复合函数定义

生成条件不是任何两个函数都可以复合成一个复合函数,只有当μ=φ(x )的值域存在非空子集Z φ是y =f (μ)的定义域Df 的子集时,二者才可以构成一个复合函数。

定义域若函数y =f (u )的定义域是B, u =g (x )的定义域是A, 则复合函数y =f [g (x )]的定义域是D={x |x ∈A, 且g (x )∈B} 综合考虑各部分的x 的取值范围,取他们的交集。

求函数的定义域主要应考虑以下几点:

⑴当为整式或奇次根式时,R ;

⑵当为偶次根式时,被开方数不小于0(即≥0);

⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;

⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。

⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。

⑹分段函数的定义域是各段上自变量的取值集合的并集。

⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求

⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。

⑼对数函数的真数必须大于零,底数大于零且不等于1。

⑽三角函数中的切割函数要注意对角变量的限制。

周期性设y=f(u)的最小正周期为T1, μ=φ(x)的最小正周期为T2, 则y=f(μ)的最小正周期

为T1*T2,任一周期可表示为k*T1*T2(k属于R+)

增减性 依y=f(u),μ=φ(x)的增减性决定。即“增增得增,减减得增,增减得减”,可以简化为“同增异减”

判断复合函数的单调性的步骤如下:⑴求复合函数定义域;

⑵将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);

⑶判断每个常见函数的单调性;

⑷将中间变量的取值范围转化为自变量的取值范围;

⑸求出复合函数的单调性。

例如:讨论函数y=0.8^(x^2-4x+3)的单调性。

解:函数定义域为R 。

令u=x^2-4x+3,y=0.8^u。

指数函数y=0.8^u在(-∞,+∞)上是减函数,

u=x^2-4x+3在(-∞,2]上是减函数,在[2,+∞)上是,

∴ 函数y=0.8^(x2-4x+3)在(-∞,2]上是增函数,在[2,+∞)上是减函数。

利用复合函数(composite function)求参数取值范围

求参数的取值范围是一类重要问题,解题关键是建立关于这个参数的不等式组,必须 将已知的所有条件加以转化。

求导

复合函数求导的前提:复合函数本身及所含函数都可导

法则1:设u=g(x)

f'(x)=f'(u)*g'(x)

法则2:设u=g(x),a=p(u)

f'(x)=f'(a)*p'(u)*g'(x)

例如:

1、求:函数f(x)=(3x+2)^3+3的导数 设u=g(x)=3x+2

f(u)=u^3+3

f'(u)=3u^2=3(3x+2)^2

g'(x)=3

f'(x)=f'(u)*g'(x)=3(3x+2)^2*3=9(3x+2)^2

2、求f(x)=√[(x-4)^2+25]的导数 设u=g(x)=x-4,a=p(u)=u^2+25 f(a)=√a

f'(a)=1/(2√a)=1/{2√[(x-4)^2+25]} p'(u)=2u=2(x-4)

g'(x)=1

f'(x)=f'(a)*p'(u)*g'(x)=2(x-4)/{2√[(x-4)^2+25]}=(x-4)/√[(x-4)^2+25]

生成条件不是任何两个函数都可以复合成一个复合函数,只有当μ=φ(x )的值域存在非空子集Z φ是y =f (μ)的定义域Df 的子集时,二者才可以构成一个复合函数。

定义域若函数y =f (u )的定义域是B, u =g (x )的定义域是A, 则复合函数y =f [g (x )]的定义域是D={x |x ∈A, 且g (x )∈B} 综合考虑各部分的x 的取值范围,取他们的交集。

求函数的定义域主要应考虑以下几点:

⑴当为整式或奇次根式时,R ;

⑵当为偶次根式时,被开方数不小于0(即≥0);

⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;

⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。

⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。

⑹分段函数的定义域是各段上自变量的取值集合的并集。

⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求

⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。

⑼对数函数的真数必须大于零,底数大于零且不等于1。

⑽三角函数中的切割函数要注意对角变量的限制。

周期性设y=f(u)的最小正周期为T1, μ=φ(x)的最小正周期为T2, 则y=f(μ)的最小正周期

为T1*T2,任一周期可表示为k*T1*T2(k属于R+)

增减性 依y=f(u),μ=φ(x)的增减性决定。即“增增得增,减减得增,增减得减”,可以简化为“同增异减”

判断复合函数的单调性的步骤如下:⑴求复合函数定义域;

⑵将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);

⑶判断每个常见函数的单调性;

⑷将中间变量的取值范围转化为自变量的取值范围;

⑸求出复合函数的单调性。

例如:讨论函数y=0.8^(x^2-4x+3)的单调性。

解:函数定义域为R 。

令u=x^2-4x+3,y=0.8^u。

指数函数y=0.8^u在(-∞,+∞)上是减函数,

u=x^2-4x+3在(-∞,2]上是减函数,在[2,+∞)上是,

∴ 函数y=0.8^(x2-4x+3)在(-∞,2]上是增函数,在[2,+∞)上是减函数。

利用复合函数(composite function)求参数取值范围

求参数的取值范围是一类重要问题,解题关键是建立关于这个参数的不等式组,必须 将已知的所有条件加以转化。

求导

复合函数求导的前提:复合函数本身及所含函数都可导

法则1:设u=g(x)

f'(x)=f'(u)*g'(x)

法则2:设u=g(x),a=p(u)

f'(x)=f'(a)*p'(u)*g'(x)

例如:

1、求:函数f(x)=(3x+2)^3+3的导数 设u=g(x)=3x+2

f(u)=u^3+3

f'(u)=3u^2=3(3x+2)^2

g'(x)=3

f'(x)=f'(u)*g'(x)=3(3x+2)^2*3=9(3x+2)^2

2、求f(x)=√[(x-4)^2+25]的导数 设u=g(x)=x-4,a=p(u)=u^2+25 f(a)=√a

f'(a)=1/(2√a)=1/{2√[(x-4)^2+25]} p'(u)=2u=2(x-4)

g'(x)=1

f'(x)=f'(a)*p'(u)*g'(x)=2(x-4)/{2√[(x-4)^2+25]}=(x-4)/√[(x-4)^2+25]


相关文章

  • 复合函数定义域
  • 专题:复合函数的定义域 讲解内容: 复合函数的定义域求法 讲解步骤: 第一步:函数概念及其定义域 函数的概念:设是A , B 非空数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数f (x ) ...查看


  • 复合函数单调性的求法与含参数问题
  • 复合函数单调性的求法与含参数问题 若y =f (u ) ,又u =g (x ) ,且g (x ) 值域与f (u ) 定义域的交集不空, u =g (x ) 叫则函数y =f [g (x )]叫x 的复合函数,其中y =f (u ) 叫外层 ...查看


  • 复合函数的极限存在性
  • 2008 g-g5期齐齐哈尔师范高等专科学校学报 JoumalofQiqiharJuniorTeachers'College No・5,2008General・N.・105 (总第105期) 复合函数的极限存在性 陈志惠 (辽东学院师范学院 ...查看


  • 判断函数增减性
  • 判断函数增减性 组合函数 增+增得增 减+减得减 增-减得增 减-增得减 复合函数 定义 一般地,对于两个函数y =f (u )和u =g (x ),当函数u =g (x )的值域Rg (Rg ≠∅) 是y =f (u )的定义域Df 的子 ...查看


  • 复合函数与分段函数
  • 一.复合函数与抽象函数 1. 复合函数:若函数y=f(t)的定义域为A ,函数t=g(x)的定义域为D ,值域为C ,则当C ⊆A 时,称函数f(g(x))为f 与g 在D 上的复合函数,其中t 叫做中间变量,t=g(x)叫做内函数,y=f ...查看


  • 指数型复合函数的单调性
  • 指数型复合函数的单调性(对象:高一学生60-80分) 学习目标:1. 理解复合函数的定义. 2. 会判断指数型复合函数的单调性.(主要是两种类型y=a f (x)和y=f(a ) ) x 重难点:指数型复合函数的单调性. 内容要点: 1. ...查看


  • 2014-2015第一学期[高等数学1]重点难点资料
  • 高等数学重难点 第一章 函数 极限 连续 一.基本要求 1. 深刻理解函数的定义,会求简单函数的定义域,会用函数的对应法则求函数值与复合函数,了解初等函数的构成,会建立简单应用问题的函数关系式,了解隐函数和反函数的概念,了解函数的有界性单调 ...查看


  • 复合函数的单调性
  • 复合函数的单调性 (同增异减) 教学目标:复合函数单调区间的求法 教学重点和难点:如何求出给出的复合函数的单调区间 复习:考查复合函数y =f (g (x )) 的单调性. 设单调函数y =f (x ) 为外层函数,y =g (x ) 为内 ...查看


  • 复合函数单调性的判断方法
  • 内蒙古电大学刊 2006年第12期(总第88期) 复合函数单调性的判断方法 祁玉兰 (鄂尔多斯教育学院, 内蒙古东胜017000) 在现行中学教材中, 复合函数的单调性是学生学习的一个难点, 主要原因是学生对复合函数的概念不清, 从而导致求 ...查看


热门内容