超棒超快的数学心算方法)_

超棒超快的数学心算方法,让你从此不再用计算器_

乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。

例:15×17

15 + 7 = 22

5 × 7 = 35 --------------- 255 即15×17 = 255 解释: 15×17 =15 ×(10 + 7) =15 × 10 + 15 × 7

=150 + (10 + 5)× 7

=150 + 70 + 5 × 7 =(150 + 70)+(5 × 7) 为了提高速度,熟练以后可以直接用“15 + 7”,而不用“150 + 70”。 例:17 × 19 17 + 9 = 26 7 × 9 = 63 即260 + 63 = 323 二、个位是1的两位数相乘 方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最

后添上1。

例:51 × 31

50 × 30 = 1500 50 + 30 = 80 ------------------ 1580

因为1 × 1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。

例:81 × 91

80 × 90 = 7200

80 + 90 = 170

------------------

7370

------------------

7371

原理大家自己理解就可以了。

三、十位相同个位不同的两位数相乘

被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。

例:43 × 46

(43 + 6)× 40 = 1960

3 × 6 = 18

----------------------

1978

例:89 × 87

(89 + 7)× 80 = 7680 9 × 7 = 63 ---------------------- 7743

四、首位相同,两尾数和等于10的两位数相乘

十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。

例:56 × 54 (5 + 1) × 5 = 30-- 6 × 4 = 24 ---------------------- 3024 例: 73 × 77 (7 + 1) × 7 = 56-- 3 × 7 = 21 ---------------------- 5621 例: 21 × 29 (2 + 1) × 2 = 6-- 1 × 9 = 9 ----------------------

609

“--”代表十位和个位,因为两位数的首位相乘得数的后面是两个零,请大家明白,不要忘了,这点是很容易被忽略的。

五、首位相同,尾数和不等于10的两位数相乘

两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。

例:56 × 58

5 × 5 = 25--

(6 + 8 )× 5 = 7--

6 × 8 = 48 ---------------------- 3248 得数的排序是右对齐,即向个位对齐。这个原则很重要。

六、被乘数首尾相同,乘数首尾和是10的两位数相乘。

乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。

例: 66 × 37

(3 + 1)× 6 = 24-- 6 × 7 = 42 ---------------------- 2442 例: 99 × 19 (1 + 1)× 9 = 18--

9 × 9 = 81 ---------------------- 1881 七、被乘数首尾和是10,乘数首尾相同的两位数相乘

与帮助6的方法相似。两首位相乘的积加上乘数的个位数,得数作为前积,两尾数相乘,得数作为后积,没有十位补0。

例:46 × 99

4 × 9 + 9 = 45-- 6 × 9 = 54 ------------------- 4554 例:82 × 33 8 × 3 + 3 = 27--

2 × 3 = 6

-------------------

2706

八、两首位和是10,两尾数相同的两位数相乘。

两首位相乘,积加上一个尾数,得数作为前积,两尾数相乘(即尾数的平方),得数作为后积,没有十位补0。

例:78 × 38

7 × 3 + 8 = 29--

8 × 8 = 64

-------------------

例:23 × 83

2 × 8 + 3 = 19-- 3 × 3 = 9 -------------------- 1909

B、平方速算

一、求11~19 的平方

底数的个位与底数相加,得数为前积,底数的个位乘以个位相乘,得数为后积,满十前一。

例:17 × 17

17 + 7 = 24-

7 × 7 = 49

---------------

289

参阅乘法速算中的“十位是1 的两位相乘”

二、个位是1 的两位数的平方

底数的十位乘以十位(即十位的平方),得为前积,底数的十位加十位(即十位乘以2),得数为后积,在个位加1。

例:71 × 71

7 × 7 = 49--

7 × 2 = 14-

-----------------

参阅乘法速算中的“个位数是1的两位数相乘”

三、个位是5 的两位数的平方

十位加1 乘以十位,在得数的后面接上25。

例:35 × 35

(3 + 1)× 3 = 12-- 25 ---------------------- 1225 四、21~50 的两位数的平方

在这个范围内有四个数字是个关键,在求25~50之间的两数的平方时,若把它们记住了,就可以很省事了。它们是:

21 × 21 = 441

22 × 22 = 484

23 × 23 = 529

24 × 24 = 576

求25~50 的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为后积,满百进1,没有十位补0。

例:37 × 37

37 - 25 = 12--

(50 - 37)^2 = 169

----------------------

1369

注意:底数减去25后,要记住在得数的后面留两个位置给十位和个位。 例:26 × 26 26 - 25 = 1-- (50-26)^2 = 576 ------------------- 676

C、加减法

一、补数的概念与应用

补数的概念:补数是指从10、100、1000„„中减去某一数后所剩下的数。

例如10减去9等于1,因此9的补数是1,反过来,1的补数是9。

补数的应用:在速算方法中将很常用到补数。例如求两个接近100的数的乘法或除数,将看起来复杂的减法运算转为简单的加法运算等等。

D、除法速算

一、某数除以5、25、125时

1、被除数÷ 5 = 被除数÷ (10 ÷ 2) = 被除数÷ 10 × 2 = 被除数× 2 ÷ 10

2、被除数÷ 25

= 被除数× 4 ÷100

= 被除数× 2 × 2 ÷1

乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。

例:15×17

15 + 7 = 22

5 × 7 = 35

---------------

255

即15×17 = 255

解释:

15×17

=15 ×(10 + 7)

=15 × 10 + 15 × 7

=150 + (10 + 5)× 7

=150 + 70 + 5 × 7

=(150 + 70)+(5 × 7) 为了提高速度,熟练以后可以直接用“15 + 7”,而不用“150 + 70”。 例:17 × 19 17 + 9 = 26

7 × 9 = 63

即260 + 63 = 323

二、个位是1的两位数相乘

方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。

例:51 × 31

50 × 30 = 1500

50 + 30 = 80

------------------

1580

因为1 × 1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。

例:81 × 91

80 × 90 = 7200 80 + 90 = 170 ------------------ 7370 ------------------ 7371

原理大家自己理解就可以了。

三、十位相同个位不同的两位数相乘

被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。

例:43 × 46

(43 + 6)× 40 = 1960

3 × 6 = 18 ---------------------- 1978 例:89 × 87 (89 + 7)× 80 = 7680

9 × 7 = 63 ---------------------- 7743 四、首位相同,两尾数和等于10的两位数相乘

十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。

例:56 × 54

(5 + 1) × 5 = 30--

6 × 4 = 24

----------------------

3024

例: 73 × 77

(7 + 1) × 7 = 56-- 3 × 7 = 21 ---------------------- 5621

例: 21 × 29

(2 + 1) × 2 = 6--

1 × 9 = 9

----------------------

609

“--”代表十位和个位,因为两位数的首位相乘得数的后面是两个零,请大家明白,不要忘了,这点是很容易被忽略的。

五、首位相同,尾数和不等于10的两位数相乘

两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。

例:56 × 58

5 × 5 = 25--

(6 + 8 )× 5 = 7--

6 × 8 = 48 ---------------------- 3248 得数的排序是右对齐,即向个位对齐。这个原则很重要。

六、被乘数首尾相同,乘数首尾和是10的两位数相乘。

乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。

例: 66 × 37

(3 + 1)× 6 = 24-- 6 × 7 = 42 ---------------------- 2442 例: 99 × 19 (1 + 1)× 9 = 18-- 9 × 9 = 81 ---------------------- 1881

七、被乘数首尾和是10,乘数首尾相同的两位数相乘

与帮助6的方法相似。两首位相乘的积加上乘数的个位数,得数作为前积,两尾数相乘,得数作为后积,没有十位补0。

例:46 × 99

4 × 9 + 9 = 45--

6 × 9 = 54

-------------------

4554

例:82 × 33

8 × 3 + 3 = 27--

2 × 3 = 6

-------------------

2706

八、两首位和是10,两尾数相同的两位数相乘。

两首位相乘,积加上一个尾数,得数作为前积,两尾数相乘(即尾数的平方),得数作为后积,没有十位补0。

例:78 × 38

7 × 3 + 8 = 29--

8 × 8 = 64 ------------------- 2964 例:23 × 83 2 × 8 + 3 = 19--

3 × 3 = 9 -------------------- 1909 B、平方速算

一、求11~19 的平方

底数的个位与底数相加,得数为前积,底数的个位乘以个位相乘,得数为后积,满十前一。

例:17 × 17

17 + 7 = 24- 7 × 7 = 49 --------------- 289

参阅乘法速算中的“十位是1 的两位相乘”

二、个位是1 的两位数的平方

底数的十位乘以十位(即十位的平方),得为前积,底数的十位加十位(即十位乘以2),得数为后积,在个位加1。

例:71 × 71

7 × 7 = 49--

7 × 2 = 14- ----------------- 5041 参阅乘法速算中的“个位数是1的两位数相乘” 三、个位是5 的两位数的平方

十位加1 乘以十位,在得数的后面接上25。

例:35 × 35

(3 + 1)× 3 = 12--

25

http://hi.baidu.com/liwenxiong96

----------------------

1225

四、21~50 的两位数的平方

在这个范围内有四个数字是个关键,在求25~50之间的两数的平方时,若把它们记住了,就可以很省事了。它们是:

21 × 21 = 441

22 × 22 = 484

23 × 23 = 529

24 × 24 = 576

求25~50 的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为后积,满百进1,没有十位补0。

例:37 × 37

37 - 25 = 12--

(50 - 37)^2 = 169

----------------------

1369

注意:底数减去25后,要记住在得数的后面留两个位置给十位和个位。

例:26 × 26

26 - 25 = 1--

(50-26)^2 = 576

-------------------

676

http://hi.baidu.com/liwenxiong96

C、加减法

一、补数的概念与应用

补数的概念:补数是指从10、100、1000„„中减去某一数后所剩下的数。

例如10减去9等于1,因此9的补数是1,反过来,1的补数是9。

补数的应用:在速算方法中将很常用到补数。例如求两个接近100的数的乘法或除数,将看起来复杂的减法运算转为简单的加法运算等等。

补数加法速度快,主要是没有逐位进位的麻烦。补数就是两个数的和为10 100 1000 等等。8+2=10 78+22=100 8是2的补数,2也是8的补数,78是22的补数,22也是78的补数。利用补数进行加法计算的方法是十位加1,个位减补。 例如6+8=14 计算时在6的十位加上1,变成16,再从16中减去8的补数2就得14 如6+7=13 先6+10=16 后16-3=13 如27+8=35 27+10=37 37-2=35 如25+85=110 25+100=125 125-15=110

如867+898=1765 867+1000=1867 1867-102=1765

D、除法速算

一、某数除以5、25、125时

1、被除数÷ 5

= 被除数÷ (10 ÷ 2)

= 被除数÷ 10 × 2 = 被除数× 2 ÷ 10 2、被除数÷ 25 = 被除数× 4 ÷100 = 被除数× 2 × 2 ÷100 3、被除数÷ 125

= 被除数× 8 ÷100

= 被除数× 2 × 2 × 2 ÷100

在加、减、乘、除四则运算中除法是最麻烦的一项,即使使用速算法很多时候也要加上笔算才能更快更准地算出答案。因本人水平所限,上面的算法不一定是最好的心算法。

00

3、被除数÷ 125

= 被除数× 8 ÷100

= 被除数× 2 × 2 × 2 ÷100

在加、减、乘、除四则运算中除法是最麻烦的一项,即使使用速算法很多时候也要加上笔算才能更快更准地算出答案。因本人水平所限,上面的算法不一定是最好的心算法。

超棒超快的数学心算方法,让你从此不再用计算器_

乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。

例:15×17

15 + 7 = 22

5 × 7 = 35 --------------- 255 即15×17 = 255 解释: 15×17 =15 ×(10 + 7) =15 × 10 + 15 × 7

=150 + (10 + 5)× 7

=150 + 70 + 5 × 7 =(150 + 70)+(5 × 7) 为了提高速度,熟练以后可以直接用“15 + 7”,而不用“150 + 70”。 例:17 × 19 17 + 9 = 26 7 × 9 = 63 即260 + 63 = 323 二、个位是1的两位数相乘 方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最

后添上1。

例:51 × 31

50 × 30 = 1500 50 + 30 = 80 ------------------ 1580

因为1 × 1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。

例:81 × 91

80 × 90 = 7200

80 + 90 = 170

------------------

7370

------------------

7371

原理大家自己理解就可以了。

三、十位相同个位不同的两位数相乘

被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。

例:43 × 46

(43 + 6)× 40 = 1960

3 × 6 = 18

----------------------

1978

例:89 × 87

(89 + 7)× 80 = 7680 9 × 7 = 63 ---------------------- 7743

四、首位相同,两尾数和等于10的两位数相乘

十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。

例:56 × 54 (5 + 1) × 5 = 30-- 6 × 4 = 24 ---------------------- 3024 例: 73 × 77 (7 + 1) × 7 = 56-- 3 × 7 = 21 ---------------------- 5621 例: 21 × 29 (2 + 1) × 2 = 6-- 1 × 9 = 9 ----------------------

609

“--”代表十位和个位,因为两位数的首位相乘得数的后面是两个零,请大家明白,不要忘了,这点是很容易被忽略的。

五、首位相同,尾数和不等于10的两位数相乘

两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。

例:56 × 58

5 × 5 = 25--

(6 + 8 )× 5 = 7--

6 × 8 = 48 ---------------------- 3248 得数的排序是右对齐,即向个位对齐。这个原则很重要。

六、被乘数首尾相同,乘数首尾和是10的两位数相乘。

乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。

例: 66 × 37

(3 + 1)× 6 = 24-- 6 × 7 = 42 ---------------------- 2442 例: 99 × 19 (1 + 1)× 9 = 18--

9 × 9 = 81 ---------------------- 1881 七、被乘数首尾和是10,乘数首尾相同的两位数相乘

与帮助6的方法相似。两首位相乘的积加上乘数的个位数,得数作为前积,两尾数相乘,得数作为后积,没有十位补0。

例:46 × 99

4 × 9 + 9 = 45-- 6 × 9 = 54 ------------------- 4554 例:82 × 33 8 × 3 + 3 = 27--

2 × 3 = 6

-------------------

2706

八、两首位和是10,两尾数相同的两位数相乘。

两首位相乘,积加上一个尾数,得数作为前积,两尾数相乘(即尾数的平方),得数作为后积,没有十位补0。

例:78 × 38

7 × 3 + 8 = 29--

8 × 8 = 64

-------------------

例:23 × 83

2 × 8 + 3 = 19-- 3 × 3 = 9 -------------------- 1909

B、平方速算

一、求11~19 的平方

底数的个位与底数相加,得数为前积,底数的个位乘以个位相乘,得数为后积,满十前一。

例:17 × 17

17 + 7 = 24-

7 × 7 = 49

---------------

289

参阅乘法速算中的“十位是1 的两位相乘”

二、个位是1 的两位数的平方

底数的十位乘以十位(即十位的平方),得为前积,底数的十位加十位(即十位乘以2),得数为后积,在个位加1。

例:71 × 71

7 × 7 = 49--

7 × 2 = 14-

-----------------

参阅乘法速算中的“个位数是1的两位数相乘”

三、个位是5 的两位数的平方

十位加1 乘以十位,在得数的后面接上25。

例:35 × 35

(3 + 1)× 3 = 12-- 25 ---------------------- 1225 四、21~50 的两位数的平方

在这个范围内有四个数字是个关键,在求25~50之间的两数的平方时,若把它们记住了,就可以很省事了。它们是:

21 × 21 = 441

22 × 22 = 484

23 × 23 = 529

24 × 24 = 576

求25~50 的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为后积,满百进1,没有十位补0。

例:37 × 37

37 - 25 = 12--

(50 - 37)^2 = 169

----------------------

1369

注意:底数减去25后,要记住在得数的后面留两个位置给十位和个位。 例:26 × 26 26 - 25 = 1-- (50-26)^2 = 576 ------------------- 676

C、加减法

一、补数的概念与应用

补数的概念:补数是指从10、100、1000„„中减去某一数后所剩下的数。

例如10减去9等于1,因此9的补数是1,反过来,1的补数是9。

补数的应用:在速算方法中将很常用到补数。例如求两个接近100的数的乘法或除数,将看起来复杂的减法运算转为简单的加法运算等等。

D、除法速算

一、某数除以5、25、125时

1、被除数÷ 5 = 被除数÷ (10 ÷ 2) = 被除数÷ 10 × 2 = 被除数× 2 ÷ 10

2、被除数÷ 25

= 被除数× 4 ÷100

= 被除数× 2 × 2 ÷1

乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。

例:15×17

15 + 7 = 22

5 × 7 = 35

---------------

255

即15×17 = 255

解释:

15×17

=15 ×(10 + 7)

=15 × 10 + 15 × 7

=150 + (10 + 5)× 7

=150 + 70 + 5 × 7

=(150 + 70)+(5 × 7) 为了提高速度,熟练以后可以直接用“15 + 7”,而不用“150 + 70”。 例:17 × 19 17 + 9 = 26

7 × 9 = 63

即260 + 63 = 323

二、个位是1的两位数相乘

方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。

例:51 × 31

50 × 30 = 1500

50 + 30 = 80

------------------

1580

因为1 × 1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。

例:81 × 91

80 × 90 = 7200 80 + 90 = 170 ------------------ 7370 ------------------ 7371

原理大家自己理解就可以了。

三、十位相同个位不同的两位数相乘

被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。

例:43 × 46

(43 + 6)× 40 = 1960

3 × 6 = 18 ---------------------- 1978 例:89 × 87 (89 + 7)× 80 = 7680

9 × 7 = 63 ---------------------- 7743 四、首位相同,两尾数和等于10的两位数相乘

十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。

例:56 × 54

(5 + 1) × 5 = 30--

6 × 4 = 24

----------------------

3024

例: 73 × 77

(7 + 1) × 7 = 56-- 3 × 7 = 21 ---------------------- 5621

例: 21 × 29

(2 + 1) × 2 = 6--

1 × 9 = 9

----------------------

609

“--”代表十位和个位,因为两位数的首位相乘得数的后面是两个零,请大家明白,不要忘了,这点是很容易被忽略的。

五、首位相同,尾数和不等于10的两位数相乘

两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。

例:56 × 58

5 × 5 = 25--

(6 + 8 )× 5 = 7--

6 × 8 = 48 ---------------------- 3248 得数的排序是右对齐,即向个位对齐。这个原则很重要。

六、被乘数首尾相同,乘数首尾和是10的两位数相乘。

乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。

例: 66 × 37

(3 + 1)× 6 = 24-- 6 × 7 = 42 ---------------------- 2442 例: 99 × 19 (1 + 1)× 9 = 18-- 9 × 9 = 81 ---------------------- 1881

七、被乘数首尾和是10,乘数首尾相同的两位数相乘

与帮助6的方法相似。两首位相乘的积加上乘数的个位数,得数作为前积,两尾数相乘,得数作为后积,没有十位补0。

例:46 × 99

4 × 9 + 9 = 45--

6 × 9 = 54

-------------------

4554

例:82 × 33

8 × 3 + 3 = 27--

2 × 3 = 6

-------------------

2706

八、两首位和是10,两尾数相同的两位数相乘。

两首位相乘,积加上一个尾数,得数作为前积,两尾数相乘(即尾数的平方),得数作为后积,没有十位补0。

例:78 × 38

7 × 3 + 8 = 29--

8 × 8 = 64 ------------------- 2964 例:23 × 83 2 × 8 + 3 = 19--

3 × 3 = 9 -------------------- 1909 B、平方速算

一、求11~19 的平方

底数的个位与底数相加,得数为前积,底数的个位乘以个位相乘,得数为后积,满十前一。

例:17 × 17

17 + 7 = 24- 7 × 7 = 49 --------------- 289

参阅乘法速算中的“十位是1 的两位相乘”

二、个位是1 的两位数的平方

底数的十位乘以十位(即十位的平方),得为前积,底数的十位加十位(即十位乘以2),得数为后积,在个位加1。

例:71 × 71

7 × 7 = 49--

7 × 2 = 14- ----------------- 5041 参阅乘法速算中的“个位数是1的两位数相乘” 三、个位是5 的两位数的平方

十位加1 乘以十位,在得数的后面接上25。

例:35 × 35

(3 + 1)× 3 = 12--

25

http://hi.baidu.com/liwenxiong96

----------------------

1225

四、21~50 的两位数的平方

在这个范围内有四个数字是个关键,在求25~50之间的两数的平方时,若把它们记住了,就可以很省事了。它们是:

21 × 21 = 441

22 × 22 = 484

23 × 23 = 529

24 × 24 = 576

求25~50 的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为后积,满百进1,没有十位补0。

例:37 × 37

37 - 25 = 12--

(50 - 37)^2 = 169

----------------------

1369

注意:底数减去25后,要记住在得数的后面留两个位置给十位和个位。

例:26 × 26

26 - 25 = 1--

(50-26)^2 = 576

-------------------

676

http://hi.baidu.com/liwenxiong96

C、加减法

一、补数的概念与应用

补数的概念:补数是指从10、100、1000„„中减去某一数后所剩下的数。

例如10减去9等于1,因此9的补数是1,反过来,1的补数是9。

补数的应用:在速算方法中将很常用到补数。例如求两个接近100的数的乘法或除数,将看起来复杂的减法运算转为简单的加法运算等等。

补数加法速度快,主要是没有逐位进位的麻烦。补数就是两个数的和为10 100 1000 等等。8+2=10 78+22=100 8是2的补数,2也是8的补数,78是22的补数,22也是78的补数。利用补数进行加法计算的方法是十位加1,个位减补。 例如6+8=14 计算时在6的十位加上1,变成16,再从16中减去8的补数2就得14 如6+7=13 先6+10=16 后16-3=13 如27+8=35 27+10=37 37-2=35 如25+85=110 25+100=125 125-15=110

如867+898=1765 867+1000=1867 1867-102=1765

D、除法速算

一、某数除以5、25、125时

1、被除数÷ 5

= 被除数÷ (10 ÷ 2)

= 被除数÷ 10 × 2 = 被除数× 2 ÷ 10 2、被除数÷ 25 = 被除数× 4 ÷100 = 被除数× 2 × 2 ÷100 3、被除数÷ 125

= 被除数× 8 ÷100

= 被除数× 2 × 2 × 2 ÷100

在加、减、乘、除四则运算中除法是最麻烦的一项,即使使用速算法很多时候也要加上笔算才能更快更准地算出答案。因本人水平所限,上面的算法不一定是最好的心算法。

00

3、被除数÷ 125

= 被除数× 8 ÷100

= 被除数× 2 × 2 × 2 ÷100

在加、减、乘、除四则运算中除法是最麻烦的一项,即使使用速算法很多时候也要加上笔算才能更快更准地算出答案。因本人水平所限,上面的算法不一定是最好的心算法。


相关文章

  • 手脑算PK珠心算
  • 手脑算PK 珠心算 1.珠心算只有计算.手脑算不仅有计算,还有看图列式.应用题.填空.例题等类型和小学一年级接轨. 2.珠心算在教学过程中每个学生一把算盘,学生必须端端正正坐好.不动,不适合所有儿童. 手脑算在教学中让每个学生玩自己的手,可 ...查看


  • 正确认识幼儿珠心算学习的意义
  • 正确认识幼儿珠心算学习的意义 刘红伟 中国长城铝业公司幼儿园 内容摘要:珠心算在我国有广泛的群众基础和社会需求,在幼儿园.小学学前班等开展非常普及,正确引导珠心算教学,开启幼儿的多元智力,是我们教育工作者的光荣职责.本文从 "认一 ...查看


  • 快速提高心算能力,原来如此简单
  • 提高心算能力如此简单上一分钟速算网看看吧地址是: zxcoffee.info 一.课题的提出: 1.计算教学的重要性 计算是数学知识中的重要内容之一,数学计算能力是一项基本的数学能力,包含了计算的准确率和正确率两方面的计算能力是学习数学和其 ...查看


  • 珠心算第一课认识算盘及1
  • 珠心算第一课认识算盘及1-4认珠.拨算 一 教学目标 1,认识算盘 2,掌握1-4的认珠和拨珠 3,认识1-4的珠像图 二 教学准备 大算盘 数字卡1-4 1-4的珠像图 三 教学重点与难点 重点:1-4的拨珠和珠像图 难点:认识算盘 四 ...查看


  • 小学生不识算盘,珠心算培训火爆
  • "打什么如意算盘?""三下五除二--"这些与算盘有关的日常俚语我们耳熟能详,但随着珠算课退出小学课本,现在部分小学生已经不知道算盘为何物. 珠算课取消,部分小学生不知算盘为何物 据了解,2001年,教 ...查看


  • 多元智能理论在幼儿珠心算教学中的探索(一)
  • 算盘是我国数学史的一个重大发明,其中蕴涵丰富的数学运算思想,是我国劳动人民智慧的结晶,几千年来在全世界广泛使用.近年来,基于算盘能促进人思维的敏捷性.在运算上的优势,将算盘作为一种教育工具的"珠心算"应运而生了.目前,幼 ...查看


  • 学习珠心算的好处
  • 昂立无诀珠心算 ---不只是提高心算能力 <当代家庭教育报>报道 权威发布:珠心算教育智力开发作用得到科学验证 儿童是否应该学习珠心算.学习珠心算对孩子的智力与学习究竟有没有好处?这种疑问随着一项国家课题研究结果的发布而有了确切 ...查看


  • 关于幼儿珠心算教育的调研报告
  • 幼儿珠心算教育的调研情况 一.什么是珠心算? 所谓珠心算,即珠算式心算.珠算,是以算盘为工具,进行加.减.乘.除.开方等运算的计算方法.其运珠技巧有一定的规律及口诀,当使用者能熟练操作算盘,除了会快速的求出正确答案外,也能将算盘的盘式.档次 ...查看


  • 珠心算引进数学好处多
  • 珠心算简单地说就是再脑子里打算盘,是近十年来形成的一种新颖独特的计算数学模式.他是珠算的发展和深化,须在算盘操作技能烂熟的基础上,经过反复训练,在头脑中强化印象痕迹,留下"算盘"籍此快速完成纷繁复杂的数量计算.珠心算教学 ...查看


  • 一年级心算.口算活动方案
  • 一年级数学学科素养活动计划 -----口算心算训练 为了激发我校学生学习数学的浓厚兴趣,培养学生在解决具体问题的过程中,能正确计算.学校数学教研组结合学期初的教研计划,准备开展一次一年级年级的"心算.口算"检测活动.现一 ...查看


热门内容