初二数学上全等三角形知识点总结

全等三角形 知识梳理

一、知识网络

对应角相等性质对应边相等边边边 SSS全等形全等三角形边角边 SAS应用判定 角边角 ASA角角边 AAS斜边、直角边 HL

作图 角平分线性质与判定定理

二、基础知识梳理

(一)、基本概念

1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;

即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质

(1)全等三角形对应边相等;(2)全等三角形对应角相等;

3、全等三角形的判定方法

(1)三边对应相等的两个三角形全等。

(2)两角和它们的夹边对应相等的两个三角形全等。

(3)两角和其中一角的对边对应相等的两个三角形全等。

(4)两边和它们的夹角对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线的性质及判定

性质:角平分线上的点到这个角的两边的距离相等

判定:到一个角的两边距离相等的点在这个角平分线上

(二)灵活运用定理

1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

3、要善于灵活选择适当的方法判定两个三角形全等。

(1)已知条件中有两角对应相等,可找:

①夹边相等(ASA)②任一组等角的对边相等(AAS)

(2)已知条件中有两边对应相等,可找

①夹角相等(SAS)②第三组边也相等(SSS)

(3)已知条件中有一边一角对应相等,可找

①任一组角相等(AAS 或 ASA)②夹等角的另一组边相等(SAS)

轴对称知识梳理

一、基本概念

1.轴对称图形

如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点.

2.线段的垂直平分线

经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线

3.轴对称变换

由一个平面图形得到它的轴对称图形叫做轴对称变换.

4.等腰三角形

有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.

5.等边三角形

三条边都相等的三角形叫做等边三角形.

二、主要性质

1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.

2.线段垂直平分钱的性质

线段垂直平分线上的点与这条线段两个端点的距离相等.

3.(1)点P(x,y)关于x轴对称的点的坐标为P′(x,-y).

(2)点P(x,y)关于y轴对称的点的坐标为P″(-x,y).

4.等腰三角形的性质

(1)等腰三角形的两个底角相等(简称“等边对等角”).

(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.

(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.

(4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也相等.

(5)等腰三角形一腰上的高与底边的夹角是顶角的一半。

(6)等腰三角形顶角的外角平分线平行于这个三角形的底边.

5.等边三角形的性质

(1)等边三角形的三个内角都相等,并且每一个角都等于60°.

(2)等边三角形是轴对称图形,共有三条对称轴.

(3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合.

三、有关判定

1.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.

2.如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).

3.三个角都相等的三角形是等边三角形.

4.有一个角是60°的等腰三角形是等边三角形.

全等三角形 知识梳理

一、知识网络

对应角相等性质对应边相等边边边 SSS全等形全等三角形边角边 SAS应用判定 角边角 ASA角角边 AAS斜边、直角边 HL

作图 角平分线性质与判定定理

二、基础知识梳理

(一)、基本概念

1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;

即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质

(1)全等三角形对应边相等;(2)全等三角形对应角相等;

3、全等三角形的判定方法

(1)三边对应相等的两个三角形全等。

(2)两角和它们的夹边对应相等的两个三角形全等。

(3)两角和其中一角的对边对应相等的两个三角形全等。

(4)两边和它们的夹角对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线的性质及判定

性质:角平分线上的点到这个角的两边的距离相等

判定:到一个角的两边距离相等的点在这个角平分线上

(二)灵活运用定理

1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

3、要善于灵活选择适当的方法判定两个三角形全等。

(1)已知条件中有两角对应相等,可找:

①夹边相等(ASA)②任一组等角的对边相等(AAS)

(2)已知条件中有两边对应相等,可找

①夹角相等(SAS)②第三组边也相等(SSS)

(3)已知条件中有一边一角对应相等,可找

①任一组角相等(AAS 或 ASA)②夹等角的另一组边相等(SAS)

轴对称知识梳理

一、基本概念

1.轴对称图形

如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点.

2.线段的垂直平分线

经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线

3.轴对称变换

由一个平面图形得到它的轴对称图形叫做轴对称变换.

4.等腰三角形

有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.

5.等边三角形

三条边都相等的三角形叫做等边三角形.

二、主要性质

1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.

2.线段垂直平分钱的性质

线段垂直平分线上的点与这条线段两个端点的距离相等.

3.(1)点P(x,y)关于x轴对称的点的坐标为P′(x,-y).

(2)点P(x,y)关于y轴对称的点的坐标为P″(-x,y).

4.等腰三角形的性质

(1)等腰三角形的两个底角相等(简称“等边对等角”).

(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.

(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.

(4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也相等.

(5)等腰三角形一腰上的高与底边的夹角是顶角的一半。

(6)等腰三角形顶角的外角平分线平行于这个三角形的底边.

5.等边三角形的性质

(1)等边三角形的三个内角都相等,并且每一个角都等于60°.

(2)等边三角形是轴对称图形,共有三条对称轴.

(3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合.

三、有关判定

1.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.

2.如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).

3.三个角都相等的三角形是等边三角形.

4.有一个角是60°的等腰三角形是等边三角形.


相关文章

  • [初中数学]基本概念.知识点及练习题精华汇总
  • 初中数学基本概念.知识点及练习题精华汇总 编辑:竹韵清音 初中数学经常被不少初中学子称为史上最难科目,没有之一.题海战术早已视为唯一的突破口,但对于大多数学渣来说,盲目沉浸在题海之中,反而没有任何帮助! 而系统理解初中各项数学原理和概念,反 ...查看


  • 初二数学动点问题初二数学动点问题分析初二数学动点问题总结
  • 所谓"动点型问题"是指题设图形中存在一个或多个动点,它们在线段.射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想 函数思想 方程思想 数 ...查看


  • [精品]初一暑假学习计划
  • 篇一:初一暑假学习计划 一.进行自我分析 我们每天都在学习,可能有的同学没有想过我是怎样学习的这个问题,因此制订计划前首先进行自我分析. 1.分析自己的学习特点,同学们可以仔细回顾一下自己的学习情况,找出学习特点.各人的学习特点不一样:有的 ...查看


  • 初二期末复习计划
  • 初二期末复习计划一:初二期末复习计划 一.梳理课本,使本学期所学习的语文知识系统化. 二.分项复习 1.基础知识积累及运用 A.阅读本册所有的生字,记住它们的音.形.义. B.古诗文默写:应该认真地背诵,正确规范地书写. C.综合性学习活动 ...查看


  • 备战中考寒假各科复习的重要性
  • 备战中考寒假各科复习的重要性 小学升到初中,学习方法有很大的转变,初二是初中一年级和初中三年级的结合点,初一是对小学知识的一个总结,同时逐步转入初中的学习,对学生的基本素质和学习方法.学习习惯有了新的要求.而初三则对初中的知识进行总结,为转 ...查看


  • 九年级数学教材全解_3
  • 九年级数学教材全解 我研说的教材是青岛版数学九年级上册,我主要从课标基本要求:编写意图.编写体例:教材的内在结构和逻辑关系:教材内容分析:教材处理等方面对教材进行简单的分析. 一.课标基本要求 新课标中对数学课程提出这样的教育理念:&quo ...查看


  • 2018人教版初中数学教材重难点分析
  • 2018人教版初中数学教材 重难点分析 (名师总结教材重点,绝对精品,建议大家下载打印学习) 一.构建完整的知识框架--夯实基础 1.构建完整的知识框架是我们解决问题的基础,想要学好数学 必须重视基础概念,必须加深对知识点的理解,然后会运用 ...查看


  • 初二数学上学期教学计划
  • 初二数学上学期学科计划 于爱妮 新的学期又开始了,经过初二一年的的磨练,我对教学工作熟练程度有了进步,但有时还是力不从心,对教材的把握和课程的整合不够好, 习题的精选和课程难度的把握不够.本学期争取让每个学生在新的学期里都有所进步和收获,特 ...查看


  • 初二数学第十一章三角形总结及练习
  • 知识要点: 1.判断三条已知线段a .b .c 能否组成三角形. 充要条件:任意两边之和大于第三边. 推论:当a 最长, 且有b+c>a时, 就可构成三角形. 证明: 2.确定三角形第三边的取值范围: ________________ ...查看


热门内容