金属强化机制及实际应用
1. 形变强化
金属材料经塑性变形后,其强度和硬度升高,塑性和韧性下降,这种现象称为形变强化。
变形过程中,位错密度升高,导致形变胞的形成和不断细化,对位错的滑移产生巨大的阻碍作用,可使金属的变形抗力显著升高,这是产生形变强化的主要原因。
2. 固溶强化
溶质原子溶入金属基体而形成固溶体,使金属的强度、硬度升高,塑性、韧性有所下降,这一现象称为固溶强化。例如单相的黄铜、单相锡青铜和铝青铜都是以固溶强化为主来提高合金强度和硬度的。
固溶强化的实质是由于溶质原子造成了点阵畸变,其应力场将与位错应力场发生弹性交互作用、化学交互作用和静电交互作用,并阻碍位错运动。
3. 第二相强化
只通过单纯的固溶强化,其强化程度毕竟有限,还必须进一步以第二相或更多的相来强化。当第二相以细小弥散的微粒均匀分布于基体相中时,将阻碍位错运动, 产生显著的强化作用。如果第二相微粒是通过过饱和固溶体的时效处理而沉淀析出并产生强化,则称为沉淀强化或时效强化;如果第二相微粒是通过粉末冶金方法加入并起强化作用,则称为弥散强化。
4. 细晶强化
通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展。故工业上将通过细化晶粒以提高材料强度的方法称为细晶强化。
金属强化机制及实际应用
1. 形变强化
金属材料经塑性变形后,其强度和硬度升高,塑性和韧性下降,这种现象称为形变强化。
变形过程中,位错密度升高,导致形变胞的形成和不断细化,对位错的滑移产生巨大的阻碍作用,可使金属的变形抗力显著升高,这是产生形变强化的主要原因。
2. 固溶强化
溶质原子溶入金属基体而形成固溶体,使金属的强度、硬度升高,塑性、韧性有所下降,这一现象称为固溶强化。例如单相的黄铜、单相锡青铜和铝青铜都是以固溶强化为主来提高合金强度和硬度的。
固溶强化的实质是由于溶质原子造成了点阵畸变,其应力场将与位错应力场发生弹性交互作用、化学交互作用和静电交互作用,并阻碍位错运动。
3. 第二相强化
只通过单纯的固溶强化,其强化程度毕竟有限,还必须进一步以第二相或更多的相来强化。当第二相以细小弥散的微粒均匀分布于基体相中时,将阻碍位错运动, 产生显著的强化作用。如果第二相微粒是通过过饱和固溶体的时效处理而沉淀析出并产生强化,则称为沉淀强化或时效强化;如果第二相微粒是通过粉末冶金方法加入并起强化作用,则称为弥散强化。
4. 细晶强化
通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展。故工业上将通过细化晶粒以提高材料强度的方法称为细晶强化。