相似三角形知识点整理
重点、难点分析:
1、相似三角形的判定性质是本节的重点也是难点.
2、利用相似三角形性质判定解决实际应用的问题是难点。 ☆内容提要☆ 一、本章的两套定理 第一套(比例的有关性质):
bd
ac acdcab
或
bdadbc bacd (比例基本定理) abcd
合比性质:
bd
bdnbdnb
涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。 二、有关知识点:
1.相似三角形定义:
对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。 3.相似三角形的相似比:
相似三角形的对应边的比叫做相似比。 4.相似三角形的预备定理:
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。 5.相似三角形的判定定理:
(bdn0)等比性质
:
a
c
m
acm
a
成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。
6.直角三角形相似:
(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
7.相似三角形的性质定理: (1)相似三角形的对应角相等。 (2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
- 1 -
为了孩子的未来-----温新堂教育
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。 8.相似三角形的传递性
如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2
三、注意
1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三
角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A”型和“ 8 ”型。
在利用定理证明时要注意A型图的比例
ADAB
DEBC
AEAC
,每个比的前项是同一个三角形的三条边,
ADDB
DEBC
AEEC
而比的后项是另一个三角形的三条对应边,它们的位置不能写错,尤其是要防止写成的
错误。
A 2、相似三角形的基本图形 Ⅰ.平行线型:即A型和X型。
Ⅰ.相交线型
A
D
= E
B C
B
C
3、掌握相似三角形的判定定理并且运用相似三角形定理证明三角形相似及比例式或等积式。 4、添加辅助平行线是获得成比例线段和相似三角形的重要途径。
5、对比例问题,常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k。 6、对于复杂的几何图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理。
相似三角形在生活中的应用
1、阳光通过窗口照到室内,在地面上留下1.6m宽的亮区DE,已知亮区一边到窗下的墙脚距离CE=3.6m,窗高AB=1.2m,那么窗口底边离地面的高度BC= m .
2、在△ABC中,AB=6cm,BC=12cm,点P从点A开始沿AB边向B点以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,如果P、Q分别从A、B同时出发,经几秒钟△PBQ与△ABC相似?
B
Q
PA
为了孩子的未来-----温新堂教育
3、如图,某学习小组选一名身高为1.6m的同学直立于旗杆影子的顶端处,其他人分为两部分,一部分同学测量该同学的影长为1.2m,另一部分同学测量同一时刻旗杆影长为9m,那么旗杆的高度是_______m.
4、如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5
5、小亮同学想利用影长测量学校旗杆AB的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上BD处,另一部分在某一建筑的墙上CD处,分别测得其长度为9.6米和2米,求旗杆AB的高度.
- 3 - 为了孩子的未来-----温新堂教育
相似三角形知识点整理
重点、难点分析:
1、相似三角形的判定性质是本节的重点也是难点.
2、利用相似三角形性质判定解决实际应用的问题是难点。 ☆内容提要☆ 一、本章的两套定理 第一套(比例的有关性质):
bd
ac acdcab
或
bdadbc bacd (比例基本定理) abcd
合比性质:
bd
bdnbdnb
涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。 二、有关知识点:
1.相似三角形定义:
对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。 3.相似三角形的相似比:
相似三角形的对应边的比叫做相似比。 4.相似三角形的预备定理:
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。 5.相似三角形的判定定理:
(bdn0)等比性质
:
a
c
m
acm
a
成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。
6.直角三角形相似:
(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
7.相似三角形的性质定理: (1)相似三角形的对应角相等。 (2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
- 1 -
为了孩子的未来-----温新堂教育
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。 8.相似三角形的传递性
如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2
三、注意
1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三
角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A”型和“ 8 ”型。
在利用定理证明时要注意A型图的比例
ADAB
DEBC
AEAC
,每个比的前项是同一个三角形的三条边,
ADDB
DEBC
AEEC
而比的后项是另一个三角形的三条对应边,它们的位置不能写错,尤其是要防止写成的
错误。
A 2、相似三角形的基本图形 Ⅰ.平行线型:即A型和X型。
Ⅰ.相交线型
A
D
= E
B C
B
C
3、掌握相似三角形的判定定理并且运用相似三角形定理证明三角形相似及比例式或等积式。 4、添加辅助平行线是获得成比例线段和相似三角形的重要途径。
5、对比例问题,常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k。 6、对于复杂的几何图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理。
相似三角形在生活中的应用
1、阳光通过窗口照到室内,在地面上留下1.6m宽的亮区DE,已知亮区一边到窗下的墙脚距离CE=3.6m,窗高AB=1.2m,那么窗口底边离地面的高度BC= m .
2、在△ABC中,AB=6cm,BC=12cm,点P从点A开始沿AB边向B点以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,如果P、Q分别从A、B同时出发,经几秒钟△PBQ与△ABC相似?
B
Q
PA
为了孩子的未来-----温新堂教育
3、如图,某学习小组选一名身高为1.6m的同学直立于旗杆影子的顶端处,其他人分为两部分,一部分同学测量该同学的影长为1.2m,另一部分同学测量同一时刻旗杆影长为9m,那么旗杆的高度是_______m.
4、如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5
5、小亮同学想利用影长测量学校旗杆AB的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上BD处,另一部分在某一建筑的墙上CD处,分别测得其长度为9.6米和2米,求旗杆AB的高度.
- 3 - 为了孩子的未来-----温新堂教育