第一章 单向静拉伸力学性能
1、 解释下列名词。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变
2、 说明下列力学性能指标的意义。
答:E弹性模量 G切变模量 σr规定残余伸长应力 σ0.2屈服强度 δgt金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】
3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?
答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】
4、 现有45、40Cr、35 CrMo钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么?
选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可降低成本,提高生产效率。
5、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】
答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。
6、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些?
答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。
7、 板材宏观脆性断口的主要特征是什么?如何寻找断裂源?
断口平齐而光亮,常呈放射状或结晶状,板状矩形拉伸试样断口中的人字纹花样的放射方向也
与裂纹扩展方向平行,其尖端指向裂纹源。
第二章 金属在其他静载荷下的力学性能
一、解释下列名词:
(1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax和最大正应力σmax比值,即: α=τmaxσ1-σ3 【新书P39 旧书P46】 =σmax2σ1-0.5σ2+σ3bn(3)缺口敏感度——缺口试样的抗拉强度σ
【P47 P55 】
的与等截面尺寸光滑试样的抗拉强度σb
的比值,称为缺口敏感度,即:
偏斜拉伸试验:在拉伸试验时在试样与试验机夹头之间放一垫圈,使试样的轴线与拉伸力形成一定角度进行拉伸。该试验用于检测螺栓一类机件的安全使用性能。
光滑试样轴向拉伸试验:截面上无应力集中现象,应力分布均匀,仅在颈缩时发生应力状态改变。
缺口试样轴向拉伸试验:缺口截面上出现应力集中现象,应力分布不均,应力状态发生变化,产生两向或三向拉应力状态,致使材料的应力状态软性系数降低,脆性增大。
偏斜拉伸试验:试样同时承受拉伸和弯曲载荷的复合作用,其应力状态更“硬”,缺口截面上的应力分布更不均匀,更能显示材料对缺口的敏感性。
七、试说明布氏硬度、洛氏硬度与维氏硬度的实验原理,并比较布氏、洛氏与维氏硬度试验方法的优缺点。【P49 P57】 原理
布氏硬度:用钢球或硬质合金球作为压头,计算单位面积所承受的试验力。
洛氏硬度:采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度。
维氏硬度:以两相对面夹角为136。的金刚石四棱锥作压头,计算单位面积所承受的试验力。
布氏硬度优点:实验时一般采用直径较大的压头球,因而所得的压痕面积比较大。压痕大的一个优点是其硬度值能反映金属在较大范围内各组成相得平均性能;另一个优点是实验数据稳定,重复性强。缺点:对不同材料需更换不同直径的压头球和改变试验力,压痕直径的测量也较麻烦,因而用于自动检测时受到限制。
洛氏硬度优点:操作简便,迅捷,硬度值可直接读出;压痕较小,可在工件上进行试验;采用不同标尺可测量各种软硬不同的金属和厚薄不一的试样的硬度,因而广泛用于热处理质量检测。缺点:压痕较小,代表性差;若材料中有偏析及组织不均匀等缺陷,则所测硬度值重复性差,分散度大;此外用不同标尺测得的硬度值彼此没有联系,不能直接比较。
维氏硬度优点:不存在布氏硬度试验时要求试验力F与压头直径D之间所规定条件的约束,也不存在洛氏硬度试验时不同标尺的硬度值无法统一的弊端;维氏硬度试验时不仅试验力可以任意取,而且压痕测量的精度较高,硬度值较为准确。缺点是硬度值需要通过测量压痕对角线长度后才能进行计算或查表,因此,工作效率比洛氏硬度法低的多。
八.今有如下零件和材料需要测定硬度,试说明选择何种硬度实验方法为宜。
(1)渗碳层的硬度分布;(2)淬火钢;(3)灰铸铁;(4)鉴别钢中的隐晶马氏体和残余奥氏体;(5)仪表小黄铜齿轮;(6)龙门刨床导轨;(7)渗氮层;(8)高速钢刀具;(9)退火态低碳钢;(10)硬质合金。
(1)渗碳层的硬度分布---- HK或-显微HV
(2)淬火钢-----HRC
(3)灰铸铁-----HB
(4)鉴别钢中的隐晶马氏体和残余奥氏体-----显微HV或者HK
(5)仪表小黄铜齿轮-----HV
(6)龙门刨床导轨-----HS(肖氏硬度)或HL(里氏硬度)
(7)渗氮层-----HV
(8)高速钢刀具-----HRC
(9)退火态低碳钢-----HB
(10)硬质合金----- HRA
第三章 金属在冲击载荷下的力学性能
四、试说明低温脆性的物理本质及其影响因素
低温脆性的物理本质:宏观上对于那些有低温脆性现象的材料,它们的屈服强度会随温度的降低急剧增加,而断裂强度随温度的降低而变化不大。当温度降低到某一温度时,屈服强度增大到高于断裂强度时,在这个温度以下材料的屈服强度比断裂强度大,因此材料在受力时还未发生屈服便断裂了,材料显示脆性。
从微观机制来看低温脆性与位错在晶体点阵中运动的阻力有关,当温度降低时,位错运动阻力增大,原子热激活能力下降,因此材料屈服强度增加。
影响材料低温脆性的因素有(P63,P73):
1.晶体结构:对称性低的体心立方以及密排六方金属、合金转变温度高,材料脆性断裂趋势明显,塑性差。
2.化学成分:能够使材料硬度,强度提高的杂质或者合金元素都会引起材料塑性和韧性变差,材料脆性提高。
3.显微组织:①晶粒大小,细化晶粒可以同时提高材料的强度和塑韧性。因为
晶界是裂纹扩展的阻力,晶粒细小,晶界总面积增加,晶界处塞积的位错数减 少,有利于降低应力集中;同时晶界上杂质浓度减少,避免产生沿晶脆性断裂。 ②金相组织:较低强度水平时强度相等而组织不同的钢,冲击吸收功和韧脆转变温度以马氏体高温回火最佳,贝氏体回火组织次之,片状珠光体组织最差。钢中夹杂物、碳化物等第二相质点对钢的脆性有重要影响,当其尺寸增大时均使材料韧性下降,韧脆转变温度升高。
五. 试述焊接船舶比铆接船舶容易发生脆性破坏的原因。
焊接容易在焊缝处形成粗大金相组织气孔、夹渣、未熔合、未焊透、错边、咬边等缺陷,增加裂纹敏感度,增加材料的脆性,容易发生脆性断裂。
第四章 金属的断裂韧度
5、试述应力场强度因子的意义及典型裂纹KI的表达式
答:新书P69旧书P80参看书中图(应力场强度因子的意义见上) 几种裂纹的KI表达式,无限大板穿透裂纹:KI=σ有限宽板穿透裂纹:KI=σaf();有限宽板单边直裂纹:KI=σaf()当b≥a时,KI=1.2σa;a
baba;受弯单边6Maσaa2221/4f()裂纹梁:KI=;无限大物体内部有椭圆片裂纹,远处受均匀拉伸:;KI=(sinβ+cosβ)23/2(b-a)bΦc
无限大物体表面有半椭圆裂纹,远处均受拉伸:A点的KI=1.1σa。 Φ
6、试述K判据的意义及用途。
答: K判据解决了经典的强度理论不能解决存在宏观裂纹为什么会产生低应力脆断的原因。K判据将材料断裂韧度同机件的工作应力及裂纹尺寸的关系定量地联系起来,可直接用于设计计算,估算裂纹体的最大承载能力、允许的裂纹最大尺寸,以及用于正确选择机件材料、优化工艺等。P71/P83
12.试述Kic的测试原理及其对式样的基本要求
原理:先用一定的试样测试出FQ和裂纹长度a值得到一个KQ,如果KQ符合条件就说明测试使用的试样符合条件,如果不符合就换成较大试样重新测试。试样要求P78 三个公式
16.有一大型板件,材料的σ0.2=1200MPa,KIc=115MPa*m1/2,探伤发现有20mm长的横向穿透裂纹,若在平均轴向拉应力900MPa下工作,试计算KI及塑性区宽度R0,并判断该件是否安全?
解:由题意知穿透裂纹受到的应力为σ=900MPa
根据σ/σ0.2的值,确定裂纹断裂韧度KIC是否休要修正
因为σ/σ0.2=900/1200=0.75>0.7,所以裂纹断裂韧度KIC需要修正
对于无限板的中心穿透裂纹,修正后的KI为:
σa9000.01πKI===168.1322 -0.177(σ/σs)-0.177(0.75) (1⎛KI⎫塑性区宽度为: ⎪R0= σ22π⎝s⎪比较K1与KIc: ⎭
因为K1=168.13(MPa*m1/2)
KIc=115(MPa*m1/2)
所以:K1>KIc ,裂纹会失稳扩展 , 所以该件不安全。
第五章 金属的疲劳
3.试述金属疲劳断裂的特点 p96/p109
(1)疲劳是低应力循环延时断裂,机具有寿命的断裂
(2)疲劳是脆性断裂
(3)疲劳对缺陷(缺口,裂纹及组织缺陷)十分敏感
4.试述疲劳宏观断口的特征及其形成过程(新书P96~98及PPT,旧书P109~111)
答:典型疲劳断口具有三个形貌不同的区域—疲劳源、疲劳区及瞬断区。
(1) 疲劳源是疲劳裂纹萌生的策源地,疲劳源区的光亮度最大,因为这里在整个裂纹亚稳扩展过程中断面不断摩擦挤
压,故显示光亮平滑,另疲劳源的贝纹线细小。
(2) 疲劳区的疲劳裂纹亚稳扩展所形成的断口区域,是判断疲劳断裂的重要特征证据。特征是:断口比较光滑并分布
有贝纹线。断口光滑是疲劳源区域的延续,但其程度随裂纹向前扩展逐渐减弱。贝纹线是由载荷变动引起的,如机器运转时的开动与停歇,偶然过载引起的载荷变动,使裂纹前沿线留下了弧状台阶痕迹。
(3) 瞬断区是裂纹最后失稳快速扩展所形成的断口区域。其断口比疲劳区粗糙,脆性材料为结晶状断口,韧性材料为
纤维状断口。
7.试述疲劳裂纹的形成机理及阻止疲劳裂纹萌生的一般方法
机理: 1、滑移带开裂产生裂纹。金属在循环应力长期作用下,即使其应力低于屈服应力,也会发生循环滑移并形成循环滑移带,这种循环滑移是极不均匀的,总分布在某些局部薄弱
区,这种循环滑移带具有持久驻留性,称为驻留滑移带,随着加载循环次数增加,循环滑移带会不断地加宽,当加宽到一定程度时,由于位错的塞积和交割作用,便在驻留滑移带处形成微裂纹。
2、相界面开裂产生裂纹。材料中的第二相或夹杂物易引发疲劳裂纹。 3、晶界开裂产生裂纹。对晶体材料由于晶界的存在和相邻晶粒的不同取向性,位错在某一晶粒内运动时会受到晶界的阻碍作用,在晶界处发生位错塞积和应力集中现象,在应力不断循环下,晶界处的应力集中得不到松弛时,则应力峰越来越高,当超过晶界强度时就会在晶界处产生裂纹。 阻止方法:1、固溶强化,细晶强化,提高材料的滑移抗力,均可以阻止疲劳裂纹的萌生,提高疲劳强度。
2、控制第二相或夹杂物的数量、形态、大小和分布,使之“少、圆、小、匀”,均可抑制或延缓疲劳裂纹在第二相或夹杂物附近萌生。
3、晶界强化,净化和细化晶粒均可抑制晶界裂纹形成。
13.试述金属的硬化与软化现象及产生条件。
金属材料在恒定应变范围循环作用下,随循环周次增加其应力不断增加,即为循环硬化。
金属材料在恒定应变范围循环作用下,随循环周次增加其应力逐渐减小,即为循环软化。
金属材料产生循环硬化与软化取决于材料的初始状态、结构特性以及应变幅和温度等。
循环硬化和软化与σb / σs有关:
σb / σs>1.4,表现为循环硬化;
σb / σs
1.2
也可用应变硬化指数n来判断循环应变对材料的影响,n1硬化。
退火状态的塑性材料往往表现为循环硬化,加工硬化的材料表现为循环软化。
循环硬化和软化与位错的运动有关:
退火软金属中,位错产生交互作用,运动阻力增大而硬化。
冷加工后的金属中,有位错缠结,在循环应力下破坏,阻力变小而软化。
第六章 金属的应力腐蚀和氢脆断裂
3试述金属产生应力腐蚀的条件及机理
条件:应力,化学介质,金属材料三者共存
机理:1、对应力腐蚀敏感的合金在特定的化学介质中,首先在表面形成一层钝化膜,使金属
不致进一步受到腐蚀,即处于钝化状态。
2、在拉应力作用下,使裂纹尖端地区产生局部塑性变形,滑移台阶在表面露头时钝化 膜破裂,显露出新鲜表面。
3、露出的新鲜表面在电解质溶液中成阳极,而其余具有钝化膜的金属表面为阴极,从 而形成腐蚀微电池,阳极金属变成正离子进入电解质中而产生阳极溶解,于是在金 属表面形成蚀坑。
4、拉应力在蚀坑或原有裂纹尖端形成应力集中,使阳极电位降低,加速阳极金属的溶解,如果裂纹尖端的应力集中始终存在,那么微电池反。
6.何为氢致延滞断裂?为什么高强度钢的氢致延滞断裂实在一定的应变速率下和一定的温度范围内出现?
高强度钢中固溶一定量的氢,在低于屈服强度的应力持续作用下,经过一段孕育期后,金属内部形成裂纹,发生断裂。----氢致延滞断裂。
因为氢致延滞断裂的机理主要是氢固溶于金属晶格中,产生晶格膨胀畸变,与刃位错交互作用,氢易迁移到位错拉应力处,形成氢气团。
当应变速率较低而温度较高时,氢气团能跟得上位错运动,但滞后位错一定距离。因此,气团对位错起“钉扎”作用,产生局部硬化。当位错运动受阻,产生位错塞积,氢气团易于在塞积处聚集,产生应力集中,导致微裂纹。
若应变速率过高以及温度低的情况下,氢气团不能跟上位错运动,便不能产生“钉扎”作用,也不可能在位错塞积处聚集,产生应力集中,导致微裂纹。
所以氢致延滞断裂是在一定的应变速率下和一定的温度范围内出现的
7.如何识别氢脆与应力腐蚀?。
答:氢脆和应力腐蚀相比,其特点表现在:
1、实验室中识别氢脆与应力腐蚀的一种办法是,当施加一小的阳极电流,如使开裂加速,则为应力腐蚀;而当施加一小的阴极电流,使开裂加速者则为氢脆。
2、在强度较低的材料中,或者虽为高强度材料但受力不大,存在的残余拉应力也较小这时其断裂源都不在表面,而是在表面以下的某一深度,此处三向拉应力最大,氢浓集在这里造成断裂。
3、氢脆断裂的主裂纹没有分枝的悄况.这和应力腐蚀的裂纹是截然不同的。
4、氦脆断口上一般没有腐蚀产物或者其量极微。
5、大多数的氢脆断裂(氢化物的氢脆除外),都表现出对温度和形变速率有强烈的依赖关系。氢脆只在一定的温度范围内出现,出现氢脆的温度区间决定于合金的化学成分和形变速率。
第七章 金属的磨损与耐磨性
3.粘着磨损产生的条件、机理及其防止措施
粘着磨损----- 又称为咬合磨损,在滑动摩擦条件下,摩擦副相对滑动速度较小,因缺乏润滑油,摩擦副表面无氧化膜,且单位法向载荷很大,以致接触应力超过实际接触点处屈服强度而产生的一种磨损。
磨损机理: 实际接触点局部应力引起塑性变形,使两接触面的原子产生粘着。粘着点从软的一方被剪断转移到硬的
一方金属表面,随后脱落形成磨屑旧的粘着点剪断后,新的粘着点产生,随后也被剪断、转移。如此重复,形成磨损过程。
第八章 金属高温力学性能
一、试分析晶粒大小对金属材料高温力学性能的影响
当使用温度低于等强温度时,细晶钢有较高的强度;当使用温度高于等强温度时,粗晶钢有较高的蠕变极限和持久强度极限。 但晶粒太大会降低材料的塑性和韧度 晶粒度要均匀,否则在大小晶粒交界处易产生应力集中而形成裂纹。
第九章 陶瓷材料的力学性能
3.线形非晶态聚合物力学性能三态是什么?各有什特点?
玻璃态在外力和加载速率恒定条件下,聚合物在玻璃态时变形量最小;在高弹态时聚合物变形量最大,且几乎与温度无关;在粘流态时,聚合物的变形量随温度升高急剧增加。
7.试述银纹和裂纹的区别
银纹与裂纹不同:前者除其中有孔洞外,孔洞之间还有称为银纹质的聚合物;后者则不含聚合物。银纹质能承受应力,所以银纹区仍有力学强度,但其密度极低
第十章 陶瓷材料的力学性能
5.简介陶瓷材料的增韧措施
1.改善陶瓷显微结构
使材料达到细密、均、纯,是陶瓷材料增韧增强的有效途径之一。 晶粒形状也影响陶瓷的韧性。 晶粒长宽比增加,断裂韧度增加。
2.相变增韧
在外力作用下,陶瓷从亚稳定相转变为稳定相,消耗一部分外加能量,使材料增韧。 相变增韧受使用温度限制。
3.微裂纹增韧
当主裂纹扩展遇到微裂纹时,发生分叉转变扩展方向,增加扩展过程的表面能;同时,主裂纹尖端应力集中被松弛,致使扩展速度减慢。
第一章 单向静拉伸力学性能
1、 解释下列名词。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变
2、 说明下列力学性能指标的意义。
答:E弹性模量 G切变模量 σr规定残余伸长应力 σ0.2屈服强度 δgt金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】
3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?
答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】
4、 现有45、40Cr、35 CrMo钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么?
选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可降低成本,提高生产效率。
5、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】
答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。
6、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些?
答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。
7、 板材宏观脆性断口的主要特征是什么?如何寻找断裂源?
断口平齐而光亮,常呈放射状或结晶状,板状矩形拉伸试样断口中的人字纹花样的放射方向也
与裂纹扩展方向平行,其尖端指向裂纹源。
第二章 金属在其他静载荷下的力学性能
一、解释下列名词:
(1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax和最大正应力σmax比值,即: α=τmaxσ1-σ3 【新书P39 旧书P46】 =σmax2σ1-0.5σ2+σ3bn(3)缺口敏感度——缺口试样的抗拉强度σ
【P47 P55 】
的与等截面尺寸光滑试样的抗拉强度σb
的比值,称为缺口敏感度,即:
偏斜拉伸试验:在拉伸试验时在试样与试验机夹头之间放一垫圈,使试样的轴线与拉伸力形成一定角度进行拉伸。该试验用于检测螺栓一类机件的安全使用性能。
光滑试样轴向拉伸试验:截面上无应力集中现象,应力分布均匀,仅在颈缩时发生应力状态改变。
缺口试样轴向拉伸试验:缺口截面上出现应力集中现象,应力分布不均,应力状态发生变化,产生两向或三向拉应力状态,致使材料的应力状态软性系数降低,脆性增大。
偏斜拉伸试验:试样同时承受拉伸和弯曲载荷的复合作用,其应力状态更“硬”,缺口截面上的应力分布更不均匀,更能显示材料对缺口的敏感性。
七、试说明布氏硬度、洛氏硬度与维氏硬度的实验原理,并比较布氏、洛氏与维氏硬度试验方法的优缺点。【P49 P57】 原理
布氏硬度:用钢球或硬质合金球作为压头,计算单位面积所承受的试验力。
洛氏硬度:采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度。
维氏硬度:以两相对面夹角为136。的金刚石四棱锥作压头,计算单位面积所承受的试验力。
布氏硬度优点:实验时一般采用直径较大的压头球,因而所得的压痕面积比较大。压痕大的一个优点是其硬度值能反映金属在较大范围内各组成相得平均性能;另一个优点是实验数据稳定,重复性强。缺点:对不同材料需更换不同直径的压头球和改变试验力,压痕直径的测量也较麻烦,因而用于自动检测时受到限制。
洛氏硬度优点:操作简便,迅捷,硬度值可直接读出;压痕较小,可在工件上进行试验;采用不同标尺可测量各种软硬不同的金属和厚薄不一的试样的硬度,因而广泛用于热处理质量检测。缺点:压痕较小,代表性差;若材料中有偏析及组织不均匀等缺陷,则所测硬度值重复性差,分散度大;此外用不同标尺测得的硬度值彼此没有联系,不能直接比较。
维氏硬度优点:不存在布氏硬度试验时要求试验力F与压头直径D之间所规定条件的约束,也不存在洛氏硬度试验时不同标尺的硬度值无法统一的弊端;维氏硬度试验时不仅试验力可以任意取,而且压痕测量的精度较高,硬度值较为准确。缺点是硬度值需要通过测量压痕对角线长度后才能进行计算或查表,因此,工作效率比洛氏硬度法低的多。
八.今有如下零件和材料需要测定硬度,试说明选择何种硬度实验方法为宜。
(1)渗碳层的硬度分布;(2)淬火钢;(3)灰铸铁;(4)鉴别钢中的隐晶马氏体和残余奥氏体;(5)仪表小黄铜齿轮;(6)龙门刨床导轨;(7)渗氮层;(8)高速钢刀具;(9)退火态低碳钢;(10)硬质合金。
(1)渗碳层的硬度分布---- HK或-显微HV
(2)淬火钢-----HRC
(3)灰铸铁-----HB
(4)鉴别钢中的隐晶马氏体和残余奥氏体-----显微HV或者HK
(5)仪表小黄铜齿轮-----HV
(6)龙门刨床导轨-----HS(肖氏硬度)或HL(里氏硬度)
(7)渗氮层-----HV
(8)高速钢刀具-----HRC
(9)退火态低碳钢-----HB
(10)硬质合金----- HRA
第三章 金属在冲击载荷下的力学性能
四、试说明低温脆性的物理本质及其影响因素
低温脆性的物理本质:宏观上对于那些有低温脆性现象的材料,它们的屈服强度会随温度的降低急剧增加,而断裂强度随温度的降低而变化不大。当温度降低到某一温度时,屈服强度增大到高于断裂强度时,在这个温度以下材料的屈服强度比断裂强度大,因此材料在受力时还未发生屈服便断裂了,材料显示脆性。
从微观机制来看低温脆性与位错在晶体点阵中运动的阻力有关,当温度降低时,位错运动阻力增大,原子热激活能力下降,因此材料屈服强度增加。
影响材料低温脆性的因素有(P63,P73):
1.晶体结构:对称性低的体心立方以及密排六方金属、合金转变温度高,材料脆性断裂趋势明显,塑性差。
2.化学成分:能够使材料硬度,强度提高的杂质或者合金元素都会引起材料塑性和韧性变差,材料脆性提高。
3.显微组织:①晶粒大小,细化晶粒可以同时提高材料的强度和塑韧性。因为
晶界是裂纹扩展的阻力,晶粒细小,晶界总面积增加,晶界处塞积的位错数减 少,有利于降低应力集中;同时晶界上杂质浓度减少,避免产生沿晶脆性断裂。 ②金相组织:较低强度水平时强度相等而组织不同的钢,冲击吸收功和韧脆转变温度以马氏体高温回火最佳,贝氏体回火组织次之,片状珠光体组织最差。钢中夹杂物、碳化物等第二相质点对钢的脆性有重要影响,当其尺寸增大时均使材料韧性下降,韧脆转变温度升高。
五. 试述焊接船舶比铆接船舶容易发生脆性破坏的原因。
焊接容易在焊缝处形成粗大金相组织气孔、夹渣、未熔合、未焊透、错边、咬边等缺陷,增加裂纹敏感度,增加材料的脆性,容易发生脆性断裂。
第四章 金属的断裂韧度
5、试述应力场强度因子的意义及典型裂纹KI的表达式
答:新书P69旧书P80参看书中图(应力场强度因子的意义见上) 几种裂纹的KI表达式,无限大板穿透裂纹:KI=σ有限宽板穿透裂纹:KI=σaf();有限宽板单边直裂纹:KI=σaf()当b≥a时,KI=1.2σa;a
baba;受弯单边6Maσaa2221/4f()裂纹梁:KI=;无限大物体内部有椭圆片裂纹,远处受均匀拉伸:;KI=(sinβ+cosβ)23/2(b-a)bΦc
无限大物体表面有半椭圆裂纹,远处均受拉伸:A点的KI=1.1σa。 Φ
6、试述K判据的意义及用途。
答: K判据解决了经典的强度理论不能解决存在宏观裂纹为什么会产生低应力脆断的原因。K判据将材料断裂韧度同机件的工作应力及裂纹尺寸的关系定量地联系起来,可直接用于设计计算,估算裂纹体的最大承载能力、允许的裂纹最大尺寸,以及用于正确选择机件材料、优化工艺等。P71/P83
12.试述Kic的测试原理及其对式样的基本要求
原理:先用一定的试样测试出FQ和裂纹长度a值得到一个KQ,如果KQ符合条件就说明测试使用的试样符合条件,如果不符合就换成较大试样重新测试。试样要求P78 三个公式
16.有一大型板件,材料的σ0.2=1200MPa,KIc=115MPa*m1/2,探伤发现有20mm长的横向穿透裂纹,若在平均轴向拉应力900MPa下工作,试计算KI及塑性区宽度R0,并判断该件是否安全?
解:由题意知穿透裂纹受到的应力为σ=900MPa
根据σ/σ0.2的值,确定裂纹断裂韧度KIC是否休要修正
因为σ/σ0.2=900/1200=0.75>0.7,所以裂纹断裂韧度KIC需要修正
对于无限板的中心穿透裂纹,修正后的KI为:
σa9000.01πKI===168.1322 -0.177(σ/σs)-0.177(0.75) (1⎛KI⎫塑性区宽度为: ⎪R0= σ22π⎝s⎪比较K1与KIc: ⎭
因为K1=168.13(MPa*m1/2)
KIc=115(MPa*m1/2)
所以:K1>KIc ,裂纹会失稳扩展 , 所以该件不安全。
第五章 金属的疲劳
3.试述金属疲劳断裂的特点 p96/p109
(1)疲劳是低应力循环延时断裂,机具有寿命的断裂
(2)疲劳是脆性断裂
(3)疲劳对缺陷(缺口,裂纹及组织缺陷)十分敏感
4.试述疲劳宏观断口的特征及其形成过程(新书P96~98及PPT,旧书P109~111)
答:典型疲劳断口具有三个形貌不同的区域—疲劳源、疲劳区及瞬断区。
(1) 疲劳源是疲劳裂纹萌生的策源地,疲劳源区的光亮度最大,因为这里在整个裂纹亚稳扩展过程中断面不断摩擦挤
压,故显示光亮平滑,另疲劳源的贝纹线细小。
(2) 疲劳区的疲劳裂纹亚稳扩展所形成的断口区域,是判断疲劳断裂的重要特征证据。特征是:断口比较光滑并分布
有贝纹线。断口光滑是疲劳源区域的延续,但其程度随裂纹向前扩展逐渐减弱。贝纹线是由载荷变动引起的,如机器运转时的开动与停歇,偶然过载引起的载荷变动,使裂纹前沿线留下了弧状台阶痕迹。
(3) 瞬断区是裂纹最后失稳快速扩展所形成的断口区域。其断口比疲劳区粗糙,脆性材料为结晶状断口,韧性材料为
纤维状断口。
7.试述疲劳裂纹的形成机理及阻止疲劳裂纹萌生的一般方法
机理: 1、滑移带开裂产生裂纹。金属在循环应力长期作用下,即使其应力低于屈服应力,也会发生循环滑移并形成循环滑移带,这种循环滑移是极不均匀的,总分布在某些局部薄弱
区,这种循环滑移带具有持久驻留性,称为驻留滑移带,随着加载循环次数增加,循环滑移带会不断地加宽,当加宽到一定程度时,由于位错的塞积和交割作用,便在驻留滑移带处形成微裂纹。
2、相界面开裂产生裂纹。材料中的第二相或夹杂物易引发疲劳裂纹。 3、晶界开裂产生裂纹。对晶体材料由于晶界的存在和相邻晶粒的不同取向性,位错在某一晶粒内运动时会受到晶界的阻碍作用,在晶界处发生位错塞积和应力集中现象,在应力不断循环下,晶界处的应力集中得不到松弛时,则应力峰越来越高,当超过晶界强度时就会在晶界处产生裂纹。 阻止方法:1、固溶强化,细晶强化,提高材料的滑移抗力,均可以阻止疲劳裂纹的萌生,提高疲劳强度。
2、控制第二相或夹杂物的数量、形态、大小和分布,使之“少、圆、小、匀”,均可抑制或延缓疲劳裂纹在第二相或夹杂物附近萌生。
3、晶界强化,净化和细化晶粒均可抑制晶界裂纹形成。
13.试述金属的硬化与软化现象及产生条件。
金属材料在恒定应变范围循环作用下,随循环周次增加其应力不断增加,即为循环硬化。
金属材料在恒定应变范围循环作用下,随循环周次增加其应力逐渐减小,即为循环软化。
金属材料产生循环硬化与软化取决于材料的初始状态、结构特性以及应变幅和温度等。
循环硬化和软化与σb / σs有关:
σb / σs>1.4,表现为循环硬化;
σb / σs
1.2
也可用应变硬化指数n来判断循环应变对材料的影响,n1硬化。
退火状态的塑性材料往往表现为循环硬化,加工硬化的材料表现为循环软化。
循环硬化和软化与位错的运动有关:
退火软金属中,位错产生交互作用,运动阻力增大而硬化。
冷加工后的金属中,有位错缠结,在循环应力下破坏,阻力变小而软化。
第六章 金属的应力腐蚀和氢脆断裂
3试述金属产生应力腐蚀的条件及机理
条件:应力,化学介质,金属材料三者共存
机理:1、对应力腐蚀敏感的合金在特定的化学介质中,首先在表面形成一层钝化膜,使金属
不致进一步受到腐蚀,即处于钝化状态。
2、在拉应力作用下,使裂纹尖端地区产生局部塑性变形,滑移台阶在表面露头时钝化 膜破裂,显露出新鲜表面。
3、露出的新鲜表面在电解质溶液中成阳极,而其余具有钝化膜的金属表面为阴极,从 而形成腐蚀微电池,阳极金属变成正离子进入电解质中而产生阳极溶解,于是在金 属表面形成蚀坑。
4、拉应力在蚀坑或原有裂纹尖端形成应力集中,使阳极电位降低,加速阳极金属的溶解,如果裂纹尖端的应力集中始终存在,那么微电池反。
6.何为氢致延滞断裂?为什么高强度钢的氢致延滞断裂实在一定的应变速率下和一定的温度范围内出现?
高强度钢中固溶一定量的氢,在低于屈服强度的应力持续作用下,经过一段孕育期后,金属内部形成裂纹,发生断裂。----氢致延滞断裂。
因为氢致延滞断裂的机理主要是氢固溶于金属晶格中,产生晶格膨胀畸变,与刃位错交互作用,氢易迁移到位错拉应力处,形成氢气团。
当应变速率较低而温度较高时,氢气团能跟得上位错运动,但滞后位错一定距离。因此,气团对位错起“钉扎”作用,产生局部硬化。当位错运动受阻,产生位错塞积,氢气团易于在塞积处聚集,产生应力集中,导致微裂纹。
若应变速率过高以及温度低的情况下,氢气团不能跟上位错运动,便不能产生“钉扎”作用,也不可能在位错塞积处聚集,产生应力集中,导致微裂纹。
所以氢致延滞断裂是在一定的应变速率下和一定的温度范围内出现的
7.如何识别氢脆与应力腐蚀?。
答:氢脆和应力腐蚀相比,其特点表现在:
1、实验室中识别氢脆与应力腐蚀的一种办法是,当施加一小的阳极电流,如使开裂加速,则为应力腐蚀;而当施加一小的阴极电流,使开裂加速者则为氢脆。
2、在强度较低的材料中,或者虽为高强度材料但受力不大,存在的残余拉应力也较小这时其断裂源都不在表面,而是在表面以下的某一深度,此处三向拉应力最大,氢浓集在这里造成断裂。
3、氢脆断裂的主裂纹没有分枝的悄况.这和应力腐蚀的裂纹是截然不同的。
4、氦脆断口上一般没有腐蚀产物或者其量极微。
5、大多数的氢脆断裂(氢化物的氢脆除外),都表现出对温度和形变速率有强烈的依赖关系。氢脆只在一定的温度范围内出现,出现氢脆的温度区间决定于合金的化学成分和形变速率。
第七章 金属的磨损与耐磨性
3.粘着磨损产生的条件、机理及其防止措施
粘着磨损----- 又称为咬合磨损,在滑动摩擦条件下,摩擦副相对滑动速度较小,因缺乏润滑油,摩擦副表面无氧化膜,且单位法向载荷很大,以致接触应力超过实际接触点处屈服强度而产生的一种磨损。
磨损机理: 实际接触点局部应力引起塑性变形,使两接触面的原子产生粘着。粘着点从软的一方被剪断转移到硬的
一方金属表面,随后脱落形成磨屑旧的粘着点剪断后,新的粘着点产生,随后也被剪断、转移。如此重复,形成磨损过程。
第八章 金属高温力学性能
一、试分析晶粒大小对金属材料高温力学性能的影响
当使用温度低于等强温度时,细晶钢有较高的强度;当使用温度高于等强温度时,粗晶钢有较高的蠕变极限和持久强度极限。 但晶粒太大会降低材料的塑性和韧度 晶粒度要均匀,否则在大小晶粒交界处易产生应力集中而形成裂纹。
第九章 陶瓷材料的力学性能
3.线形非晶态聚合物力学性能三态是什么?各有什特点?
玻璃态在外力和加载速率恒定条件下,聚合物在玻璃态时变形量最小;在高弹态时聚合物变形量最大,且几乎与温度无关;在粘流态时,聚合物的变形量随温度升高急剧增加。
7.试述银纹和裂纹的区别
银纹与裂纹不同:前者除其中有孔洞外,孔洞之间还有称为银纹质的聚合物;后者则不含聚合物。银纹质能承受应力,所以银纹区仍有力学强度,但其密度极低
第十章 陶瓷材料的力学性能
5.简介陶瓷材料的增韧措施
1.改善陶瓷显微结构
使材料达到细密、均、纯,是陶瓷材料增韧增强的有效途径之一。 晶粒形状也影响陶瓷的韧性。 晶粒长宽比增加,断裂韧度增加。
2.相变增韧
在外力作用下,陶瓷从亚稳定相转变为稳定相,消耗一部分外加能量,使材料增韧。 相变增韧受使用温度限制。
3.微裂纹增韧
当主裂纹扩展遇到微裂纹时,发生分叉转变扩展方向,增加扩展过程的表面能;同时,主裂纹尖端应力集中被松弛,致使扩展速度减慢。