基础巩固强化
一、选择题
x 2y 2
1.a -91(a >0)的渐近线方程为3x ±2y =0,则a 的值为( )
A .4 C .2 [答案] C
x 2y 2333[解析] 双曲线a -9=1(a >0)的渐近线方程为y =a x ,∴a =2∴a =2.
2.(2013·福建文,3) 双曲线x 2-y 2=1的顶点到其渐近线的距离等于( )
1A. 2 C .1 [答案] B
[解析] 双曲线x 2-y 2=1的一个顶点为A (1,0),一条渐近线为y =x ,则A (1,0)到y =x 距离为d =
122. 2
2B. 2 D. 2 B .3 D .1
x 2y 2
3.(2013·北京理,6) 若双曲线a b 1的离心率为3,则其渐近线方程为( )
A .y =±2x 1C .y =2x [答案] B
[解析] 本题考查双曲线的离心率及渐近线方程等几何性质.
B .y =2x 2
D .y =2x
因为离心率e =3,所以c 3a ,即b 2a ,由双曲线的焦点b
在x 轴上,所以渐近线方程为y =a 2x . 选B.
πx 2y 2
4.(2013·湖北文,2) 已知0
与C 2:cos θ-sin θ1 ( )
A .实轴长相等 C .离心率相等 [答案] D
[解析] 本题考查双曲线的性质.
由双曲线的性质c 2=a 2+b 2知,C 1:c 2=sin 2θ+cos 2θ=1,C 2:c 2
=cos 2θ+sin 2θ=1.
∴C 1与C 2的焦距相等,故选D.
x 2y 2
5.经过点M 6,-6) 且与双曲线4-3=1有相同渐近线的双曲线方程是( )
x 2y 2
A. 681 y 2x 2
C. 6-8=1 [答案] C
x 2y 2
[解析] 设双曲线方程为43λ(λ≠0) ,把点M 6,-26) 2424
代入双曲线方程,得λ=4-32,
y 2x 2
∴双曲线方程为:68=1.
6.(2012~2013学年度黑龙江鹤岗一中高二期末测试) 下列双曲
y 2x 2
B. 861 x 2y 2
D. 86=1 B .虚轴长相等 D .焦距相等
6
线,离心率e =2( )
x 2y 2
A. 241 x 2y 2
C. 4-6=1 [答案] B
c
[解析] 选项A 中,a =2,b =2,c =6,离心率e =a 3;c 6
选项B 中,a =2,b 2,c =6,∴离心率e =a 2C 中,c
a =2,b =6,c =3,离心率e =a =3;选项D 中,a =2,b 10,c 14
c =14,离心率e =a 2B.
二、填空题
x 2y 2x 22
7.椭圆4+a =1与双曲线a -y =1焦点相同,则a =________. 6[答案] 26
[解析] 由题意得4-a 2=a 2+1,∴2a 2=3,a =2.
x 2y 2
8.9251的焦点为焦点,它的离心率是椭圆离心率的2倍,该双曲线的方程为________.
y 2x 2
[答案] 2539=1
44
x 2y 2
[解析] 椭圆925=1中,a =5,b =3,c 2=16, c 4
焦点为(0,±4) ,离心率e =a 5,
x 2y 2
B. 421 x 2y 2
D. 410=1
8
∴双曲线的离心率e 1=2e =5 c 485∴a =a 5,∴a 1=2
11253922∴b 1=c 1-a 2=16-1
4=4 y 2x 2
∴双曲线的方程为25-39=1.
44
x 2y 2
9.若双曲线a 91(a >0)的离心率为2,则a 等于________. [答案]
3
[解析] ∵c 2=a 2+9,∴c a +9, a +9c
∴离心率e =a a =2, 解得a =3或a =-3(舍去) . 三、解答题
x 2y 25
10.(1)求与椭圆941有公共焦点,且离心率e =2线的方程;
5
(2)求虚轴长为12,离心率为4的双曲线的标准方程. x 2y 2
[解析] (1)设双曲线的方程为-1(4
9-λλ-4a 2=9-λ,b 2=λ-4, ∴c 2=a 2+b 2=5,
2
5c 55
∵e 2,∴e 2=a 4,解得λ=5,
9-λ
x 22
∴所求双曲线的方程为4y =1.
(2)由于无法确定双曲线的焦点在x 轴上还是在y 轴上,所以可设x 2y 2y 2x 2
a -b 1(a >0,b >0)或a -b 1(a >0,b >0).
c 5
由题设知2b =12,a 4且c 2=a 2+b 2, ∴b =6,c =10,a =8.
x 2y 2y 2x 2
6436=1或6436=1.
能力拓展提升
一、选择题
11.已知方程ax 2-ay 2=b ,且a 、b 异号,则方程表示( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在x 轴上的双曲线 D .焦点在y 轴上的双曲线 [答案] D
x 2y 2b
[解析] b b =1,由a 、b 异号知a
a a 焦点在y 轴上的双曲线,故答案为D.
x 2y 2
12.(2013·新课标Ⅰ文,4) 已知双曲线C :a b =1(a >0,b >0)5
2,则C 的渐近线方程为( )
1
A .y =4 1C .y =2x [答案] C
1
B .y =3 D .y =±x
c 55
[解析] 本题考查双曲线渐近线方程.由题意得a 2,即c =2
2
51b 1b 1
a ,而c 2=a 2+b 2,所以a 2+b 24a 2,b 2=42a 4a 21
近线的方程为y =2,选C. 在解答此类问题时,要充分利用a 、b 、c 的关系.
x 2
13.(2012~2013学年度浙江金华十校高二期末测试) 已知椭圆a y 21x 2y 2
+b =1(a >b >0)的离心率为2,则双曲线a -b =1的渐近线方程为( )
3
A .y =2x C .y =±2x [答案] A
a -b 1[解析] a 2, b 3
∴3a 2=4b 2,∴a 2.
x 2y 23
∴双曲线a -b 1的渐近线方程为y =2.
5
14.中心在坐标原点,离心率为3y 轴上,则它的渐近线方程为( )
5
A .y =4 4C .y =3x [答案] D
4
B .y =5 3D .y =4x 1B .y =2 3D .y =3x
22
c 5c 2a +b 25b 216
[解析] ∵a 3a =a 9a 9,
b 4
∴a 3y 轴上, b 4
∴双曲线的渐近线方程为x =,即x =a 3, 3∴所求双曲线的渐近线方程为y =4. 二、填空题
x 2y 21154b =1(b >0)的渐近线方程为y =2,则b 等于________.
[答案] 1
x 2y 2b b 1[解析] 双曲线4b =1(b >0)的渐近线方程为y =x ,∴22=2即b =1.
16.已知双曲线与椭圆x 2+4y 2=64共焦点,它的一条渐近线方程为x -3y =0,则双曲线的方程为________.
x 2y 2
[答案] 3612=1
[解析] 解法一:由于双曲线的一条渐近线方程为x 3y =0,则另一条为x +3y =0,可设双曲线方程为
22x y
x 2-3y 2=λ(λ>0),即λ-λ1
3
x 2y 2
由椭圆方程64+16=1可知 c 2=a 2-b 2=64-16=48
λ
双曲线与椭圆共焦点,则λ+348
∴λ=36.
x 2y 2
故所求双曲线方程为36-12=1.
解法二:双曲线与椭圆共焦点,可设双曲线方程为 x 2y 2
-=1 64-λλ-16
λ-161
由渐近线方程x -3y =0可得=364-λ∴λ=28
x 2y 2
故所求双曲线方程为36-12=1.
x 2y 2
64+16=1中,c 2=64-16=48.
设双曲线的实半轴长,虚半轴长分别为a 、b ,则由条件知
22a +b =48⎧
b 1a 3
2⎧⎪a =36,∴⎨2,
⎪b =12⎩
x 2y 2
∴双曲线方程为3612=1. 三、解答题
x 2y 2
17.设双曲线a b =1(0
b ) 两点,且原点到直线l 的距离为4c ,求双曲线的离心率.
[分析] 由截距式得直线l 的方程,再由双曲线中a 、b 、c 的关c
系及原点到直线l 的距离建立等式,从而求出a [解析] 由l 过两点(a, 0) 、(0,b ) ,得 l 的方程为bx +ay -ab =0.
3ab 3
由原点到l 4c ,得4.
a +b 将b =c -a 代入,平方后整理,得
⎛a ⎫2a a ⎪16c -16c +3=0. 令c x , ⎝⎭
2
2
2
31
则16x -16x +3=0,解得x =4x =42
c
由e =a e =3故e =x 3或e =2.
1+a 2,
a +b c
因0
3
所以应舍去e =3,故所求离心率e =2.
18.焦点在x 轴上的双曲线过点P 2,-3) ,且点Q (0,5)与两焦点的连线互相垂直,求此双曲线的标准方程.
[解析] 因为双曲线焦点在x 轴上,所以设双曲线的标准方程为x 2y 2
a -b 1(a >0,b >0),F 1(-c, 0) ,F 2(c, 0) .
因为双曲线过点P (42,-3) , 329
a b =1. ①
又因为点Q (0,5)与两焦点的连线互相垂直, →→所以QF 1·QF 2=0,即-c 2+25=0. 所以c 2=25. ② 又c 2=a 2+b 2,③
所以由①②③可解得a 2=16或a 2=50(舍去) .
22
x y
所以b 2=9,所以所求的双曲线的标准方程是16-9=1.
x 2y 2x 2y 2
1.椭圆34n 1和双曲线n 161有共同的焦点,则实数n 的值是( )
A .±5 C .25 [答案] B
[解析] 依题意,34-n 2=n 2+16,解得n =±3,故答案为B. x 2y 2
2.已知双曲线a b =1(a >0,b >0),其焦点为F 1、F 2,过F 1作直线交双曲线同一支于A 、B 两点,且|AB |=m ,则△ABF 2的周长是( )
A .4a C .4a +2m [答案] C
3πx 2y 2
3.设θ∈(4π),则关于x 、y 的方程sin θcos θ1 所表示的曲线是( )
A .焦点在y 轴上的双曲线 B .焦点在x 轴上的双曲线 C .焦点在y 轴上的椭圆 D .焦点在x 轴上的椭圆 [答案] C
x 2y 23π
[解析] 方程即是sin θ1,因θ∈(4,π) ,
-cos θ
∴sin θ>0,cos θsinθ,故方程表示焦点在y 轴上的
B .4a -m D .4a -2m B .±3 D .9
椭圆,故答案为C.
x 2y 2
4.以椭圆3+4=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是( )
x 22
A. 3y =1 x 2y 2
C. 3-4=1 [答案] B
[解析] 由题意知双曲线的焦点在y 轴上,且a =1,c =2,
2x
∴b 2=3,双曲线方程为y 2-3=1.
2y
5.(2013·北京文,7) 双曲线x 2-m 1的离心率大于2的充分必
2
x
B .y 2-31
y 2x 2
D. 34=1
要条件是( )
1A .m 2 C .m >1 [答案] C
[解析] 本题考查双曲线离心率的概念,充分必要条件的理解. 双曲线离心率e =1+m >2,所以m >1,选C.
x 2y 2
69-16=1的一个焦点到一条渐近线的距离等于( ) A. 3 C .4 [答案] C
4
[解析] ∵焦点坐标为(±5,0) ,渐近线方程为y =3x ,∴一个焦
B .3 D .2 B .m ≥1 D .m >2
4
点(5,0)到渐近线y =3x 的距离为4.
x 2y 2
7.(2012·湖南文,6) 已知双曲线C :a -b =1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )
x 2y 2
A. 20-51 x 2y 2
C. 80-20=1 [答案] A
[解析] 根据双曲线标准方程中系数之间的关系求解. x 2y 2
∵a -b 1的焦距为10,∴c =5=a +b . ① b
又双曲线渐近线方程为y =a ,且P (2,1)在渐近线上, 2b
∴a =1,即a =2b . ②
由①②解得a =25,b 5,故应选A.
x 2y 2
8.(2012·天津文,11) 已知双曲线C 1:a b =1(a >0,b >0)与双x 2y 2
曲线C 2:4161有相同的渐近线,且C 1的右焦点为F (5,0) ,则a =________,b =________.
[答案] 1 2
[解析] 利用共渐近线方程求解.
x 2y 2x 2y 2
与双曲线4161有共同渐近线的双曲线的方程可设为416x 2y 21
=λ,即4λ16λ1. 由题意知c 5,则4λ+16λ=5⇒λ=4
则a 2=1,b 2=4. 又a >0,b >0,故a =1,b =2.
x 2y 2
B. 520=1 x 2y 2
D. 20-80=1
基础巩固强化
一、选择题
x 2y 2
1.a -91(a >0)的渐近线方程为3x ±2y =0,则a 的值为( )
A .4 C .2 [答案] C
x 2y 2333[解析] 双曲线a -9=1(a >0)的渐近线方程为y =a x ,∴a =2∴a =2.
2.(2013·福建文,3) 双曲线x 2-y 2=1的顶点到其渐近线的距离等于( )
1A. 2 C .1 [答案] B
[解析] 双曲线x 2-y 2=1的一个顶点为A (1,0),一条渐近线为y =x ,则A (1,0)到y =x 距离为d =
122. 2
2B. 2 D. 2 B .3 D .1
x 2y 2
3.(2013·北京理,6) 若双曲线a b 1的离心率为3,则其渐近线方程为( )
A .y =±2x 1C .y =2x [答案] B
[解析] 本题考查双曲线的离心率及渐近线方程等几何性质.
B .y =2x 2
D .y =2x
因为离心率e =3,所以c 3a ,即b 2a ,由双曲线的焦点b
在x 轴上,所以渐近线方程为y =a 2x . 选B.
πx 2y 2
4.(2013·湖北文,2) 已知0
与C 2:cos θ-sin θ1 ( )
A .实轴长相等 C .离心率相等 [答案] D
[解析] 本题考查双曲线的性质.
由双曲线的性质c 2=a 2+b 2知,C 1:c 2=sin 2θ+cos 2θ=1,C 2:c 2
=cos 2θ+sin 2θ=1.
∴C 1与C 2的焦距相等,故选D.
x 2y 2
5.经过点M 6,-6) 且与双曲线4-3=1有相同渐近线的双曲线方程是( )
x 2y 2
A. 681 y 2x 2
C. 6-8=1 [答案] C
x 2y 2
[解析] 设双曲线方程为43λ(λ≠0) ,把点M 6,-26) 2424
代入双曲线方程,得λ=4-32,
y 2x 2
∴双曲线方程为:68=1.
6.(2012~2013学年度黑龙江鹤岗一中高二期末测试) 下列双曲
y 2x 2
B. 861 x 2y 2
D. 86=1 B .虚轴长相等 D .焦距相等
6
线,离心率e =2( )
x 2y 2
A. 241 x 2y 2
C. 4-6=1 [答案] B
c
[解析] 选项A 中,a =2,b =2,c =6,离心率e =a 3;c 6
选项B 中,a =2,b 2,c =6,∴离心率e =a 2C 中,c
a =2,b =6,c =3,离心率e =a =3;选项D 中,a =2,b 10,c 14
c =14,离心率e =a 2B.
二、填空题
x 2y 2x 22
7.椭圆4+a =1与双曲线a -y =1焦点相同,则a =________. 6[答案] 26
[解析] 由题意得4-a 2=a 2+1,∴2a 2=3,a =2.
x 2y 2
8.9251的焦点为焦点,它的离心率是椭圆离心率的2倍,该双曲线的方程为________.
y 2x 2
[答案] 2539=1
44
x 2y 2
[解析] 椭圆925=1中,a =5,b =3,c 2=16, c 4
焦点为(0,±4) ,离心率e =a 5,
x 2y 2
B. 421 x 2y 2
D. 410=1
8
∴双曲线的离心率e 1=2e =5 c 485∴a =a 5,∴a 1=2
11253922∴b 1=c 1-a 2=16-1
4=4 y 2x 2
∴双曲线的方程为25-39=1.
44
x 2y 2
9.若双曲线a 91(a >0)的离心率为2,则a 等于________. [答案]
3
[解析] ∵c 2=a 2+9,∴c a +9, a +9c
∴离心率e =a a =2, 解得a =3或a =-3(舍去) . 三、解答题
x 2y 25
10.(1)求与椭圆941有公共焦点,且离心率e =2线的方程;
5
(2)求虚轴长为12,离心率为4的双曲线的标准方程. x 2y 2
[解析] (1)设双曲线的方程为-1(4
9-λλ-4a 2=9-λ,b 2=λ-4, ∴c 2=a 2+b 2=5,
2
5c 55
∵e 2,∴e 2=a 4,解得λ=5,
9-λ
x 22
∴所求双曲线的方程为4y =1.
(2)由于无法确定双曲线的焦点在x 轴上还是在y 轴上,所以可设x 2y 2y 2x 2
a -b 1(a >0,b >0)或a -b 1(a >0,b >0).
c 5
由题设知2b =12,a 4且c 2=a 2+b 2, ∴b =6,c =10,a =8.
x 2y 2y 2x 2
6436=1或6436=1.
能力拓展提升
一、选择题
11.已知方程ax 2-ay 2=b ,且a 、b 异号,则方程表示( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在x 轴上的双曲线 D .焦点在y 轴上的双曲线 [答案] D
x 2y 2b
[解析] b b =1,由a 、b 异号知a
a a 焦点在y 轴上的双曲线,故答案为D.
x 2y 2
12.(2013·新课标Ⅰ文,4) 已知双曲线C :a b =1(a >0,b >0)5
2,则C 的渐近线方程为( )
1
A .y =4 1C .y =2x [答案] C
1
B .y =3 D .y =±x
c 55
[解析] 本题考查双曲线渐近线方程.由题意得a 2,即c =2
2
51b 1b 1
a ,而c 2=a 2+b 2,所以a 2+b 24a 2,b 2=42a 4a 21
近线的方程为y =2,选C. 在解答此类问题时,要充分利用a 、b 、c 的关系.
x 2
13.(2012~2013学年度浙江金华十校高二期末测试) 已知椭圆a y 21x 2y 2
+b =1(a >b >0)的离心率为2,则双曲线a -b =1的渐近线方程为( )
3
A .y =2x C .y =±2x [答案] A
a -b 1[解析] a 2, b 3
∴3a 2=4b 2,∴a 2.
x 2y 23
∴双曲线a -b 1的渐近线方程为y =2.
5
14.中心在坐标原点,离心率为3y 轴上,则它的渐近线方程为( )
5
A .y =4 4C .y =3x [答案] D
4
B .y =5 3D .y =4x 1B .y =2 3D .y =3x
22
c 5c 2a +b 25b 216
[解析] ∵a 3a =a 9a 9,
b 4
∴a 3y 轴上, b 4
∴双曲线的渐近线方程为x =,即x =a 3, 3∴所求双曲线的渐近线方程为y =4. 二、填空题
x 2y 21154b =1(b >0)的渐近线方程为y =2,则b 等于________.
[答案] 1
x 2y 2b b 1[解析] 双曲线4b =1(b >0)的渐近线方程为y =x ,∴22=2即b =1.
16.已知双曲线与椭圆x 2+4y 2=64共焦点,它的一条渐近线方程为x -3y =0,则双曲线的方程为________.
x 2y 2
[答案] 3612=1
[解析] 解法一:由于双曲线的一条渐近线方程为x 3y =0,则另一条为x +3y =0,可设双曲线方程为
22x y
x 2-3y 2=λ(λ>0),即λ-λ1
3
x 2y 2
由椭圆方程64+16=1可知 c 2=a 2-b 2=64-16=48
λ
双曲线与椭圆共焦点,则λ+348
∴λ=36.
x 2y 2
故所求双曲线方程为36-12=1.
解法二:双曲线与椭圆共焦点,可设双曲线方程为 x 2y 2
-=1 64-λλ-16
λ-161
由渐近线方程x -3y =0可得=364-λ∴λ=28
x 2y 2
故所求双曲线方程为36-12=1.
x 2y 2
64+16=1中,c 2=64-16=48.
设双曲线的实半轴长,虚半轴长分别为a 、b ,则由条件知
22a +b =48⎧
b 1a 3
2⎧⎪a =36,∴⎨2,
⎪b =12⎩
x 2y 2
∴双曲线方程为3612=1. 三、解答题
x 2y 2
17.设双曲线a b =1(0
b ) 两点,且原点到直线l 的距离为4c ,求双曲线的离心率.
[分析] 由截距式得直线l 的方程,再由双曲线中a 、b 、c 的关c
系及原点到直线l 的距离建立等式,从而求出a [解析] 由l 过两点(a, 0) 、(0,b ) ,得 l 的方程为bx +ay -ab =0.
3ab 3
由原点到l 4c ,得4.
a +b 将b =c -a 代入,平方后整理,得
⎛a ⎫2a a ⎪16c -16c +3=0. 令c x , ⎝⎭
2
2
2
31
则16x -16x +3=0,解得x =4x =42
c
由e =a e =3故e =x 3或e =2.
1+a 2,
a +b c
因0
3
所以应舍去e =3,故所求离心率e =2.
18.焦点在x 轴上的双曲线过点P 2,-3) ,且点Q (0,5)与两焦点的连线互相垂直,求此双曲线的标准方程.
[解析] 因为双曲线焦点在x 轴上,所以设双曲线的标准方程为x 2y 2
a -b 1(a >0,b >0),F 1(-c, 0) ,F 2(c, 0) .
因为双曲线过点P (42,-3) , 329
a b =1. ①
又因为点Q (0,5)与两焦点的连线互相垂直, →→所以QF 1·QF 2=0,即-c 2+25=0. 所以c 2=25. ② 又c 2=a 2+b 2,③
所以由①②③可解得a 2=16或a 2=50(舍去) .
22
x y
所以b 2=9,所以所求的双曲线的标准方程是16-9=1.
x 2y 2x 2y 2
1.椭圆34n 1和双曲线n 161有共同的焦点,则实数n 的值是( )
A .±5 C .25 [答案] B
[解析] 依题意,34-n 2=n 2+16,解得n =±3,故答案为B. x 2y 2
2.已知双曲线a b =1(a >0,b >0),其焦点为F 1、F 2,过F 1作直线交双曲线同一支于A 、B 两点,且|AB |=m ,则△ABF 2的周长是( )
A .4a C .4a +2m [答案] C
3πx 2y 2
3.设θ∈(4π),则关于x 、y 的方程sin θcos θ1 所表示的曲线是( )
A .焦点在y 轴上的双曲线 B .焦点在x 轴上的双曲线 C .焦点在y 轴上的椭圆 D .焦点在x 轴上的椭圆 [答案] C
x 2y 23π
[解析] 方程即是sin θ1,因θ∈(4,π) ,
-cos θ
∴sin θ>0,cos θsinθ,故方程表示焦点在y 轴上的
B .4a -m D .4a -2m B .±3 D .9
椭圆,故答案为C.
x 2y 2
4.以椭圆3+4=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是( )
x 22
A. 3y =1 x 2y 2
C. 3-4=1 [答案] B
[解析] 由题意知双曲线的焦点在y 轴上,且a =1,c =2,
2x
∴b 2=3,双曲线方程为y 2-3=1.
2y
5.(2013·北京文,7) 双曲线x 2-m 1的离心率大于2的充分必
2
x
B .y 2-31
y 2x 2
D. 34=1
要条件是( )
1A .m 2 C .m >1 [答案] C
[解析] 本题考查双曲线离心率的概念,充分必要条件的理解. 双曲线离心率e =1+m >2,所以m >1,选C.
x 2y 2
69-16=1的一个焦点到一条渐近线的距离等于( ) A. 3 C .4 [答案] C
4
[解析] ∵焦点坐标为(±5,0) ,渐近线方程为y =3x ,∴一个焦
B .3 D .2 B .m ≥1 D .m >2
4
点(5,0)到渐近线y =3x 的距离为4.
x 2y 2
7.(2012·湖南文,6) 已知双曲线C :a -b =1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )
x 2y 2
A. 20-51 x 2y 2
C. 80-20=1 [答案] A
[解析] 根据双曲线标准方程中系数之间的关系求解. x 2y 2
∵a -b 1的焦距为10,∴c =5=a +b . ① b
又双曲线渐近线方程为y =a ,且P (2,1)在渐近线上, 2b
∴a =1,即a =2b . ②
由①②解得a =25,b 5,故应选A.
x 2y 2
8.(2012·天津文,11) 已知双曲线C 1:a b =1(a >0,b >0)与双x 2y 2
曲线C 2:4161有相同的渐近线,且C 1的右焦点为F (5,0) ,则a =________,b =________.
[答案] 1 2
[解析] 利用共渐近线方程求解.
x 2y 2x 2y 2
与双曲线4161有共同渐近线的双曲线的方程可设为416x 2y 21
=λ,即4λ16λ1. 由题意知c 5,则4λ+16λ=5⇒λ=4
则a 2=1,b 2=4. 又a >0,b >0,故a =1,b =2.
x 2y 2
B. 520=1 x 2y 2
D. 20-80=1