(1) LU分解
A是非奇异的,LU分解总是可以进行的。
[L,U]=lu(X):产生一个上三角阵U和一个变换形式的下三角阵L(行交换),矩阵X必须是方阵。
[L,U,P]=lu(X):产生一个上三角阵U和一个下三角阵L以及一个置换矩阵P,使之满足PX=LU。矩阵X必须是方阵。
实现LU分解后,线性方程组Ax=b的解x=U\(L\b)或x=U\(L\Pb),这样可以大大提高运算速度。
例7-2 用LU分解求解例7-1中的线性方程组。
命令如下:
A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];
b=[13,-9,6,0]';
[L,U]=lu(A);
x=U\(L\b)
或采用LU分解的第2种格式,命令如下:
[L,U ,P]=lu(A);
x=U\(L\P*b)
(2) QR分解
对矩阵X进行QR分解,就是把X分解为一个正交矩阵Q和一个上三角矩阵R的乘积形式。QR分解只能对方阵进行。MATLAB的函数qr可用于对矩阵进行QR分解,其调用格式为:
[Q,R]=qr(X):产生一个一个正交矩阵Q和一个上三角矩阵R,使之满足X=QR。
[Q,R,E]=qr(X):产生一个一个正交矩阵Q、一个上三角矩阵R以及一个置换矩阵E,使之满足XE=QR。
实现QR分解后,线性方程组Ax=b的解x=R\(Q\b)或x=E(R\(Q\b))。
例7-3 用QR分解求解例7-1中的线性方程组。
命令如下:
A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];
b=[13,-9,6,0]';
[Q,R]=qr(A);
x=R\(Q\b)
或采用QR分解的第2种格式,命令如下:
[Q,R,E]=qr(A);
x=E*(R\(Q\b))
(3) Cholesky分解
如果矩阵X是对称正定的,则Cholesky分解将矩阵X分解成一个下三角矩阵和上三角矩阵的乘积。设上三角矩阵为R,则下三角矩阵为其转置,即X=R'R。MATLAB函数chol(X)用于对矩阵X进行Cholesky分解,其调用格式为:
R=chol(X):产生一个上三角阵R,使R'R=X。若X为非对称正定,则输出一个出错信息。
[R,p]=chol(X):这个命令格式将不输出出错信息。当X为对称正定的,则p=0,R与上述格式得到的结果相同;否则p为一个正整数。如果X为满秩矩阵,则R为一个阶数为q=p-1的上三角阵,且满足R'R=X(1:q,1:q)。
实现Cholesky分解后,线性方程组Ax=b变成R‘Rx=b,所以x=R\(R’\b)。
例7-4 用Cholesky分解求解例7-1中的线性方程组。
命令如下:
A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];
b=[13,-9,6,0]';
R=chol(A)
??? Error using ==> chol
Matrix must be positive definite
命令执行时,出现错误信息,说明A为非正定矩阵。
在MATLAB中,计算矩阵A的特征值和特征向量的函数是eig(A),常用的调用格式有
5种:
(1) E=eig(A):求矩阵A的全部特征值,构成向量E。
(2) [V,D]=eig(A):求矩阵A的全部特征值,构成对角阵D,并求A的特征向量构成
V的列向量。
(3) [V,D]=eig(A,'nobalance'):与第2种格式类似,但第2种格式中先对A作相似
变换后求矩阵A的特征
值和特征向量,而格式3直接求矩阵A的特征值和特征向量。
(4) E=eig(A,B):由eig(A,B)返回N×N阶方阵A和B的N个广义特征值,构成向量E
。
(5) [V,D]=eig(A,B):由eig(A,B)返回方阵A和B的N个广义特征值,构成N×N阶对
角阵D,其对角线上的N个元素即为相应的广义特征值,同时将返回相应的特征向
量构成N×N阶满秩矩阵,且满足AV=BVD。
(1) LU分解
A是非奇异的,LU分解总是可以进行的。
[L,U]=lu(X):产生一个上三角阵U和一个变换形式的下三角阵L(行交换),矩阵X必须是方阵。
[L,U,P]=lu(X):产生一个上三角阵U和一个下三角阵L以及一个置换矩阵P,使之满足PX=LU。矩阵X必须是方阵。
实现LU分解后,线性方程组Ax=b的解x=U\(L\b)或x=U\(L\Pb),这样可以大大提高运算速度。
例7-2 用LU分解求解例7-1中的线性方程组。
命令如下:
A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];
b=[13,-9,6,0]';
[L,U]=lu(A);
x=U\(L\b)
或采用LU分解的第2种格式,命令如下:
[L,U ,P]=lu(A);
x=U\(L\P*b)
(2) QR分解
对矩阵X进行QR分解,就是把X分解为一个正交矩阵Q和一个上三角矩阵R的乘积形式。QR分解只能对方阵进行。MATLAB的函数qr可用于对矩阵进行QR分解,其调用格式为:
[Q,R]=qr(X):产生一个一个正交矩阵Q和一个上三角矩阵R,使之满足X=QR。
[Q,R,E]=qr(X):产生一个一个正交矩阵Q、一个上三角矩阵R以及一个置换矩阵E,使之满足XE=QR。
实现QR分解后,线性方程组Ax=b的解x=R\(Q\b)或x=E(R\(Q\b))。
例7-3 用QR分解求解例7-1中的线性方程组。
命令如下:
A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];
b=[13,-9,6,0]';
[Q,R]=qr(A);
x=R\(Q\b)
或采用QR分解的第2种格式,命令如下:
[Q,R,E]=qr(A);
x=E*(R\(Q\b))
(3) Cholesky分解
如果矩阵X是对称正定的,则Cholesky分解将矩阵X分解成一个下三角矩阵和上三角矩阵的乘积。设上三角矩阵为R,则下三角矩阵为其转置,即X=R'R。MATLAB函数chol(X)用于对矩阵X进行Cholesky分解,其调用格式为:
R=chol(X):产生一个上三角阵R,使R'R=X。若X为非对称正定,则输出一个出错信息。
[R,p]=chol(X):这个命令格式将不输出出错信息。当X为对称正定的,则p=0,R与上述格式得到的结果相同;否则p为一个正整数。如果X为满秩矩阵,则R为一个阶数为q=p-1的上三角阵,且满足R'R=X(1:q,1:q)。
实现Cholesky分解后,线性方程组Ax=b变成R‘Rx=b,所以x=R\(R’\b)。
例7-4 用Cholesky分解求解例7-1中的线性方程组。
命令如下:
A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];
b=[13,-9,6,0]';
R=chol(A)
??? Error using ==> chol
Matrix must be positive definite
命令执行时,出现错误信息,说明A为非正定矩阵。
在MATLAB中,计算矩阵A的特征值和特征向量的函数是eig(A),常用的调用格式有
5种:
(1) E=eig(A):求矩阵A的全部特征值,构成向量E。
(2) [V,D]=eig(A):求矩阵A的全部特征值,构成对角阵D,并求A的特征向量构成
V的列向量。
(3) [V,D]=eig(A,'nobalance'):与第2种格式类似,但第2种格式中先对A作相似
变换后求矩阵A的特征
值和特征向量,而格式3直接求矩阵A的特征值和特征向量。
(4) E=eig(A,B):由eig(A,B)返回N×N阶方阵A和B的N个广义特征值,构成向量E
。
(5) [V,D]=eig(A,B):由eig(A,B)返回方阵A和B的N个广义特征值,构成N×N阶对
角阵D,其对角线上的N个元素即为相应的广义特征值,同时将返回相应的特征向
量构成N×N阶满秩矩阵,且满足AV=BVD。