基于霍克布朗破坏准则的围岩松动圈计算

第4卷   第11期                          中  国  水  运                          Vol.4      No.11 2006年     11月                       China Water Transport                      Novembdr       2006

节理岩体   霍克-布朗强度准则   松动圈 

中图分类号

A        围岩松动圈支护理论简单

好用

 

通过

经验参数反映岩体的材料和结构特性

岩体将屈服或破坏

其基本方程为

s =e (GSI −

100) /(9−3D )

σ1

χ∈⊆ ∏∇⊇↓⊇…∝⊗∝∞√〈↵≠∇≠∩↵∂∪

⊃∇⊇↓ℵ◊∠⊆∂ ∂

∆∈± ∏∇

⊂∑∝⊗⊇⇐∪⊕∂↓≥⊂∂∪∝⊗∫⋅

µι

∅×⌠∠ϒ∪ϒ ∨∇⊇↓∝⊗↵⌠∈≥⊃•√…÷≡∈∠∈⊂←

⇓⊂∑∝⊗∪ϒ√∝••↵⊃″∈↵…Ηοεκ∝∪∪⊄∝⊗√ ⋅

∈∇׃∨″≈⊆←∈ ℵ⋅×⊂←∉ℜ∝⊗ƒℑƒƒ±•√∈

 

收稿日期

罗  蔚  女

计算研究了其在轴对称情况下围岩松动圈的计算本文提出的公式的准确性和实用性都有所提高

文章编号

2006

1   隧洞围岩物理状态示意图 

为简化问题便于讨论

处于各向同性的围岩中

由于开挖过程的扰动

r1

的圆环形破裂稳定区a

r2的环状破裂剧烈区b

 1

r0

 

在极坐标下

 

d σra  

 

 

 

dr +1

r (σra −

σθa ) =0 σra 为

a区任意一点的径向应力

σθa

为a

区任意一点的切向应力岩石

破裂后强度下降为残余强度

岩体应满足以下屈服准则

3s

当岩体的地质力学强度指

标大于

25

a>0.5

因此为了研究的方便这里仅考虑

a=0.5

的情况

r1

 

在该区内岩石开始破裂

该区靠近破裂点处的应力满

足如下平衡和破坏准则方程

为最大应力岩体应满足以下屈服准则

430072

      

 

98                                            中 国 水 运                                           第4卷   3

σr e =q (1−

r2

r 22r 22

) +σr 2r 2r 2  

  

 

 

 

⊄⊃∂↓∪ƒ° ∂…∅⊄

⊃∅∅ℑ∇∩ ∝↓∠∩∨≈℘⊃∉ƒℑƒℑ←∠⊂⌡…↵⊃…

计算出

三个物理状态区内围岩的应力状态

 

2

2

2

σc [1]2m r +2c [1]lg r c r +lg 2r σc m r −4σc s r  

 

ra =

4m r

洞壁上的边界条件

 

2

c [1]=−lg r 2m r (pm c +σc s r )   

 

0c +m r

 

2

2

2

σ=

c [1]2m r +2c [1]lg r c m r +lg 2r σc m r −4σc s r  

ra

4m r

11

破裂剧烈区应力 

联立破裂剧烈区的平衡微分方程和屈服准则可得

12

r=r1时

 

c [1]=

lg r 2m 2

21c m r m 2+r m 2(n 1σc m r m −4n 1c mx 1+4m r (pm +σc s ))

m r m 2

σ

rb =

4m (x 2+m r m 2(4p +(lgr −lg r 1) 2c c m 2) +

r m 2

2c 2

c (−2n 1m 2x 1+(lgr −lg r 1) m r m 2(x 2−4n 1

c m 2x 1+4m r (pm 2+c c s 2)) ))

15

÷ ⊄⊃∂↓∪ƒ∝⊗°∂ρ2

s e s e

r +q =2q  

由应力连续条件得到

 σrb +σθb

=2q  

得到松动圈的半径计算公式

16

算例与讨论 某深埋圆形隧洞

σ

c =80MPa

sr

 =0.0001

破裂稳定区的厚度大约为0.3m

s=0.004

此时计算得到松动圈半径为r2

=1.97m

即设r1=r0

=1.0m

显然不考虑破裂稳定区岩体的强度降低

由于大部分岩

体都具有应变软化特性

 

Hoek

可为最终确定岩体强度提供重要依据

该强度理论

已经在岩石力学和工程界得到广泛的认可和应用

本文提

出的公式的准确性和实用性都有所提高

郑颖人

崔志芳

第4卷   第11期                          中  国  水  运                          Vol.4      No.11 2006年     11月                       China Water Transport                      Novembdr       2006

节理岩体   霍克-布朗强度准则   松动圈 

中图分类号

A        围岩松动圈支护理论简单

好用

 

通过

经验参数反映岩体的材料和结构特性

岩体将屈服或破坏

其基本方程为

s =e (GSI −

100) /(9−3D )

σ1

χ∈⊆ ∏∇⊇↓⊇…∝⊗∝∞√〈↵≠∇≠∩↵∂∪

⊃∇⊇↓ℵ◊∠⊆∂ ∂

∆∈± ∏∇

⊂∑∝⊗⊇⇐∪⊕∂↓≥⊂∂∪∝⊗∫⋅

µι

∅×⌠∠ϒ∪ϒ ∨∇⊇↓∝⊗↵⌠∈≥⊃•√…÷≡∈∠∈⊂←

⇓⊂∑∝⊗∪ϒ√∝••↵⊃″∈↵…Ηοεκ∝∪∪⊄∝⊗√ ⋅

∈∇׃∨″≈⊆←∈ ℵ⋅×⊂←∉ℜ∝⊗ƒℑƒƒ±•√∈

 

收稿日期

罗  蔚  女

计算研究了其在轴对称情况下围岩松动圈的计算本文提出的公式的准确性和实用性都有所提高

文章编号

2006

1   隧洞围岩物理状态示意图 

为简化问题便于讨论

处于各向同性的围岩中

由于开挖过程的扰动

r1

的圆环形破裂稳定区a

r2的环状破裂剧烈区b

 1

r0

 

在极坐标下

 

d σra  

 

 

 

dr +1

r (σra −

σθa ) =0 σra 为

a区任意一点的径向应力

σθa

为a

区任意一点的切向应力岩石

破裂后强度下降为残余强度

岩体应满足以下屈服准则

3s

当岩体的地质力学强度指

标大于

25

a>0.5

因此为了研究的方便这里仅考虑

a=0.5

的情况

r1

 

在该区内岩石开始破裂

该区靠近破裂点处的应力满

足如下平衡和破坏准则方程

为最大应力岩体应满足以下屈服准则

430072

      

 

98                                            中 国 水 运                                           第4卷   3

σr e =q (1−

r2

r 22r 22

) +σr 2r 2r 2  

  

 

 

 

⊄⊃∂↓∪ƒ° ∂…∅⊄

⊃∅∅ℑ∇∩ ∝↓∠∩∨≈℘⊃∉ƒℑƒℑ←∠⊂⌡…↵⊃…

计算出

三个物理状态区内围岩的应力状态

 

2

2

2

σc [1]2m r +2c [1]lg r c r +lg 2r σc m r −4σc s r  

 

ra =

4m r

洞壁上的边界条件

 

2

c [1]=−lg r 2m r (pm c +σc s r )   

 

0c +m r

 

2

2

2

σ=

c [1]2m r +2c [1]lg r c m r +lg 2r σc m r −4σc s r  

ra

4m r

11

破裂剧烈区应力 

联立破裂剧烈区的平衡微分方程和屈服准则可得

12

r=r1时

 

c [1]=

lg r 2m 2

21c m r m 2+r m 2(n 1σc m r m −4n 1c mx 1+4m r (pm +σc s ))

m r m 2

σ

rb =

4m (x 2+m r m 2(4p +(lgr −lg r 1) 2c c m 2) +

r m 2

2c 2

c (−2n 1m 2x 1+(lgr −lg r 1) m r m 2(x 2−4n 1

c m 2x 1+4m r (pm 2+c c s 2)) ))

15

÷ ⊄⊃∂↓∪ƒ∝⊗°∂ρ2

s e s e

r +q =2q  

由应力连续条件得到

 σrb +σθb

=2q  

得到松动圈的半径计算公式

16

算例与讨论 某深埋圆形隧洞

σ

c =80MPa

sr

 =0.0001

破裂稳定区的厚度大约为0.3m

s=0.004

此时计算得到松动圈半径为r2

=1.97m

即设r1=r0

=1.0m

显然不考虑破裂稳定区岩体的强度降低

由于大部分岩

体都具有应变软化特性

 

Hoek

可为最终确定岩体强度提供重要依据

该强度理论

已经在岩石力学和工程界得到广泛的认可和应用

本文提

出的公式的准确性和实用性都有所提高

郑颖人

崔志芳


相关文章

  • 岩石的强度理论与本构关系
  • 岩石的强度理论与本构关系 朱浮声 (东北大学土木系, 沈阳110006) 朱浮声, 1948年6月生于黑龙江齐齐哈尔 1976年毕业于东北大学, 1983年 获中国矿业大学工学硕士学位, 1991年获东北大学博士学位 1988年曾在 美国南 ...查看


  • 地下洞室围岩应力与围岩压力计算
  • 第六章 地下洞室围岩应力 与围岩压力计算 第一节 概述 一.地下洞室的定义与分类 1.定义: 地下洞室(underground cavity) 是指人工开挖或天然存在于岩土体中作为各种用途的地下空间. 2.地下洞室的分类 按用途:矿山巷道( ...查看


  • 地下工程压力拱拱体的确定与成拱分析
  • 第33卷第3期2005年5月河海大学学报(自然科学版) (NaturaI Sciences )JournaI of Hohai University VoI.33No.3 May 2005 地下工程压力拱拱体的确定与成拱分析 梁晓丹,刘 刚 ...查看


  • [岩石力学与工程学报]被引次数超100次学术论文
  • <岩石力学与工程学报>被引次数超100次学术论文 数据来自CNKI,统计日期:2016-9-14 表1 被引次数超过1000次论文 序号 1 2 作者 何满潮; 谢和平; 彭苏萍等 郑颖人; 赵尚毅 题目 刊期 被引 次数 深部 ...查看


  • 岩体力学习题集_答案[1]
  • 岩体力学习题集 一.名词解释 1.岩体2.弹性3.脆性4.三轴抗压强度5.抗压强度6.抗拉强度7.抗剪强度8.莫尔强度理论9.强度判据10. 稳定性系数11.蠕变12.残余强度13.天然应力14.剪切刚度15.强度理论16. 剪切刚度17. ...查看


  • 基于HoekBrown准则的岩体力学参数计算
  • ISSN167l一2900 采矿技术第9卷第4期 2009年7月 CN43一1347/TD MiningTechnology,V01.9,No.4 July2009 基于Hoek-Brown准则的岩体力学参数计算 于加云1,漆泰岳2 (1. ...查看


  • 矿压理论作业
  • 矿山压力理论 学 院: 能 源 与 安 全 学 专业班级:2013级采矿硕士研究生 学生姓名: 闫 化 晴 学 号: 任课老师: 高 明 中(教 授) 2014年1月3号 1 展望深部开采采场与巷道矿山压力理论的研究方向和发展趋势. 答: ...查看


  • 岩土工程极限分析有限元法及其应用_郑颖人
  • 第38卷第1期 2005年1月土 木 工 程 学 报 CHINACIVILENGINEERINGJOURNAL Vol138 No11Jan1 2005 岩土工程极限分析有限元法及其应用 郑颖人 赵尚毅 (后勤工程学院土木工程系) 摘要:经 ...查看


  • 岩体力学教学大纲 1
  • 岩体力学教学大纲 一.课程的性质与任务 本课程是 "地质工程"和"采矿工程"专业本科生专业基础课, 同时也是环境工程.水利工程及水文学与水资源等专业的重要选修课. <岩体力学>研究不同受力 ...查看


热门内容