常微分方程在数学建模中的应用论文

毕 业 论 文

论文题目:常微分方程在数学建模中的应用 姓 名:学科专业:指导教师:完成时间:

摘 要

常微分方程是数学理论(特别是微积分)联系实际的重要工具,它不仅与几何学、力学、电子技术、自动控制、星际航行、甚至和化学、生物学、农业以及经济学都有着密切的联系。本文结合实践背景,建立数学模型,并利用所得结果去解释某些实际问题。

关键字 常微分方程、人口预测模型、市场价格模型、混合溶液的数学模型、震动模型

目 录

第一章 人口预测模型 第二章 市场价格模型 第三章 混合溶液的数学模型 第四章 震动模型

绪 论

当我们描述实际对象的某些特性随时间(或空间)而演变的过程、分析它的变化规律、预测它的未来性态,研究它的控制手段时,通常要建立对象的动态模型。建模时首先要根据建模目的和对问题的具体分析作出简化假设,然后按照对象内在的或可以类比的其他对象的规律列出微分方程,求出方程的解并将结果翻译回实际对象,就可以进行描述、分析、预测或控制了。

事实上在微分方程课程中,解所谓应用题时我们遇到简单的建立动态模型问题,例如“一质量为m的物体自高h处自由下落,初速度是零,设阻力与下落速度的平方成正比,比例系数为k,求下落速度随时间的变化规律。”又如“容器内有盐水100L,内含盐10kg,令以3L/min的速度从一管放进净水,以2L/min的速度从另一管抽出盐水,设容器内盐水浓度始终是均匀的,求容器内含盐量随时间变化规律。”本文讨论的是常微分方程在数学建模中的应用。

第一章 人口预测模型

由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型.

例1(马尔萨斯(Malthus)模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r,在此假设下,推导并求解人口随时间变化的数学模型.

解 设时刻t的人口为N(t),把N(t)当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t到tt时间段内,人口的增长量为

N(tt)N(t)rN(t)t,

并设tt0时刻的人口为N0,于是

dN

rN,

dt

N(t0)N0.

这就是马尔萨斯人口模型,用分离变量法易求出其解为

N(t)N0er(tt0),

此式表明人口以指数规律随时间无限增长.

模型检验:据估计1961年地球上的人口总数为3.06109,而在以后7年中,人口总数以每年2%的速度增长,这样t01961,N03.06109 ,r0.02,于是

N(t)3.06109e0.02(t1961).

这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间

地球上的人口大约每35年翻一番,而上式断定34.6年增加一倍(请读者证明这一点).

但是,后来人们以美国人口为例,用马尔萨斯模型计算结果与人口资料比较,却发现有很大的差异,尤其是在用此模型预测较遥远的未来地球人口总数时,发现更令人不可思议的问题,如按此模型计算,到2670年,地球上将有36 000亿人口.如果地球表面全是陆地(事实上,地球表面还有80%被水覆盖),我们也只得互相踩着肩膀站成两层了,这是非常荒谬的,因此,这一模型应该修改.

例2(逻辑Logistic模型) 马尔萨斯模型为什么不能预测未来的人口呢?这主要是地球上的各种资源只能供一定数量的人生活,随着人口的增加,自然资源环境条件等因素对人口增长的限制作用越来越显著,如果当人口较少时,人口的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率就要随人口的增加而减小.因此,应对马尔萨斯模型中关于净增长率为常数的假设进行修改.

1838年,荷兰生物数学家韦尔侯斯特(Verhulst)引入常数Nm,用来表示自然环境条件所能容许的最大人口数(一般说来,一个国家工业化程度越高,它的生

N(t)活空间就越大,食物就越多,从而Nm就越大),并假设将增长率等于r1N,

m即净增长率随着N(t)的增加而减小,当N(t)Nm时,净增长率趋于零,按此假定建立人口预测模型.

解 由韦尔侯斯特假定,马尔萨斯模型应改为

dNN

r1N,dtN0

N(t)N,00

上式就是逻辑模型,该方程可分离变量,其解为,

N(t)

Nm

Nmr(tt0)

11Ne

0

.

下面,我们对模型作一简要分析.

(1)当t,N(t)Nm,即无论人口的初值如何,人口总数趋向于极限值

Nm;

(2)当0NNm时,增函数;

NmdNd2Nd2NN2N2N0(3)由于2r,所以当时,,单11N2dt2dtdtNmNmNmNdNdNd2N增;当N时,20,单减,即人口增长率由增变减,在m处最大,

dtdt22dt

dNN

r1N0,这说明N(t)是时间t的单调递dtNm

也就是说在人口总数达到极限值一半以前是加速生长期,过这一点后,生长的速率逐渐变小,并且迟早会达到零,这是减速生长期;

(4)用该模型检验美国从1790年到1950年的人口,发现模型计算的结果与实际人口在1930年以前都非常吻合,自从1930年以后,误差愈来愈大,一个明显的原因是在20世纪60年代美国的实际人口数已经突破了20世纪初所设的极限人口.由此可见该模型的缺点之一是Nm不易确定,事实上,随着一个国家经济的腾飞,它所拥有的食物就越丰富, Nm的值也就越大;

(5)用逻辑模型来预测世界未来人口总数.某生物学家估计,r0.029,又当人口总数为3.06109时,人口每年以2%的速率增长,由逻辑模型得

1dNN

, r1NdtNm

3.06109即 0.020.029, 1Nm从而得 Nm9.86109, 即世界人口总数极限值近100亿.

值得说明的是:人也是一种生物,因此,上面关于人口模型的讨论,原则上也可以用于在自然环境下单一物种生存着的其他生物,如森林中的树木、池塘中的鱼等,逻辑模型有着广泛的应用.

第二章 市场价格模型

对于纯粹的市场经济来说,商品市场价格取决于市场供需之间的关系,市场价格能促使商品的供给与需求相等(这样的价格称为(静态)均衡价格).也就是说,如果不考虑商品价格形成的动态过程,那么商品的市场价格应能保证市场的供需平衡,但是,实际的市场价格不会恰好等于均衡价格,而且价格也不会是静态的,应是随时间不断变化的动态过程.

例3 试建立描述市场价格形成的动态过程的数学模型

解 假设在某一时刻t,商品的价格为p(t),它与该商品的均衡价格间有差别,此时,存在供需差,此供需差促使价格变动.对新的价格,又有新的供需差,如此不断调节,就构成市场价格形成的动态过程,假设价格p(t)的变化率

dp

与需求dt

和供给之差成正比,并记f(p,r)为需求函数,g(p)为供给函数(r为参数),于是

dp

fp,rgp,

dt

p(0)p0,

其中p0为商品在t0时刻的价格,为正常数.

若设f(p,r)apb,g(p)cpd,则上式变为

dp

(ac)p(bd), dt p(0)p0,

其中a,b,c,d均为正常数,其解为

bd(ac)tbd

p(t)p0. e

acac

下面对所得结果进行讨论:

(1)设p为静态均衡价格 ,则其应满足

f(p,r)g(p)0,

即 于是得p

apbcpd,

bd

,从而价格函数p(t)可写为 ac

p(t)(p0p)e(ac)tp , 令t,取极限得

t

limp(t)p

这说明,市场价格逐步趋于均衡价格.又若初始价格p0p,则动态价格就维持在均衡价格p上,整个动态过程就化为静态过程;

(2)由于 所以,当p0p时,

dp

(pp0)(ac)e(ac)t , dt

dpdp0,p(t)单调下降向p靠拢;当p0p时, 0,p(t)dtdt

单调增加向p靠拢.这说明:初始价格高于均衡价格时,动态价格就要逐步降低,且逐步靠近均衡价格;否则,动态价格就要逐步升高.因此,式①在一定程度上反映了价格影响需求与供给,而需求与供给反过来又影响价格的动态过程,并指出了动态价格逐步向均衡价格靠拢的变化趋势.

第三章 混合溶液的数学模型

例4 设一容器内原有100L盐,内含有盐10kg,现以3L/min的速度注入质量浓度为0.01kg/L的淡盐水,同时以2L/min的速度抽出混合均匀的盐水,求容器内盐量变化的数学模型.

解 设t时刻容器内的盐量为x(t)kg,考虑t到tdt时间内容器中盐的变化情况,在dt时间内

容器中盐的改变量注入的盐水中所含盐量-抽出的盐水中所含盐量 容器内盐的改变量为dx,注入的盐水中所含盐量为0.013dt,t时刻容器内溶液的质量浓度为

x(t)

,假设t到tdt时间内容器内溶液的质量浓度不

100(32)t

变(事实上,容器内的溶液质量浓度时刻在变,由于dt时间很短,可以这样看).于是抽出的盐水中所含盐量为

x(t)

2dt,这样即可列出方程

100(32)tdx0.03dt

2x

dt, 100t

dx2x0.03. dt100t

又因为t0时,容器内有盐10kg,于是得该问题的数学模型为

2xdx0.03,dt100t

x(0)10,

这是一阶非齐次线性方程的初值问题,其解为

9104

x(t)0.01(100t). 2

(100t)

下面对该问题进行一下简单的讨论,由上式不难发现:t时刻容器内溶液的质量浓度为

x(t)9104

, p(t)0.01

100t(100t)3

且当t时,p(t)0.01,即长时间地进行上述稀释过程,容器内盐水的质量浓度将趋于注入溶液的质量浓度.

溶液混合问题的更一般的提法是:设有一容器装有某种质量浓度的溶液,以流量V1注入质量浓度为C1的溶液 (指同一种类溶液,只是质量浓度不同),假定

溶液立即被搅匀,并以V2的流量流出这种混合溶液,试建立容器中质量浓度与时间的数学模型.

首先设容器中溶质的质量为x(t),原来的初始质量为x0 ,t =0时溶液的体积为V2,在dt时间内,容器内溶质的改变量等于流入溶质的数量减去流出溶质的数量,即

dxC1V1dtC2V2dt,

其中C1是流入溶液的质量浓度, C2为t时刻容器中溶液的质量浓度,C2

x

于是,有混合溶液的数学模型 V0(V1V2)t

dx

C1V1C2V2,

dt

x(0)x0.

该模型不仅适用于液体的混合,而且还适用于讨论气体的混合.

第四章 振动模型

振动是生活与工程中的常见现象.研究振动规律有着极其重要的意义.在自然界中,许多振动现象都可以抽象为下述振动问题.

例5 设有一个弹簧,它的上端固定,下端挂一个质量为m的物体,试研究其振动规律.

解 假设

(1)物体的平衡位置位于坐标原点,并取x轴的正向铅直向下(见图4).物体的平衡位置指物体处于静止状态时的位置.此时,作用在物体上的重力与弹性力大小相等,方向相反;

(2)在一定的初始位移x0及初始速度v0下,物体离开平衡位置,并在平衡位置附近作没有摇摆的上下振动;

(3)物体在t时刻的位置坐标为xx(t),即t时刻物体偏离平衡位置的位移;(4)在振动过程中,受阻力作用.阻力的大小与物体速度成正比,阻力的方向总是与速度方向相反,因此阻力为h

dx

,h为阻尼系数; dt

(5)当质点有位移x(t)时,假设所受的弹簧恢复力是与位移成正比的,而恢复力的方向总是指向平衡位置,也就是总与偏离平衡位置的位移方向相反,因此所受弹簧恢复力为kx,其中k为劲度系数;(6)在振动过程中受外力f(t)的作用.在上述假设下,根据牛顿第二定律得

m

dxdx

hkxf(x) , ① 2

dtdt

2

这就是该物体的强迫振动方程.

由于方程①中, f(t)的具体形式没有给出,所以,不能对式 ①直接求解.下面我们分四种情形对其进行讨论.

1. 无阻尼自由振动

在这种情况下,假定物体在振动过程中,既无阻力、又不受外力 作用.此时方程①变为

图4

d2x

m2kx0 ,

dt

k

2,方程变为 m

d2x

22x0,

dt

特征方程为 220, 特征根为 通解为 或将其写为

C1

xCCsint

2C2

12

2

1

22

1,2i,

xC1sintC2cost,

cost 2C12C2

C2

Acossintsincost

Asin(t)

C2C

2

1

22

2

其中 A12C2,sin,cos

C1CC

2

1

22

.

这就是说,无阻尼自由振动的振幅AC12C22,频率2.有阻尼自由振动

k

均为常数. m

在该种情况下,考虑物体所受到的阻力,不考虑物体所受的外力.此时,方程①变为

d2xdx

m2hkx0,

dtdt

kh

2,2,方程变为 mm

d2xdx

2x0, 22dtdt

特征方程为2220,特征根 1,222.根据与的关系,又分为如下三种情形:

(1)大阻尼情形, >.特征根为二不等实根,通解为

xC1e

(22)t

C2e

(22)t

(2)临界阻尼情形,.特征根为重根,通解为

x(C1C2t)et

这两种情形,由于阻尼比较大,都不发生振动.当有一初始扰动以后,质点慢慢回到平衡位置,位移随时间t的变化规律分别如图5和图6所示.

图5 图6

(3)小阻尼情形,

xet( C1sin22tC2sin22t)

将其简化为

xAet22t)

其中AC12C22,sin

C2C1C2

2

2

,cos

C1C1C2

2

2

,振幅

Aet随时间t的增加而减小.因此,这是一种衰减振动.位移随

时间t的变化规律见右图7.

3.无阻尼强迫振动

在这种情形下,设物体不受阻力作用,其所受外力为简谐

力f(t)msinpt,此时,方程①化为 图7

d2x

m2kxmsinpt,

dt

d2x

22xsinpt, dt

根据ip是否等于特征根i,其通解分为如下两种情形:

(1)当p时,其通解为

x

1

sinptC1sintC2cost,

2p2

此时,特解的振幅

1

为常数,但当p接近于时,将会导致振幅增大,发生22

p

类似共振的现象;

(2)当p时,其通解为

x

1

tcosptC1sintC2cost, 2p

此时,特解的振幅

1

t随时间t的增加而增大,这种现象称为共振,即当外力的频2p

率p等于物体的固有频率时,将发生共振.

4.阻尼强迫振动

在这种情形下,假定振动物体既受阻力作用,又受外力f(x)msinpt的作用,并设,方程①变为

d2xdx

2xsinpt , 22dtdt

特征根i22,0,则ip不可能为特征根,特解为

x*AsinptBcospt,

其中A

2p2

(2p2)242p2

,B

2p

, 22222

(p)4p

还可将其化为

x*

122

[(wp)sinpt2pcospt], 22222

(wp)4p

由此可见,在有阻尼的情况下,将不会发生共振现象,不过,当p时,

x*

1

cospt, 2p

若很小,则仍会有较大的振幅;若比较大,则不会有较大的振幅.

结 论

在科学研究和生产实际中,经常要寻求表示客串事物的变量的函数关系。微分方程就是描述客观事物的数量关系的一种重要数学模型

常微分方程是数学理论(特别是微积分)联系实际的重要工具,它不仅与几何学、力学、电子技术、自动控制、星际航行、甚至和化学、生物学、农业以及经济学都有着密切的联系。本文结合实践背景,建立数学模型,并利用所得结果去解释某些实际问题。

参考文献

1丁同仁 《常微分方程》高等教育出版社2010.4.1

》高等教育出版社 2007.4 2周之铭 《常微分方程(第三版)

3姜启源、谢金星等 《数学建模》高等教育出版社 2003 4贾晓峰 《微积分与数学模型》 高等教育出版社 1999

5欧阳瑞、孙要伟 《常微分方程在数学建模中的应用》宿州教育学院学报2008

年2第11卷第2期

6吉蕴、朱向东 《常微分方程在数学建模中的应用》 潍坊高等职业教育2006

年6 第2卷第2期

致谢

经过近三个月的忙碌和工作,本次毕业论文已经接近尾声,作为一个毕业生的毕业设计,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有陈老师的督促指导,以及一起工作的同学们的支持,想要完成这个设计是难以想象的。

在这里首先要感谢我的导师陈老师.陈老师平日里工作繁多,但在我做毕业设计的每个阶段,从查阅资料,设计草案的确定和修改,中期检查,后期详细设计等整个过程中都给予了我悉心的指导.除了敬佩陈老师的专业水平外,他的治学严谨和科学研究的精神也是我永远学习的榜样,并将积极影响我今后的学习和工作。

然后还要感谢大学几年来所有的老师,为我打下数学专业知识的基础;同时还要感谢所有的同学们,正是因为有了你们的支持和鼓励.此次毕业设计才会顺利完成。

毕 业 论 文

论文题目:常微分方程在数学建模中的应用 姓 名:学科专业:指导教师:完成时间:

摘 要

常微分方程是数学理论(特别是微积分)联系实际的重要工具,它不仅与几何学、力学、电子技术、自动控制、星际航行、甚至和化学、生物学、农业以及经济学都有着密切的联系。本文结合实践背景,建立数学模型,并利用所得结果去解释某些实际问题。

关键字 常微分方程、人口预测模型、市场价格模型、混合溶液的数学模型、震动模型

目 录

第一章 人口预测模型 第二章 市场价格模型 第三章 混合溶液的数学模型 第四章 震动模型

绪 论

当我们描述实际对象的某些特性随时间(或空间)而演变的过程、分析它的变化规律、预测它的未来性态,研究它的控制手段时,通常要建立对象的动态模型。建模时首先要根据建模目的和对问题的具体分析作出简化假设,然后按照对象内在的或可以类比的其他对象的规律列出微分方程,求出方程的解并将结果翻译回实际对象,就可以进行描述、分析、预测或控制了。

事实上在微分方程课程中,解所谓应用题时我们遇到简单的建立动态模型问题,例如“一质量为m的物体自高h处自由下落,初速度是零,设阻力与下落速度的平方成正比,比例系数为k,求下落速度随时间的变化规律。”又如“容器内有盐水100L,内含盐10kg,令以3L/min的速度从一管放进净水,以2L/min的速度从另一管抽出盐水,设容器内盐水浓度始终是均匀的,求容器内含盐量随时间变化规律。”本文讨论的是常微分方程在数学建模中的应用。

第一章 人口预测模型

由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型.

例1(马尔萨斯(Malthus)模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r,在此假设下,推导并求解人口随时间变化的数学模型.

解 设时刻t的人口为N(t),把N(t)当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t到tt时间段内,人口的增长量为

N(tt)N(t)rN(t)t,

并设tt0时刻的人口为N0,于是

dN

rN,

dt

N(t0)N0.

这就是马尔萨斯人口模型,用分离变量法易求出其解为

N(t)N0er(tt0),

此式表明人口以指数规律随时间无限增长.

模型检验:据估计1961年地球上的人口总数为3.06109,而在以后7年中,人口总数以每年2%的速度增长,这样t01961,N03.06109 ,r0.02,于是

N(t)3.06109e0.02(t1961).

这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间

地球上的人口大约每35年翻一番,而上式断定34.6年增加一倍(请读者证明这一点).

但是,后来人们以美国人口为例,用马尔萨斯模型计算结果与人口资料比较,却发现有很大的差异,尤其是在用此模型预测较遥远的未来地球人口总数时,发现更令人不可思议的问题,如按此模型计算,到2670年,地球上将有36 000亿人口.如果地球表面全是陆地(事实上,地球表面还有80%被水覆盖),我们也只得互相踩着肩膀站成两层了,这是非常荒谬的,因此,这一模型应该修改.

例2(逻辑Logistic模型) 马尔萨斯模型为什么不能预测未来的人口呢?这主要是地球上的各种资源只能供一定数量的人生活,随着人口的增加,自然资源环境条件等因素对人口增长的限制作用越来越显著,如果当人口较少时,人口的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率就要随人口的增加而减小.因此,应对马尔萨斯模型中关于净增长率为常数的假设进行修改.

1838年,荷兰生物数学家韦尔侯斯特(Verhulst)引入常数Nm,用来表示自然环境条件所能容许的最大人口数(一般说来,一个国家工业化程度越高,它的生

N(t)活空间就越大,食物就越多,从而Nm就越大),并假设将增长率等于r1N,

m即净增长率随着N(t)的增加而减小,当N(t)Nm时,净增长率趋于零,按此假定建立人口预测模型.

解 由韦尔侯斯特假定,马尔萨斯模型应改为

dNN

r1N,dtN0

N(t)N,00

上式就是逻辑模型,该方程可分离变量,其解为,

N(t)

Nm

Nmr(tt0)

11Ne

0

.

下面,我们对模型作一简要分析.

(1)当t,N(t)Nm,即无论人口的初值如何,人口总数趋向于极限值

Nm;

(2)当0NNm时,增函数;

NmdNd2Nd2NN2N2N0(3)由于2r,所以当时,,单11N2dt2dtdtNmNmNmNdNdNd2N增;当N时,20,单减,即人口增长率由增变减,在m处最大,

dtdt22dt

dNN

r1N0,这说明N(t)是时间t的单调递dtNm

也就是说在人口总数达到极限值一半以前是加速生长期,过这一点后,生长的速率逐渐变小,并且迟早会达到零,这是减速生长期;

(4)用该模型检验美国从1790年到1950年的人口,发现模型计算的结果与实际人口在1930年以前都非常吻合,自从1930年以后,误差愈来愈大,一个明显的原因是在20世纪60年代美国的实际人口数已经突破了20世纪初所设的极限人口.由此可见该模型的缺点之一是Nm不易确定,事实上,随着一个国家经济的腾飞,它所拥有的食物就越丰富, Nm的值也就越大;

(5)用逻辑模型来预测世界未来人口总数.某生物学家估计,r0.029,又当人口总数为3.06109时,人口每年以2%的速率增长,由逻辑模型得

1dNN

, r1NdtNm

3.06109即 0.020.029, 1Nm从而得 Nm9.86109, 即世界人口总数极限值近100亿.

值得说明的是:人也是一种生物,因此,上面关于人口模型的讨论,原则上也可以用于在自然环境下单一物种生存着的其他生物,如森林中的树木、池塘中的鱼等,逻辑模型有着广泛的应用.

第二章 市场价格模型

对于纯粹的市场经济来说,商品市场价格取决于市场供需之间的关系,市场价格能促使商品的供给与需求相等(这样的价格称为(静态)均衡价格).也就是说,如果不考虑商品价格形成的动态过程,那么商品的市场价格应能保证市场的供需平衡,但是,实际的市场价格不会恰好等于均衡价格,而且价格也不会是静态的,应是随时间不断变化的动态过程.

例3 试建立描述市场价格形成的动态过程的数学模型

解 假设在某一时刻t,商品的价格为p(t),它与该商品的均衡价格间有差别,此时,存在供需差,此供需差促使价格变动.对新的价格,又有新的供需差,如此不断调节,就构成市场价格形成的动态过程,假设价格p(t)的变化率

dp

与需求dt

和供给之差成正比,并记f(p,r)为需求函数,g(p)为供给函数(r为参数),于是

dp

fp,rgp,

dt

p(0)p0,

其中p0为商品在t0时刻的价格,为正常数.

若设f(p,r)apb,g(p)cpd,则上式变为

dp

(ac)p(bd), dt p(0)p0,

其中a,b,c,d均为正常数,其解为

bd(ac)tbd

p(t)p0. e

acac

下面对所得结果进行讨论:

(1)设p为静态均衡价格 ,则其应满足

f(p,r)g(p)0,

即 于是得p

apbcpd,

bd

,从而价格函数p(t)可写为 ac

p(t)(p0p)e(ac)tp , 令t,取极限得

t

limp(t)p

这说明,市场价格逐步趋于均衡价格.又若初始价格p0p,则动态价格就维持在均衡价格p上,整个动态过程就化为静态过程;

(2)由于 所以,当p0p时,

dp

(pp0)(ac)e(ac)t , dt

dpdp0,p(t)单调下降向p靠拢;当p0p时, 0,p(t)dtdt

单调增加向p靠拢.这说明:初始价格高于均衡价格时,动态价格就要逐步降低,且逐步靠近均衡价格;否则,动态价格就要逐步升高.因此,式①在一定程度上反映了价格影响需求与供给,而需求与供给反过来又影响价格的动态过程,并指出了动态价格逐步向均衡价格靠拢的变化趋势.

第三章 混合溶液的数学模型

例4 设一容器内原有100L盐,内含有盐10kg,现以3L/min的速度注入质量浓度为0.01kg/L的淡盐水,同时以2L/min的速度抽出混合均匀的盐水,求容器内盐量变化的数学模型.

解 设t时刻容器内的盐量为x(t)kg,考虑t到tdt时间内容器中盐的变化情况,在dt时间内

容器中盐的改变量注入的盐水中所含盐量-抽出的盐水中所含盐量 容器内盐的改变量为dx,注入的盐水中所含盐量为0.013dt,t时刻容器内溶液的质量浓度为

x(t)

,假设t到tdt时间内容器内溶液的质量浓度不

100(32)t

变(事实上,容器内的溶液质量浓度时刻在变,由于dt时间很短,可以这样看).于是抽出的盐水中所含盐量为

x(t)

2dt,这样即可列出方程

100(32)tdx0.03dt

2x

dt, 100t

dx2x0.03. dt100t

又因为t0时,容器内有盐10kg,于是得该问题的数学模型为

2xdx0.03,dt100t

x(0)10,

这是一阶非齐次线性方程的初值问题,其解为

9104

x(t)0.01(100t). 2

(100t)

下面对该问题进行一下简单的讨论,由上式不难发现:t时刻容器内溶液的质量浓度为

x(t)9104

, p(t)0.01

100t(100t)3

且当t时,p(t)0.01,即长时间地进行上述稀释过程,容器内盐水的质量浓度将趋于注入溶液的质量浓度.

溶液混合问题的更一般的提法是:设有一容器装有某种质量浓度的溶液,以流量V1注入质量浓度为C1的溶液 (指同一种类溶液,只是质量浓度不同),假定

溶液立即被搅匀,并以V2的流量流出这种混合溶液,试建立容器中质量浓度与时间的数学模型.

首先设容器中溶质的质量为x(t),原来的初始质量为x0 ,t =0时溶液的体积为V2,在dt时间内,容器内溶质的改变量等于流入溶质的数量减去流出溶质的数量,即

dxC1V1dtC2V2dt,

其中C1是流入溶液的质量浓度, C2为t时刻容器中溶液的质量浓度,C2

x

于是,有混合溶液的数学模型 V0(V1V2)t

dx

C1V1C2V2,

dt

x(0)x0.

该模型不仅适用于液体的混合,而且还适用于讨论气体的混合.

第四章 振动模型

振动是生活与工程中的常见现象.研究振动规律有着极其重要的意义.在自然界中,许多振动现象都可以抽象为下述振动问题.

例5 设有一个弹簧,它的上端固定,下端挂一个质量为m的物体,试研究其振动规律.

解 假设

(1)物体的平衡位置位于坐标原点,并取x轴的正向铅直向下(见图4).物体的平衡位置指物体处于静止状态时的位置.此时,作用在物体上的重力与弹性力大小相等,方向相反;

(2)在一定的初始位移x0及初始速度v0下,物体离开平衡位置,并在平衡位置附近作没有摇摆的上下振动;

(3)物体在t时刻的位置坐标为xx(t),即t时刻物体偏离平衡位置的位移;(4)在振动过程中,受阻力作用.阻力的大小与物体速度成正比,阻力的方向总是与速度方向相反,因此阻力为h

dx

,h为阻尼系数; dt

(5)当质点有位移x(t)时,假设所受的弹簧恢复力是与位移成正比的,而恢复力的方向总是指向平衡位置,也就是总与偏离平衡位置的位移方向相反,因此所受弹簧恢复力为kx,其中k为劲度系数;(6)在振动过程中受外力f(t)的作用.在上述假设下,根据牛顿第二定律得

m

dxdx

hkxf(x) , ① 2

dtdt

2

这就是该物体的强迫振动方程.

由于方程①中, f(t)的具体形式没有给出,所以,不能对式 ①直接求解.下面我们分四种情形对其进行讨论.

1. 无阻尼自由振动

在这种情况下,假定物体在振动过程中,既无阻力、又不受外力 作用.此时方程①变为

图4

d2x

m2kx0 ,

dt

k

2,方程变为 m

d2x

22x0,

dt

特征方程为 220, 特征根为 通解为 或将其写为

C1

xCCsint

2C2

12

2

1

22

1,2i,

xC1sintC2cost,

cost 2C12C2

C2

Acossintsincost

Asin(t)

C2C

2

1

22

2

其中 A12C2,sin,cos

C1CC

2

1

22

.

这就是说,无阻尼自由振动的振幅AC12C22,频率2.有阻尼自由振动

k

均为常数. m

在该种情况下,考虑物体所受到的阻力,不考虑物体所受的外力.此时,方程①变为

d2xdx

m2hkx0,

dtdt

kh

2,2,方程变为 mm

d2xdx

2x0, 22dtdt

特征方程为2220,特征根 1,222.根据与的关系,又分为如下三种情形:

(1)大阻尼情形, >.特征根为二不等实根,通解为

xC1e

(22)t

C2e

(22)t

(2)临界阻尼情形,.特征根为重根,通解为

x(C1C2t)et

这两种情形,由于阻尼比较大,都不发生振动.当有一初始扰动以后,质点慢慢回到平衡位置,位移随时间t的变化规律分别如图5和图6所示.

图5 图6

(3)小阻尼情形,

xet( C1sin22tC2sin22t)

将其简化为

xAet22t)

其中AC12C22,sin

C2C1C2

2

2

,cos

C1C1C2

2

2

,振幅

Aet随时间t的增加而减小.因此,这是一种衰减振动.位移随

时间t的变化规律见右图7.

3.无阻尼强迫振动

在这种情形下,设物体不受阻力作用,其所受外力为简谐

力f(t)msinpt,此时,方程①化为 图7

d2x

m2kxmsinpt,

dt

d2x

22xsinpt, dt

根据ip是否等于特征根i,其通解分为如下两种情形:

(1)当p时,其通解为

x

1

sinptC1sintC2cost,

2p2

此时,特解的振幅

1

为常数,但当p接近于时,将会导致振幅增大,发生22

p

类似共振的现象;

(2)当p时,其通解为

x

1

tcosptC1sintC2cost, 2p

此时,特解的振幅

1

t随时间t的增加而增大,这种现象称为共振,即当外力的频2p

率p等于物体的固有频率时,将发生共振.

4.阻尼强迫振动

在这种情形下,假定振动物体既受阻力作用,又受外力f(x)msinpt的作用,并设,方程①变为

d2xdx

2xsinpt , 22dtdt

特征根i22,0,则ip不可能为特征根,特解为

x*AsinptBcospt,

其中A

2p2

(2p2)242p2

,B

2p

, 22222

(p)4p

还可将其化为

x*

122

[(wp)sinpt2pcospt], 22222

(wp)4p

由此可见,在有阻尼的情况下,将不会发生共振现象,不过,当p时,

x*

1

cospt, 2p

若很小,则仍会有较大的振幅;若比较大,则不会有较大的振幅.

结 论

在科学研究和生产实际中,经常要寻求表示客串事物的变量的函数关系。微分方程就是描述客观事物的数量关系的一种重要数学模型

常微分方程是数学理论(特别是微积分)联系实际的重要工具,它不仅与几何学、力学、电子技术、自动控制、星际航行、甚至和化学、生物学、农业以及经济学都有着密切的联系。本文结合实践背景,建立数学模型,并利用所得结果去解释某些实际问题。

参考文献

1丁同仁 《常微分方程》高等教育出版社2010.4.1

》高等教育出版社 2007.4 2周之铭 《常微分方程(第三版)

3姜启源、谢金星等 《数学建模》高等教育出版社 2003 4贾晓峰 《微积分与数学模型》 高等教育出版社 1999

5欧阳瑞、孙要伟 《常微分方程在数学建模中的应用》宿州教育学院学报2008

年2第11卷第2期

6吉蕴、朱向东 《常微分方程在数学建模中的应用》 潍坊高等职业教育2006

年6 第2卷第2期

致谢

经过近三个月的忙碌和工作,本次毕业论文已经接近尾声,作为一个毕业生的毕业设计,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有陈老师的督促指导,以及一起工作的同学们的支持,想要完成这个设计是难以想象的。

在这里首先要感谢我的导师陈老师.陈老师平日里工作繁多,但在我做毕业设计的每个阶段,从查阅资料,设计草案的确定和修改,中期检查,后期详细设计等整个过程中都给予了我悉心的指导.除了敬佩陈老师的专业水平外,他的治学严谨和科学研究的精神也是我永远学习的榜样,并将积极影响我今后的学习和工作。

然后还要感谢大学几年来所有的老师,为我打下数学专业知识的基础;同时还要感谢所有的同学们,正是因为有了你们的支持和鼓励.此次毕业设计才会顺利完成。


相关文章

  • 湖大教师简介
  • 湖南大学数学与计量经济学院硕士生指导教师简况表 序号 姓 名 "性 别" 出生年月 学位 职 称 "所在二级 学科名称" "主 要 研究方向" 个 人 简 介 1 李庆国 男 19 ...查看


  • 外文数学期刊(SCI)
  • 外文数学期刊(SCI) (注:仅供参考) Journal of Differential Equations<微分方程杂志>美国 ISSN:0022-0396,1965年创刊,全年18期,Elsevier Science 出版社 ...查看


  • 微分中值定理开题报告
  • -1-附件10:论文(设计)管理表一昌吉学院本科毕业论文(设计)开题报告论文(设计)题目微分中值定理的若干推广及其应用系(院)数学与应用数学专业班级07级数本(2)班学科理科学生姓名李娜指导教师姓名黄永峰学号0725809061职称助教 一 ...查看


  • 例谈概率论与微积分的联系及相互间的应用
  • 第4卷第3期2008年7月 沈阳工程学院学报(自然科学版) JournalofShenyangInstituteofEngineering(NaturalScience) Vd.4No.3Jul.2008 例谈概率论与微积分的联系及相互间的 ...查看


  • 用五种方法证明柯西中值定理
  • 用五种方法证明柯西中值定理 黄德丽 (湖州师范学院理学院!! ! 摘&要:从多角度全方面介绍了微分中值定理中柯西中值定理的五种证明方法,其中有利用构造辅助函数,根据罗尔定理证明:利用闭区间套定理证明:借助引理,并应用反证法证明:用达 ...查看


  • 常微分方程在数学建模中的应用
  • 北方民族大学 学士学位论文 论文题目: 院(部) 名 称: 信息与计算科学学院 学 生 姓 名: 马木沙 专 业: 信计 学 号: 20093490 指导教师姓名: 魏波 论文提交时间: 论文答辩时间: 学位授予时间: 北方民族大学教务处制 ...查看


  • 常系数线性差分方程的微分解法
  • [***********][***********][***********]77生的整体素质也起到了重要的作用:符合国家教育部提出的; 重在参与:重在普及:扩大受益面 >以竞赛促教改 撰写论文的能力? 查阅资料的能力:分析问题? 解 ...查看


  • 法学院2012年硕士学位论文答辩会13
  • 1.敏而好学,不耻下问--孔子 西北大学2013年研究生学位论文答辩安排 培养单位名称:数学系 申请学位类别(博士/硕士):硕士 答辩时间2013.5.31日14:00答辩地点西北大学非线性中心报告厅答辩委员会成员成 员姓 名职 称是否硕/ ...查看


  • 数非齐次微分方程通解的一种新方法
  • 2009年9月 第23卷第3期总77期 北京联合大学学报(自然科学版) Journalof Scp.2009 V01.23No.3SumNo.77 Beijing Union University(NaturalSciences) 求二阶线 ...查看


  • 金光佑-矩阵在解线性方程组中的应用
  • 毕业论文(设计) 题 目: 矩阵在解线性方程组中的应用 学 号: [1**********] 姓 名: 金光佑 教 学 院: 理学院 专业班级: 数学与应用数学(1)班 指导教师: 黄飞丹 完成时间: 2014年04月25日 毕节学院教务处 ...查看


热门内容