水泥粉煤灰稳定碎石的形式,通过梨温高速的施工实践,形成了一套关于水泥粉煤灰稳定碎石基层的技术要求

关键词:水泥 粉煤灰应用技术

0简述

梨温高速公路是国道主干线上海至瑞丽公路江西境内的一段,全长244.749km,其中K125+000~K149+500段经过贵溪市,贵溪市火力实业总公司有大量的粉煤灰(湿排灰),考虑到因地制宜,就地取材的原则,该段路面基层设计时决定利用粉煤灰作为稳定材料,但梨温公路沿线石灰来源相当困难,并且在工艺流程中处理石灰的消解,过筛有相当的难度,在单位时间内所需供灰量大,而且需要大量的储料棚以及环境污染等问题,为了寻求改善和简化施工工序,又要力争在不增加工程造价,不降低质量标准的前提下,我们决定用水泥替代二灰结构中的石灰,笔者通过在梨温高速公路建设过程中的实践形成了一套水泥粉煤灰稳定碎石基层的技术要求。

1原理分析

粉煤灰中含有大量SiO2、AL2O3等能反应产生凝胶的活性物质,它们在粉煤灰中以球形玻璃体的形式存在,这种球形玻璃体比较稳定,表面又相当致密,不易水化,水泥粉煤灰早期反应主要是水泥遇水后产生水解与水化反应,水泥水化生成硅酸钙晶体,这些晶体产生部分强度,同时水泥水化生成氢氧化钙通过液相扩散到粉煤灰球形玻璃体表面,发生化学吸附和侵蚀,生成水化硅酸钙与水化铝酸钙,大部分水化产物开始以凝胶体出现,随着凝期的增长,逐步转化为纤维状晶体,并随着数量的不断增加,晶体相互交叉,形成连锁结构,填充混合物的孔隙,形成较高的强度,随着粉煤灰活性的不断调动,使水泥粉煤灰不仅有较高的早期强度,而且其后期强度也有较大提高。

2初定技术规范

众所周知,水泥粉煤灰稳定碎石结构目前尚无相应的技术标准及规范,但从上述原理分析上看,水泥与粉煤灰和石灰与粉煤灰的反应机理很相似,都实际上是氢氧化钙与粉煤灰玻璃体的反应,只不过水泥能够形成较高的早期强度,因此在工程初期我们综合参考石灰粉煤灰稳定碎石及水泥稳定碎石的相关技术标准及规范,决定暂时按下述要求进行配合比设计及试验段施工。

2.1原材料质量要求

2.1.1水泥:采用水泥稳定土基层技术规范中关于水泥的质量要求

2.1.2粉煤灰:采用石灰粉煤灰稳定土基层技术规范中关于粉煤灰的质量要求。

2.1.3碎石:采用石灰粉煤灰稳定土基层技术规范中关于碎石的质量要求。

2.2其他质量要求

2.2.1根据《公路路面基层施工技术规范》的规定梨温高速公路设计累计标准轴次超过12×106次,同时考虑工程进度的要求决定下基层7天无侧限抗压值≥3Mpa,上基层7天无侧限抗压值应≥4Mpa。

2.2.2水泥粉煤灰与集料的比初步采用20:80~15:85。

2.2.3集料级配采用规范级配的中值。

3配合比设计试验

按照上述要求,进行了配合比组成设计试验,测定不同的水泥、粉煤灰剂量的七天无侧限抗压强度。 采用水泥+粉煤灰占总量的15%、20%,水泥剂量为3.5%、4%、4.5%、5%、5.5%分别进行试验。具体试验数据如表1:

从上表可见碎石的用量对混合料的强度影响很大,在水泥剂量不变的情况下碎石用量从85%减少到80%,其七天强度下降28.8%。如果碎石用量为80%,水泥用量即使达5.5%,其七天强度也不能达到规范对上基层的强度要求。当然从经济效益上分析,碎石用量从85%减少80%,材料成本将减少

2.3%,其原因是一来粉煤灰比碎石单价便宜,二来是混合料中粉煤灰含量越多,混合料的最大干密度就越小,每立方米混合料所需材料越少。所以综合考虑将配合比暂定为下基层水泥:粉煤灰:碎石=4:16:80,上基层水泥:粉煤灰:碎石=5:10:85。

参考水泥稳定碎石中心站集中厂拌法施工规范进行施工,在采用上述配比施工的上、下基层都不同程度的出现了较多的开裂现象,特别是上基层平均每5~10m一道横向贯穿裂缝。针对这个问题,我们对水泥粉煤灰稳定碎石的开裂机理及防治办法进行了专项研究。

4开裂机理分析

水泥粉煤灰稳定碎石混合料产生开裂的原因是因为受到温缩和干缩的综合作用,但施工期间气温逐渐升高,因此主要是干缩造成了开裂。

水泥粉煤灰稳定碎石混合料经拌和压实后,由于蒸发和混合料内部发生水化作用,混合料的水份会不断减少。由于水的减少而发生的毛细管作用、吸附作用、分子间力的作用,材料矿物晶体或凝胶体间层间水的作用和碳化收缩作用等都会引起水泥粉煤灰稳定碎石材料产生体积收缩,其干缩性的大小与水泥、粉煤灰剂量,碎石粒料的含量,混合料中小于0.075mm的细颗粒的含量相关,针对上述原因我们进行了大量的试验分析。

4.1干缩系数试验

4.1.1不同水泥剂量对干缩系数的影响

4.1.2粒料含量与干缩温缩系数的关系

4.1.3集料级配及含量与干缩系数关系

对于水泥粉煤灰稳定碎石,采用5%的水泥剂量,当级配采用规范级配的上、中、下限时其干缩系数,分别为60×10-6、40×10-6、30×10-6。

二灰:碎石=15:85与二灰:碎石=20:80时,7天龄期的最大干缩应变和平均干缩系数为233×10-6、273×10-6、65×10-6、55×10-6。

4.2试验数据分析

4.2.1水泥剂量从5%增加到6%和7%,干缩系数增加20%和30%。所以在保证设计强度的情况应尽量控制水泥剂量,实际最大水泥剂量不能超过5.5%。

4.2.2在水泥剂量不变的情况下,粉煤灰剂量增大5%,干缩应变增加17%,干缩系数增加18%。所以粉煤灰应尽量少用,综合经济效应及强度要求,粉煤灰用量在8%-10%之间比较合适。

4.2.3粒料含量增加则干缩+温缩系数减小,集料级配越粗,则干缩系数越小。

通过上述室内试验分析及现场施工的实际调查,我们发现上、下基层开裂的主要原因在于粉煤灰用量过大,以及集料级配偏细。

4.3集料级配的调整

对照水泥稳定集料的颗粒组成范围与石灰粉煤灰稳定碎石颗粒组成范围见表4:

通过上述对比我们发现,水泥稳定碎石的颗粒组成级配明显比石灰粉煤灰稳定碎石的颗粒组成级配要更粗一些。所以我们通过室内配合比对照及试验段的施工,最后采用下述级配用于水泥粉煤灰稳定碎石层的施工

5结论

通过实验研究及理论分析,为减少水泥粉煤灰稳定碎石结构的干缩系数,尽量避免干缩裂缝的产生,我们调整配合比为:

上基层 水泥:粉煤灰:碎石=5:9:86

下基层 水泥:粉煤灰:碎石=4:10:86

其中碎石的级配由原来的悬浮密实结构改为骨架密实结构,即采用表5级配的中下限。采用上述配合比和级配施工的基层早期强度,7天强度都较高,并且基本克服了横向贯穿裂缝现象。

摘要:在国内路面基层设计中,未见采用水泥粉煤灰稳定碎石的形式,通过梨温高速的施工实践,形成了一套关于水泥粉煤灰稳定碎石基层的技术要求

关键词:水泥 粉煤灰应用技术

0简述

梨温高速公路是国道主干线上海至瑞丽公路江西境内的一段,全长244.749km,其中K125+000~K149+500段经过贵溪市,贵溪市火力实业总公司有大量的粉煤灰(湿排灰),考虑到因地制宜,就地取材的原则,该段路面基层设计时决定利用粉煤灰作为稳定材料,但梨温公路沿线石灰来源相当困难,并且在工艺流程中处理石灰的消解,过筛有相当的难度,在单位时间内所需供灰量大,而且需要大量的储料棚以及环境污染等问题,为了寻求改善和简化施工工序,又要力争在不增加工程造价,不降低质量标准的前提下,我们决定用水泥替代二灰结构中的石灰,笔者通过在梨温高速公路建设过程中的实践形成了一套水泥粉煤灰稳定碎石基层的技术要求。

1原理分析

粉煤灰中含有大量SiO2、AL2O3等能反应产生凝胶的活性物质,它们在粉煤灰中以球形玻璃体的形式存在,这种球形玻璃体比较稳定,表面又相当致密,不易水化,水泥粉煤灰早期反应主要是水泥遇水后产生水解与水化反应,水泥水化生成硅酸钙晶体,这些晶体产生部分强度,同时水泥水化生成氢氧化钙通过液相扩散到粉煤灰球形玻璃体表面,发生化学吸附和侵蚀,生成水化硅酸钙与水化铝酸钙,大部分水化产物开始以凝胶体出现,随着凝期的增长,逐步转化为纤维状晶体,并随着数量的不断增加,晶体相互交叉,形成连锁结构,填充混合物的孔隙,形成较高的强度,随着粉煤灰活性的不断调动,使水泥粉煤灰不仅有较高的早期强度,而且其后期强度也有较大提高。

2初定技术规范

众所周知,水泥粉煤灰稳定碎石结构目前尚无相应的技术标准及规范,但从上述原理分析上看,水泥与粉煤灰和石灰与粉煤灰的反应机理很相似,都实际上是氢氧化钙与粉煤灰玻璃体的反应,只不过水泥能够形成较高的早期强度,因此在工程初期我们综合参考石灰粉煤灰稳定碎石及水泥稳定碎石的相关技术标准及规范,决定暂时按下述要求进行配合比设计及试验段施工。

2.1原材料质量要求

2.1.1水泥:采用水泥稳定土基层技术规范中关于水泥的质量要求

2.1.2粉煤灰:采用石灰粉煤灰稳定土基层技术规范中关于粉煤灰的质量要求。

2.1.3碎石:采用石灰粉煤灰稳定土基层技术规范中关于碎石的质量要求。

2.2其他质量要求

2.2.1根据《公路路面基层施工技术规范》的规定梨温高速公路设计累计标准轴次超过12×106次,同时考虑工程进度的要求决定下基层7天无侧限抗压值≥3Mpa,上基层7天无侧限抗压值应≥4Mpa。

2.2.2水泥粉煤灰与集料的比初步采用20:80~15:85。

2.2.3集料级配采用规范级配的中值。

3配合比设计试验

按照上述要求,进行了配合比组成设计试验,测定不同的水泥、粉煤灰剂量的七天无侧限抗压强度。 采用水泥+粉煤灰占总量的15%、20%,水泥剂量为3.5%、4%、4.5%、5%、5.5%分别进行试验。具体试验数据如表1:

从上表可见碎石的用量对混合料的强度影响很大,在水泥剂量不变的情况下碎石用量从85%减少到80%,其七天强度下降28.8%。如果碎石用量为80%,水泥用量即使达5.5%,其七天强度也不能达到规范对上基层的强度要求。当然从经济效益上分析,碎石用量从85%减少80%,材料成本将减少

2.3%,其原因是一来粉煤灰比碎石单价便宜,二来是混合料中粉煤灰含量越多,混合料的最大干密度就越小,每立方米混合料所需材料越少。所以综合考虑将配合比暂定为下基层水泥:粉煤灰:碎石=4:16:80,上基层水泥:粉煤灰:碎石=5:10:85。

参考水泥稳定碎石中心站集中厂拌法施工规范进行施工,在采用上述配比施工的上、下基层都不同程度的出现了较多的开裂现象,特别是上基层平均每5~10m一道横向贯穿裂缝。针对这个问题,我们对水泥粉煤灰稳定碎石的开裂机理及防治办法进行了专项研究。

4开裂机理分析

水泥粉煤灰稳定碎石混合料产生开裂的原因是因为受到温缩和干缩的综合作用,但施工期间气温逐渐升高,因此主要是干缩造成了开裂。

水泥粉煤灰稳定碎石混合料经拌和压实后,由于蒸发和混合料内部发生水化作用,混合料的水份会不断减少。由于水的减少而发生的毛细管作用、吸附作用、分子间力的作用,材料矿物晶体或凝胶体间层间水的作用和碳化收缩作用等都会引起水泥粉煤灰稳定碎石材料产生体积收缩,其干缩性的大小与水泥、粉煤灰剂量,碎石粒料的含量,混合料中小于0.075mm的细颗粒的含量相关,针对上述原因我们进行了大量的试验分析。

4.1干缩系数试验

4.1.1不同水泥剂量对干缩系数的影响

4.1.2粒料含量与干缩温缩系数的关系

4.1.3集料级配及含量与干缩系数关系

对于水泥粉煤灰稳定碎石,采用5%的水泥剂量,当级配采用规范级配的上、中、下限时其干缩系数,分别为60×10-6、40×10-6、30×10-6。

二灰:碎石=15:85与二灰:碎石=20:80时,7天龄期的最大干缩应变和平均干缩系数为233×10-6、273×10-6、65×10-6、55×10-6。

4.2试验数据分析

4.2.1水泥剂量从5%增加到6%和7%,干缩系数增加20%和30%。所以在保证设计强度的情况应

尽量控制水泥剂量,实际最大水泥剂量不能超过5.5%。

4.2.2在水泥剂量不变的情况下,粉煤灰剂量增大5%,干缩应变增加17%,干缩系数增加18%。所以粉煤灰应尽量少用,综合经济效应及强度要求,粉煤灰用量在8%-10%之间比较合适。

4.2.3粒料含量增加则干缩+温缩系数减小,集料级配越粗,则干缩系数越小。

通过上述室内试验分析及现场施工的实际调查,我们发现上、下基层开裂的主要原因在于粉煤灰用量过大,以及集料级配偏细。

4.3集料级配的调整

对照水泥稳定集料的颗粒组成范围与石灰粉煤灰稳定碎石颗粒组成范围见表4:

通过上述对比我们发现,水泥稳定碎石的颗粒组成级配明显比石灰粉煤灰稳定碎石的颗粒组成级配要更粗一些。所以我们通过室内配合比对照及试验段的施工,最后采用下述级配用于水泥粉煤灰稳定碎石层的施工。

5结论

通过实验研究及理论分析,为减少水泥粉煤灰稳定碎石结构的干缩系数,尽量避免干缩裂缝的产生,我们调整配合比为:

上基层 水泥:粉煤灰:碎石=5:9:86

下基层 水泥:粉煤灰:碎石=4:10:86

其中碎石的级配由原来的悬浮密实结构改为骨架密实结构,即采用表5级配的中下限。采用上述配合比和级配施工的基层早期强度,7天强度都较高,并且基本克服了横向贯穿裂缝现象。


相关文章

  • 水泥稳定碎石
  • 一.水泥稳定碎石作用原理 水泥稳定碎石是以级配碎石作骨料,采用一定数量的胶凝材料和足够的灰浆体积填充骨料的空隙,按嵌挤原理摊铺压实.其压实度接近于密实度,强度主要靠碎石间的嵌挤锁结原理,同时有足够的灰浆体积来填充骨料的空隙.它的初期强度高, ...查看


  • 路面基层的施工技术论文
  • 高等教育毕业论文(设计) 专业-----道路桥梁工程技术 班级-----2011 姓名-----Q 日期 2013.年3月 高速公路路面基层的 施工技术 摘要 随着我国经济的高速发展,交通量也迅速上升,现如今的道路已经不能满足要求,使得道路 ...查看


  • 水泥粉煤灰稳定碎石施工技术方案
  • 水泥粉煤灰稳定碎石砂底基层 施工技术方案根据叶信公司的有关文件,叶信 12 标底基层由我标段施工完成.现 12 标已交验部分路槽,根据合同要求及监理工程师的有关指示,我标段已 于 2004 年 12 月 1 日做好底基层试验段,取得了施工所 ...查看


  • 4 路面结构设计
  • 4 路面结构设计 4.1路面类型及结构层组合 路面设计应根据使用要求及气候.水文.土质等自然条件,密切结合当地实践经验.) 在满足交通量和使用要求的前提下,应遵循因地制宜.合理取材.方便施工.利于养护.节约投资的原则,进行路面设计方案的技术 ...查看


  • 2011四川二级建造师市政工程精讲课件
  • 这是我收集的最新课件 第一节 城市道路工程 一.内容提要 1.掌握城市道路构成 2.熟悉道路的级别与类别 3.掌握道路路基成型和压实要求 4.熟悉地基加固处理方法 二.重点.难点 1.掌握城市道路构成 4.掌握道路路基成型和压实要求 三.内 ...查看


  • 公路工程试验检测师
  • 公路工程试验检测师(员)模拟题 一.单选题 1.由直剪试验得到的库仑公式是( ). A.F=f·N+C B.F=f·N C.τf=c+σ·tanυ D.τ=G·γ 2.集料试验所需要的试样最小质量通常根据( )确定. A.集料最大粒径 B. ...查看


  • 水稳碎石基层质量控制
  • 66管理施工 城市道桥与防洪 2010年11月第11期 水稳碎石基层质量控制 胡春清 (苏州市市政建设管理处,江苏苏州215002) 摘 要:苏州市市政道路工程多年来一直采用二灰碎石作为道路的基层材料,但由于近年来粉煤灰的含硫量不稳定,出现 ...查看


  • 路基路面材料
  • 路基路面材料 一.基层的基本类型及其适用范围 路面基层按结构组合设计可分为四种类型:第一类是柔性基层材料,包括级配型集料.嵌锁型碎石以及沥青碎石混合料等:第二类是半刚性基层材料,包括水泥稳定类.石灰稳定类和石灰工业废渣稳定类等综合稳定类: ...查看


  • 三辊轴机组混凝土路面施工技术
  • 三辊轴机组混凝土路面施工技术 一.施工测量 在道路工程施工前必须对干渠施工控制网进行再次复核.其内容包括导线.中线的复测,水准点的复测与增设,横断面的测量与绘制等.并记录.整理所有的测量资料. 泥结碎石临时施工路,设在干渠管道沟槽开挖上口边 ...查看


热门内容